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Charge carrier mobility in systems with local electron-phonon interaction
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We present a method for calculation of charge carrier mobility in systems with local electron-phonon
interaction. The method is based on unitary transformation of the Hamiltonian to the form where the nondiagonal
part can be treated perturbatively. The Green’s functions of the transformed Hamiltonian were then evaluated
using the Matsubara Green’s functions technique. The mobility at low carrier concentration was subsequently
evaluated from Kubo’s linear response formula. The methodology was applied to investigate the carrier mobility
within the one-dimensional Holstein model for a wide range of electron-phonon coupling strengths and
temperatures. The results indicated that for low electron-phonon coupling strengths the mobility decreases with
increasing temperature, while for large electron-phonon coupling the temperature dependence can exhibit one
or two extremal points, depending on the phonon energy. Analytical formulas that describe such behavior were
derived. Within a single framework, our approach correctly reproduces the results for mobility in known limiting
cases, such as band transport at low temperatures and weak electron-phonon coupling and hopping at high
temperatures and strong electron-phonon coupling.
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I. INTRODUCTION

Charge carrier mobility is one of the key physical quantities
of each material. On the one hand, it determines possible
applications of the material in electronic, optoelectronic, and
thermoelectric devices. On the other hand, it is an easily
measurable quantity that provides information about elec-
tronic processes in the material. In the absence of defects
and impurities, the mobility of carriers in crystalline materials
is fully determined by their interaction with phonons [1].
However, it is rather challenging to calculate phonon-limited
mobility for a given material.

The challenge is twofold. On the one hand, it is challenging
to construct the Hamiltonian of interacting electrons and
phonons. This can be accomplished using density functional
perturbation theory [2] which can be used to evaluate relevant
electron-phonon coupling constants. However, due to oscil-
latory dependence of electron-phonon coupling constants on
electron and phonon momenta, a dense momentum grid in the
Brillouin zone is required [3], which makes these calculations
rather time consuming. Significant progress along this line of
research has been made since the late 2000s [4–7]. As a conse-
quence of this, in recent years, there have been several reports
of ab initio mobility calculations in materials where electron-
phonon interaction can be treated perturbatively [8–12]. On
the other hand, it is also rather challenging to evaluate the
mobility for a given Hamiltonian of interacting electrons and
phonons. In the cases of weak and strong electron-phonon
coupling, perturbative approaches are possible. However, it is
significantly more difficult to evaluate the mobility in general
case. In this work, we give contribution to this line of research.

*nenad.vukmirovic@ipb.ac.rs

We consider a Hamiltonian on the lattice with local
electron-phonon interaction, which is a straightforward gen-
eralization of a widely studied Holstein model [13]. In the
case of weak electron-phonon interaction the problem can be
analyzed using a perturbative approach. It is known that Lang-
Firsov unitary transformation [14] exactly diagonalizes the
Hamiltonian in the limit of infinitely large electron-phonon
interaction and therefore it can be used as a starting point for
perturbative approach for strong electron-phonon interaction.
It is, however, unclear how to tackle the problem for inter-
mediate values of electron-phonon interaction. A variety of
theoretical methods, such as exact diagonalization [15–17],
density matrix renormalization group [18–20], variational
approaches [21–25], dynamical mean-field theory [26,27],
and quantum Monte Carlo [25,28–31], was used to study
the Holstein and related models. However, most of these
methods were focused on evaluation of the ground state of the
system and very little effort was focused on more challenging
evaluation of correlation functions at finite temperature. It
is only recently that quantum Monte Carlo calculation of
finite-temperature mobility within the Holstein model was
performed [32]. Zero-temperature optical conductivity was
analyzed in Refs. [33] and [34], while temperature depen-
dence of resistivity within dynamical mean-field theory was
investigated in Ref. [27].

In this work, we present the method for evaluation of mo-
bility in systems with local electron-phonon interaction. The
first step in our procedure is based on unitary transformation
of the Hamiltonian. The parameters of the transformation
were chosen in such a way that the nondiagonal part of
the Hamiltonian is minimized in a certain sense. Next, rele-
vant self-energies and spectral functions of the transformed
Hamiltonian were evaluated using Matsubara Green’s func-
tion formalism by keeping the lowest-order nonzero term in
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the expansion. The spectral functions were subsequently used
as input to evaluate the mobility using Kubo’s linear response
formula. We illustrate the methodology by performing the
calculation of mobility for Holstein model in one dimension
for a wide range of model parameters.

The idea of calculating the mobility or diffusivity by com-
bining unitary transformation of the Hamiltonian with evalu-
ation of correlation function for the transformed Hamiltonian
has been followed in different studies in the past [35–40]. The
main advantage of our approach over these approaches is that
we capture the time decay of current-current correlation func-
tion without introducing additional phenomenological param-
eters extrinsic to the model Hamiltonian. As a consequence of
this, we do not obtain singularities that would lead to infinite
mobility. More details of the comparison of our approach with
other related works is given in Sec. IV.

The paper is organized as follows. In Sec. II we present
the overall theoretical framework of our method. In particular,
in Sec. II A we introduce the Hamiltonian that we consider
and its unitary transformation. The procedure for evaluating
self-energies and spectral functions is presented in Sec. II B,
while the expressions for mobility calculation are derived in
Sec. II C. In Sec. III we illustrate the method by applying
it to one-dimensional Holstein model for a wide range of
model parameters. We first briefly discuss numerical aspects
in Sec. III A. We present the results for parameters of uni-
tary transformation and the spectral function of transformed
Hamiltonian in Sec. III B. The results obtained for mobility
are given in Sec. III C, along with analytical formulas in
several limiting cases. In Sec. IV we additionally compare our
approach with other related papers and discuss the range of
applicability of our approach and its possible extensions.

II. THEORETICAL CONSIDERATIONS

A. The Hamiltonian and its unitary transformation

We consider the Hamiltonian

H = He + Hph + He−ph, (1)

where

He = −
∑
R,S

JR−Sa†
RaS (2)

is the electronic part of the Hamiltonian,

Hph =
∑
R, f

h̄� f b†
R, f bR, f (3)

is the part that describes phonons, while

He−ph =
∑
R, f

G f a†
RaR(b†

R, f + bR, f ) (4)

is the electron-phonon interaction Hamiltonian. In previous
equations, the indices R and S denote the positions of lat-
tice sites, a†

R and aR are electron creation and annihilation
operators at site R, while JR−S is electronic transfer integral
between sites R and S. It is assumed that at lattice site R there
is a finite number of localized phonon modes of energy h̄� f

that are labeled by index f . The corresponding creation and
annihilation operators for phonons in these modes are b†

R, f

and bR, f . The parameter G f quantifies the interaction between
an electron at site R and the phonon mode f at the same site.

To transform the Hamiltonian to a more convenient form
where interacting term can be treated perturbatively, we per-
form a unitary transformation of the Hamiltonian

H̃ = U −1HU, (5)

where unitary operator U is given as [38]

U = e
∑

R a†
RaR

∑
S, f DS, f (bR+S, f −b†

R+S, f ). (6)

This transformation is a generalization of the Lang-Firsov
unitary transformation [14] and follows a similar idea used in
early studies of continuum Fröhlich polaron [41]. Parameters
of the transformation DS, f will be chosen to minimize the
interaction term in certain sense, as will be described in the
next paragraph. After transformation the Hamiltonian takes
the form

H̃ = H̃0 + Ṽ , (7)

where the noninteracting term H̃0 reads

H̃0 =
∑

k

Eka†
kak +

∑
R, f

h̄� f b†
R, f bR, f (8)

with

ak = 1√
Nk

∑
R

aReik·R, (9)

Ek = −
∑

R

JReik·Rθ
(0)
R + E ′, (10)

E ′ =
∑
R, f

h̄� f D2
R, f − 2

∑
f

G f D0, f , (11)

θ
(0)
R = e−∑

S, f (DS, f −DS−R, f )2
(

nph
f + 1

2

)
, (12)

and

nph
f = 1

e
h̄� f
kBT − 1

(13)

is the phonon occupation number at temperature T , while Nk

is the number of lattice sites. The interaction term reads

Ṽ = 1

Nk

∑
k,q

a†
k+qakBk,q, (14)

where Bk,q = B(1)
k,q + B(2)

k,q and

B(1)
k,q =

∑
R, f

eiq·R
(

G f − h̄� f

∑
S

DS, f e−iq·S
)

(bR, f + b†
R, f ),

(15)

B(2)
k,q = −

∑
R,S

JR−Sei[(k+q)·R−k·S]
[
θ

†
RθS − θ

(0)
R−S

]
, (16)

with

θR = e
∑

S, f DS, f (bS+R, f −b†
S+R, f ). (17)

Next we discuss the procedure for choosing the parameters
of the unitary transformation DR, f . First, we note that free
energy of the system is invariant under unitary transformation.
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Therefore it can be expressed as F = −kBT ln Tre−βH̃ , where
β = 1

kBT . Next we utilize Gibbs-Bogoliubov inequality [42]

−kBT ln Tre−βH̃ � Tr(ρt H̃ ) + kBT Tr(ρt ln ρt ) (18)

that is valid for any statistical operator ρt . By choosing ρt in
the form

ρt = e−βH̃0

Tre−βH̃0
(19)

we arrive at

F � −kBT ln Tre−βH̃0 . (20)

Equation (20) gives an upper bound on the free energy of
the system Fub = −kBT ln Tre−βH̃0 which is equal to the free
energy of the noninteracting system described by the Hamil-
tonian H̃0, which depends on the parameters of the unitary
transformation DR, f . We choose these parameters to minimize
Fub. With such a choice of parameters the upper bound on the
free energy Fub will be closest to free energy of the system F
and the effect of interaction Ṽ in Eq. (7) will be minimized. It
is then expected that perturbative treatment of interaction Ṽ is
possible. Evaluation of Fub is possible, since it is equal to the
free energy of the noninteracting system. Explicit expression
for Fub and the equations for optimal parameters of the unitary
transformation in the case of a one-dimensional model with
nearest-neighbor interaction are given in Appendix A.

B. Self-energies and spectral functions

To evaluate the self-energies and spectral functions, we
use the Matsubara Green’s function technique [43]. We in-
clude the terms up to quadratic in the interaction Ṽ , which is
the lowest order that gives nonzero contribution. The details
of the derivation are given in Appendix B. In the final ex-
pression for retarded self-energy we replace the bare carrier
Green’s function with a dressed one, which constitutes the
self-consistent Born approximation [43,44]. We thus obtain
the following expression for retarded self-energy:

�R
k (ω) = �

(1)
k (ω) + �

(2)
k (ω) + �

(3)
k (ω), (21)

where

�
(1)
k (ω) = 1

Nkh̄2

∑
q, f

|φq, f |2
[(

nph
f + 1

)
GR

k−q(ω − � f )

+ nph
f GR

k−q(ω + � f )
]
, (22)

�
(2)
k (ω) = −1

Nkh̄2

∑
q, f

φq, f

∑
Y

(DY, f − DX+Y, f )eiq·Y

×
∑

X

JXθ
(0)
X [eik·X − e−i(k−q)X]

[(
nph

f +1
)

× GR
k−q(ω−� f )−nph

f GR
k−q(ω + � f )

]
, (23)

�
(3)
k (ω) = 1

Nkh̄2

∑
q

∑
X,Y,Z

JXJYθ
(0)
X θ

(0)
Y ei(k−q)·XeikY

× eiqZ
∫ ∞

−∞
dt eiωt [θX,Y,Z(t ) − 1]GR

k−q(t ). (24)

In these equations GR
k (ω) is the retarded self-energy, φq, f is

defined as

φq, f = G f − h̄� f

∑
R

DR, f e−iq·R, (25)

and

θX,Y,Z(t ) = exp

⎧⎨
⎩−

∑
f

[(
nph

f + 1
)
e−i� f t + nph

f ei� f t
]

×
∑

U

(DU, f − DU+X, f )(DU+Z, f − DU+Z+Y, f )

⎫⎬
⎭,

(26)

while GR
k (t ) is the retarded Green’s function in the time

domain which is related to the Green’s function in frequency
domain as GR

k (ω) = ∫∞
−∞ dt eiωt GR

k (t ). Retarded self-energies
and Green’s functions are then obtained by self-consistently
solving the Dyson equation,

GR
k (ω) = 1

ω − Ek−μF

h̄ − �R
k (ω)

, (27)

and the equations for self-energies (21)–(24). In Eq. (27)
the chemical potential is denoted as μF . The quantity φq, f

can in some sense be considered as renormalized electron-
phonon coupling. For all coupling strengths the minimization
procedure yields φq, f = 0 for q = 0. When electron-phonon
coupling is small, φq, f is also small since both G f and DR, f

are small. For large electron-phonon coupling it is very small
because in this case DR, f = G f

h̄� f
δR,0; φq, f has the largest,

but still relatively small, values for intermediate coupling
strengths.

C. Mobility

The mobility in the direction i is given by the Kubo
formula [40,43]

μii = β

2Nce0

∫ ∞

−∞
dt
〈
jH
i (t ) ji

〉
H
, (28)

where Nc is the total number of carriers in the system, e0 is
the elementary charge, while ji is the ith component of the
operator

j = dP
dt

, (29)

where P is the polarization operator

P =
∑

R

e0Ra†
RaR (30)

and the superscript H in the operator denotes the operators in
the Heisenberg picture with respect to operator H ,

jH
i (t ) = e

i
h̄ (H−μF N )t jie

− i
h̄ (H−μF N )t , (31)

where N is the particle number operator. Using dPi
dt =

i
h̄ [H, Pi], we find

ji =
∑

k

(Jk )ia
†
kak, (32)
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where

(Jk )i = ie0

h̄

∑
R

JRRie
ik·R. (33)

Next, we exploit the identity [45]〈
jH
i (t ) ji

〉
H = 〈

j̃H̃
i (t ) j̃i

〉
H̃ , (34)

where

j̃i = U −1 jiU = 1

Nk

∑
k

(Jk )i

∑
k1,k2

a†
k1

ak2θ
†
k−k1

θk−k2 (35)

and

θk = 1√
Nk

∑
R

θReik·R. (36)

From Eqs. (28), (34), and (35) we obtain

μii = β

2Nce0

1

N2
k

∫ ∞

−∞
dt

∑
k,k0,k1,k2,k3,k4

(Jk )i(Jk0 )i

× 〈
aH̃

k1
(t )†aH̃

k2
(t )a†

k3
ak4θ

H̃
k−k1

(t )†θ H̃
k−k2

(t )θ†
k0−k3

θk0−k4

〉
H̃ .

(37)

To evaluate the mobility using Eq. (37), we will calculate the
first nontrivial term in expansion of Eq. (37) in powers of
interaction Ṽ . This is the zeroth term, which is obtained by
replacing H̃ by H̃0. Using the identity〈
aH̃0

k1
(t )†aH̃0

k2
(t )a†

k3
ak4

〉
H̃0

= 〈
aH̃0

k1
(t )†ak4

〉
H̃0

〈
aH̃0

k2
(t )a†

k3

〉
H̃0

+〈
aH̃0

k1
(t )†aH̃0

k2
(t )
〉
H̃0

〈a†
k3

ak4〉H̃0
,

(38)

and omitting the second term which is proportional to the
square of carrier population and is negligible in the limit of
low carrier concentration that we consider here, we obtain

μii =
∫ ∞

−∞
dt μ′

ii(t ), (39)

where

μ′
ii(t ) = β

2Nce0

∑
k1,k2

〈
ak1 (t )†ak1

〉〈
ak2 (t )a†

k2

〉
Y ii

k1,k2
(t ), (40)

Y ii
k1,k2

(t ) = 1

N2
k

∑
k,k0

(Jk )i

(
Jk0

)
i

× 〈
θ

H̃0
k−k1

(t )†θ
H̃0
k−k2

(t )θ†
k0−k2

θk0−k1

〉
H̃0

= − e2
0

h̄2

1

Nk

∑
X,Y,Z

JXJY(X)i(Y)i

× eik1·(Y+Z)eik2·(X−Z)θX,Y,Z(t )θ (0)
X θ

(0)
Y , (41)

〈
ak1 (t )†ak1

〉 = 1

2π

∫ ∞

−∞
dω eiωt Ak1 (ω)

1 + eβ h̄ω
, (42)

〈
ak2 (t )a†

k2

〉 = 1

2π

∫ ∞

−∞
dω e−iωt Ak2 (ω). (43)

In Eqs. (42) and (43) we have replaced the bare spectral func-
tion A(0)

k (ω) = −2ImG(0),R
k (ω) [where G(0),R

k (ω) denotes the
retarded Green’s function for H̃0] with a dressed one Ak(ω) =
−2ImGR

k (ω) in the spirit of the self-consistent Born approx-
imation which was used to calculate the retarded Green’s
functions and self-energies. This replacement is equivalent
to taking the zeroth term in the expansion of mobility in
terms of dressed Green’s function. It leads to time decay
of the current-current correlation function and is essential to
obtain finite values of mobility. It can be, in principle, further
systematically improved by adding higher-order diagrams in
the expansion, such as the vertex corrections [43].

III. RESULTS—ONE DIMENSIONAL HOLSTEIN MODEL

To illustrate the application of the whole approach, we
consider a one-dimensional system, with electronic coupling
between nearest neighbors only and with a single-phonon
mode per lattice site, which constitutes the well-known Hol-
stein model [13]. The system is described by the following
parameters: the transfer integral J , the phonon energy h̄�,
the electron-phonon coupling strength G, and the thermal
energy kBT .

A. Numerical aspects

The calculations of Green’s functions, spectral functions,
and self-energies were performed by self-consistently solving
the Dyson equation [Eq. (27)] and the equations for self-
energies (21)–(24). Namely, we start with an initial guess
�k(ω) = −iJ/5 and then we evaluate the Green’s function
using Eq. (27). Next, we evaluate new self-energy using
Eqs. (21)–(24). The �

(1)
k (ω) and �

(2)
k (ω) are evaluated in the

frequency domain, while �
(3)
k (t ) is evaluated in the time do-

main and then converted to frequency domain. Self-energies
and Green’s functions were represented on a uniform grid of
k and ω points. Typical size of the uniform k-point grid was
90, while typical size of the uniform grid used to represent the
frequency and time dependence was 10 000–20 000 and the
frequency range was from (−20 J

h̄ , 20 J
h̄ ) to (−120 J

h̄ , 120 J
h̄ ),

depending on the parameters of the system. Evaluated self-
energy is then mixed in a 50–50% ratio with a self-energy
from previous iteration to ensure convergence of the whole
process. The process is stopped when self-energy from cur-
rent iteration becomes nearly the same as self-energy from
previous iteration. Typical computational time on a single
computer for a given set of system parameters and for reported
grid dimensions is on the order of tens of minutes. We note
that in many cases the grid size can be significantly reduced
without compromising accuracy and that computational times
on the order of minutes can be reached. Further speed-up of
calculations could be in principle achieved by representing
the self-energies in real space and exploiting their locality.
On the other hand, straightforward numerical evaluation using
uniform grid representations becomes rather challenging at
low temperatures when linewidth of the spectral function be-
comes very narrow. For this reason, we also derive analytical
expressions for limiting behavior of spectral functions and
mobility in this region.
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FIG. 1. Dependence of band dispersion narrowing factor Jeff
J

on electron-phonon coupling strength G
J and temperature kBT

J for
different values of phonon energies h̄�

J .

B. Band dispersion narrowing and spectral functions

First, we analyze the values of optimal parameters of the
unitary transformation. The parameter θ (0)

al
defined in Eq. (12)

(where al is the lattice constant) is the ratio Jeff
J of the band

dispersion widths of noninteracting part of the transformed
and original Hamiltonian, as can be seen from Eq. (10). For
brevity, it can be called the band dispersion narrowing factor
and its value gives a good indication of the transport regime.
In Fig. 1 we present its dependence on electron-phonon inter-
action strength G

J and temperature kBT
J for different values of

phonon energies h̄�
J = 0.2, h̄�

J = 1, and h̄�
J = 3. From Fig. 1

we see that for all phonon energies h̄�
J the band dispersion

narrowing factor exhibits values close to 1 at low tempera-
tures and small electron-phonon coupling constants, while it
exhibits values close to zero at high temperatures and large
electron-phonon coupling constants. In the regime of low tem-
perature and small electron-phonon coupling the parameters
of the unitary transformation are also close to zero Dn ≈ 0
(where n is an integer that labels the lattice site). On the other
hand, in the opposite regime of high temperatures and large
electron-phonon coupling constants optimal parameters of the
transformation read Dm ≈ G

h̄�
δm,0. In case of small ( h̄�

J = 0.2)

)b()a(

(c)

(e)

(d)

(f)

FIG. 2. Spectral function at phonon energy of h̄�

J = 1 and differ-
ent values of electron-phonon coupling strength G

J and temperature
kBT

J : (a) kBT
J = 3.16, G

J =
√

2
10 ; (b) kBT

J = 10, G
J =

√
2

10 ; (c) kBT
J =

0.631, G
J = 1; (d) kBT

J = 6.31, G
J = 1; (e) kBT

J = 1, G
J = √

6;

(f) kBT
J = 6.31, G

J = √
6.

and medium ( h̄�
J = 1) phonon energies the change in the

band dispersion narrowing factor at the transition between
the two regimes is abrupt, while in the case of large phonon
energies ( h̄�

J = 3), this change is rather smooth (see Fig. 1).
We note for the moment that abruptness of this transition is
an undesirable feature of unitary transformation and that no
physical meaning (such as, for example, the phase transition)
should be associated to smoothness or abruptness of this
transition. We leave the discussion of its implications for the
part with presentation of mobility results. It has been well
established (see, for example, Refs. [17,46]) that the crossover
from the regime of free carriers to the small-polaron regime is
smooth and at zero temperature occurs when both conditions
λ > 1 and α2 > 1 are satisfied, where λ = G2

2Jh̄�
and α = G

h̄�
.

These two conditions are fulfilled if λ > 1 when h̄�
J is small

(adiabatic regime), while they are fulfilled if α2 > 1 when
h̄�
J is large (anitadiabatic regime). The crossover between

the dark and white regions at low temperature in Fig. 1
indeed occurs at coupling strength when these conditions are
satisfied.

For presentation of the results, we chose the transfer inte-
gral J as the energy unit and not the phonon energy h̄� which
is a somewhat more conventional choice in the literature.
Our choice was motivated by the fact that this enables us
to establish the effect of phonon energy on band dispersion
narrowing. While it is well established that larger electron-
phonon interaction and higher temperature narrow the band
dispersion and larger transfer integral widens the band, it is
not clear what is the effect of phonon energy. From Fig. 1, we
see that larger phonon energy also leads to band dispersion
widening.

Since spectral function Ak (ω) is one of the key factors
that determines the mobility [Eqs. (39)–(43)], we analyze it
in more detail as follows. In Fig. 2 we present the spectral
function at intermediate values of phonon energy h̄�

J = 1
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)c()b((a)

)f()e()d(

FIG. 3. Spectral function at phonon energy of h̄�

J = 3 and different values of electron-phonon coupling strength G
J and temperature

kBT
J : (a) kBT

J = 1.58, G
J = 1; (b) kBT

J = 3.98, G
J = 1; (c) kBT

J = 10, G
J = 1; (d) kBT

J = 0.794, G
J = √

8; (e) kBT
J = 2.00, G

J = √
8; (f) kBT

J =
5.01, G

J = √
8.

for different values of electron-phonon coupling strength and
temperature. At low values of electron-phonon coupling and
temperature [see Fig. 2(a)] the shape of spectral function
plot is fully determined by the bare band dispersion and
the linewidth of the spectral function is narrow. As the
temperature increases, the linewidth becomes broader [see
Fig. 2(b)] and slight band splitting at the energy h̄� above
the band minimum appears. At intermediate electron-phonon
coupling strengths the spectral function at low temperatures
[see Fig. 2(c)] still exhibits a pronounced dispersion but
with stronger broadening and band splitting. After a certain
temperature when an abrupt change in parameters of the
unitary transformation takes place, the dispersion becomes
flat [see Fig. 2(d)] and momentum dependence of the spectral
function is lost. At high values of electron-phonon coupling
the dispersion remains flat, while an increase in temperature
broadens the linewidth [see Figs. 2(e) and 2(f)]. The spectral
function at low values of phonon energy h̄�

J = 0.2 exhibits
qualitatively the same behavior as for intermediate values. At
high values of phonon energy we also find that an increase
of temperature broadens the linewidth and narrows the bands
[see Figs. 3(a)–3(f)]. A qualitative difference in this case com-
pared with low and intermediate values of phonon energy is
that the spectral function evolves smoothly from a dispersive
and narrow linewidth form to a flat and broad linewidth form
[see, e.g., Figs. 3(d)–3(f)] without an abrupt change of its
shape.

C. Carrier mobility

In Fig. 4 we present temperature dependence of mobility
for different electron-phonon coupling strengths and phonon
energies. For each phonon energy, the calculations were
performed for electron-phonon interaction strengths rang-
ing from small values where electron-phonon interaction is
merely a perturbation to large values significantly after the
crossover to the small-polaron regime. In the following, we
discuss these results in detail.

1. Weak electron-phonon coupling

At low values of electron-phonon coupling for each h̄�
J we

find that the mobility decreases with an increase in temper-
ature. To better understand the origin of such a dependence,
we first derive the expression for mobility in the limit of
small electron-phonon coupling. In this case, the parameters
of unitary transformation are approximately zero: DR, f ≈ 0.
The θR operators [Eq. (17)] then take the form of unity
operators θR ≈ 1, which leads to θk ≈ √

Nkδk,0 [where θk was
defined in Eq. (36)]. From Eq. (41) we then obtain Y ii

k1,k2
(t ) ≈

(Jk1 )i(Jk2 )iδk1,k2 . Using Eqs. (39), (40), (42), and (43) we
come to the expression

μ = β

2Nce0

∑
k

J 2
k

1

2π

∫
dωAk(ω)2nF (ω), (44)

where nF (ω) = 1
eβ h̄ω+1 . Next we exploit the identity

Ak(ω)2 = 2π
δ
[
ω − Ek−μF

h̄

]
−Im�R

k (ω)
, (45)

which is valid in the limit of small self-energy and obtain

μ = β

e0

∑
k nkτkJ 2

k∑
k nk

, (46)

where nk = 1
eβ(Ek−μF )+1

and

1

τk
= −2Im�k(ω)|

ω= Ek−μF
h̄

. (47)

We further exploit the fact that DR, f ≈ 0 implies that �
(2)
k and

�
(3)
k terms [see Eqs. (23) and (24)] vanish. The φq, f term in

Eq. (25) reduces to φq, f = G f . Using Eq. (22) we obtain in
this limit

1

τk
= 2π

h̄

1

Nk

∑
q, f

G2
f

[(
nph

f + 1
)
δ(Ek − h̄� f − Ek−q)

+ nph
f δ(Ek + h̄� f − Ek−q)

]
. (48)
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FIG. 4. Temperature dependence of mobility for different
electron-phonon coupling strengths G

J and phonon energies: (a) h̄�

J =
0.2, (b) h̄�

J = 1, and (c) h̄�

J = 3. The label “fc” denotes full calcu-
lation using the spectral function obtained from the self-consistent
solution of Eqs. (21)–(24) and (27) and mobility obtained from
Eqs. (39)–(43). The label “wl” denotes the weak electron-phonon
coupling limit results obtained from Eq. (49). The label “fc-fb”
denotes full calculation where momentum dependence of Green’s
functions and self-energies was neglected, i.e., Eqs. (53), (54), (56),
and (27) were used. The label “sl” denotes the strong electron-
phonon coupling limit results obtained from Eq. (65). The label
“nl” denotes the mobility obtained using the narrow linewidth ap-
proximation with spectral function obtained from Eqs. (70) and (69)
and the mobility calculated as described in Appendix D. The label
“m” denotes the mobility obtained using the Marcus formula from
Eqs. (75) and (76).

Equations (48) and (46) are exactly the equations that one
would obtain by perturbative treatment of electron-phonon
interaction from the beginning without resorting to the use
of unitary transformation. The fact that these equations were
also obtained from our approach in the limit of small electron-
phonon interaction is a good validity check of our approach.
The two terms in square brackets in Eq. (48) originate re-
spectively from scattering of carrier with momentum k due
to emission and absorption of phonons. We further note that
the time given by Eq. (48) is the carrier scattering time rather
than the momentum relaxation time [given by Eq. (C9)] that
would be obtained if vertex corrections were included [43].
It is interesting to note that in the case of one-dimensional
Holstein model these two times are the same, as shown in
Appendix C.

In the case of Holstein model, Eqs. (48) and (46) can be
further integrated, as described in detail in Appendix C. The
final result for mobility in this limit then reads

μ = e0a2
l

h̄

4βJ3

πG2I0(2βJ )

×
⎡
⎣ 1

nph

∫ kAal

0
du e2βJ cos u sin2 u

√
1 −

(
cos u − h̄�

2J

)2

+
∫ kBal

kAal

du e2βJ cos u sin2 u
nph√

1−
(

cos u− h̄�
2J

)2
+ nph+1√

1−
(

cos u+ h̄�
2J

)2

+ 1

nph + 1

∫ π

kBal

du e2βJ cos u sin2 u

√
1−

(
cos u+ h̄�

2J

)2
⎤
⎦,

(49)

where kA = 1
al

arccos(1 − h̄�
2J ), kB = π

al
− 1

al
arccos(1 − h̄�

2J ),
and In(x) denotes the modified Bessel function of the first kind
of order n. In Figs. 4(a) and 4(b) we present the temperature
dependence of the mobility calculated using Eq. (49) [the
lines labeled as “wl” (weak limit)]. When h̄�

J = 0.2 the weak
limit results agree perfectly with full calculation for smallest
investigated strength of electron-phonon interaction G

J = 0.05
[see Fig. 4(a)]. The agreement is also excellent for G

J = 0.1
√

2
except for largest temperatures where the effects of electron-
phonon interaction become stronger due to larger number
of phonons, while the agreement gets significantly worse at
G
J = 0.05. For medium phonon energies h̄�

J = 1, we also
obtain excellent agreement of the weak limit result with full
calculation at lowest electron-phonon interaction strength of
G
J = 0.1

√
2 and at lower temperatures for G

J = 0.5 and 1 [see
Fig. 4(b)].

Equation (49) is also important as it provides the oppor-
tunity to calculate the mobility at lower temperatures when
linewidth of the spectral function becomes very narrow. It
is then more difficult to perform full calculation since a
very dense frequency grid is needed to represent the Green’s
functions.

It is important to note that Eq. (49) should be applied only
when h̄�

J < 2. In the opposite case, there exist k points for
which electron scattering via phonon emission or absorption
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NIKOLA PRODANOVIĆ AND NENAD VUKMIROVIĆ PHYSICAL REVIEW B 99, 104304 (2019)

is not possible because final state energy is outside the range
of band energies. For these k points, the scattering time
calculated using Eq. (48) is infinite, as well as the mobility
obtained using Eq. (49). For this reason, it is not possible to
present the mobility obtained from Eq. (49) in Fig. 4(c) when
h̄�
J = 3.

2. Strong electron-phonon coupling

Next we discuss the temperature dependence of the mo-
bility for large values of electron-phonon interaction. From
the results presented in Fig. 4, we see that this dependence
exhibits rich features that depend on phonon energy h̄�

J .
For h̄�

J = 0.2 the mobility exhibits a maximum at certain
temperature followed by a decrease as the temperature further
increases. On the other hand, for h̄�

J = 1 and 3 one minimum
followed by one maximum appear in the dependence.

To better understand these dependencies and the origin
of the differences between them, we have derived analytical
formulas in the limit of strong electron-phonon interaction.
In this limit, the parameters of the unitary transformation
take the form DR, f = G f

h̄� f
δR,0 and these are sufficiently large

that band dispersion narrowing factor θ (0)
al

is approximately
zero. As a consequence of strong band dispersion narrowing,
all momentum dependencies in the self-energy and Green’s
functions are lost [see, e.g., the spectral function in Fig. 2(e)]
and we can consider them to be a function of ω only. The
term φq, f [Eq. (25)] also becomes zero since DR, f = G f

h̄� f
δR,0

in this limit. Consequently, the terms �
(1)
k (ω) [Eq. (22)] and

�
(2)
k (ω) [Eq. (23)] also vanish in this limit and self-energy is

determined by the �
(3)
k (ω) term [Eq. (24)].

By neglecting the momentum dependence of the
Green’s function in Eq. (24) and exploiting the identity
1

Nk

∑
q eiq·(Z−X) = δX,Z we obtain

�R
k (ω) = 1

h̄2

∑
X,Y

JXJYθ
(0)
X θ

(0)
Y eik(X+Y)

×
∫ ∞

−∞
dt eiωt [θX,Y,X(t ) − 1]GR(t ). (50)

The term θX,Y,X(t ) in this limit reads

θX,Y,X(t ) = exp

⎧⎨
⎩−

∑
f

[(
nph

f + 1
)
e−i� f t + nph

f ei� f t
]

×
(

G f

h̄� f

)2 ∑
U

(δU,0δX,0 − δU,0δX+Y,0

−δU+X,0 + δU+X,0δY,0)

⎫⎬
⎭. (51)

After omitting the terms δX,0 and δY,0 which do not contribute
since these are nonzero only when JX or JY are zero, we obtain

θX,Y,X(t ) = e
∑

f

[(
nph

f +1
)

e−i� f t +nph
f ei� f t

](
G f

h̄� f

)2
(1+δX+Y,0 )

. (52)

In the strong electron-phonon coupling limit, the dominant
term is obtained when δX+Y,0 = 1, i.e., X = −Y. After

including this term only, we come to the expression

�R(ω) = 1

h̄2

∑
X

J2
X

[
θ

(0)
X

]2
∫ ∞

−∞
dt eiωtθX,−X,X(t )GR(t ),

(53)

with

θX,−X,X(t ) = e
2
∑

f

[(
nph

f +1
)

e−i� f t +nph
f ei� f t

](
G f

h̄� f

)2

. (54)

Using Eqs. (39)–(41) we find

μii = −βe0

2Nch̄2Nk

∫ ∞

−∞
dt

∑
k1,k2

〈a(t )†a〉〈a(t )a†〉

×
∑

X,Y,Z

JXJY(X)i(Y)ie
ik1·(Y+Z)eik2·(X−Z)

× θX,Y,Z(t )θ (0)
X θ

(0)
Y , (55)

where momentum dependence in the expectation values of
products of fermionic operators was neglected. Using the
identities 1

Nk

∑
k1

eik1(Y+Z) = δY,−Z and 1
Nk

∑
k2

eik2(X−Z) =
δX,Z we find

μii = βe0Nk

2Nch̄2

∫ ∞

−∞
dt

∑
X

J2
X(X)2

i

[
θ

(0)
X

]2
θX,−X,X(t )

× 〈a(t )†a〉〈a(t )a†〉. (56)

The connection of this expression with known small-polaron
hopping and Marcus formulas will be discussed in Sec. IV.
Further simplifications of Eq. (56) are possible in the case of
the Holstein model. Equation (53) then takes the form

�R(t ) = 2J2

h̄2 �(t )GR(t ), (57)

where

�(t ) = [
θ (0)

al

]2
θal ,−al ,al (t ). (58)

In the presence of a single-phonon mode, the function �(t ) is
periodic with period 2π

�
and can be expressed in terms of the

Fourier series as

�(t ) =
∑

n

�nein�t (59)

with

�n = �

2π

∫ π/�

−π/�

dt �(t )e−in�t . (60)

Equation (57) then takes the form

�R(ω) = 2J2

h̄2

∑
n

�nGR(ω + n�). (61)

When the linewidth of the spectral function becomes narrow,
i.e., when it is significantly smaller than � it is only the n = 0
term that gives a significant contribution in the last expression.
Consequently, from equations �R(ω) = 2J2

h̄2 �0GR(ω) and the

Dyson equation GR(ω) = 1
ω−�R (ω) one finds

A(ω) = −2ImGR(ω) =
{

0 if |ω| > 2
√

at√
4at −ω2

at
if |ω| � 2

√
at

, (62)
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where

at = 2J2

h̄2 �0. (63)

From Eqs. (56), (58), (59), (42), and (43) we obtain

μ = βNke0J2a2
l

2πNch̄2

∑
n

�n

∫ ∞

−∞
dω nF (ω)A(ω)A(ω + n�).

(64)

When the linewidth of the spectral function is significantly
narrower than �, the product of the spectral functions in the
last expression has significant values only when n = 0. By
including this term only, using Eq. (62), and performing the
frequency integration, we come to the expression

μ = 2
e0a2

l

h̄

γ cosh γ − sinh γ

πγ I1(γ )
, (65)

where γ = 2βJ
√

2�0. Equation (65) can be further simplified
when γ � 1 to

μ = 4

3π

e0a2
l

h̄
γ . (66)

In addition to the results of the full simulation, in Fig. 4 we
also present the following results: (i) The mobility obtained
using Eq. (56) with self-energy from Eq. (53), which will
be denoted as fc-fb (full calculation with flat bands) and (ii)
the mobility obtained using analytical formula from Eq. (65),
which will be denoted as sl (strong limit). As can be seen from
Fig. 4 for large electron-phonon interaction strengths [ G

J � 1
in Fig. 4(a), G

J � 2 in Fig. 4(b), and G
J � 5 in Fig. 4(c)]

the results of the calculation with flat bands fully agree
with the results of the full calculation for parameters where
full calculation can be performed. This is expected since
momentum dependence of the spectral functions is lost in
this range of parameters [see, e.g., Figs. 2(e) and 2(f)]. On
the other hand, the results obtained using Eq. (65) also agree
excellently with the results of full calculation [see Figs. 4(a)–
4(c)] except for highest temperatures in Fig. 4(a). At these
high temperatures, the condition that spectral linewidth is
narrower than the phonon frequency becomes violated. Since
Eq. (65) is analytical and for most parameter values when
electron-phonon interaction is strong it excellently reproduces
the results of full calculation, it can be analyzed to gain insight
into the origin of obtained temperature dependencies.

For all the data labeled as sl and presented in Fig. 4 the
condition γ � 1 is satisfied and therefore it follows from
Eq. (66) that the mobility is then determined by the product
of the

√
�0 term and the inverse temperature. The

√
�0 term

is in this range of parameters proportional to the linewidth
of the spectral function [as follows from Eqs. (62) and (63)].
As a consequence, the following interpretation can be given
to the mobility expression. As the temperature increases, the
residual polaron-phonon interaction broadens the linewidth
and consequently increases the diffusivity. The inverse tem-
perature in the mobility expression arises due to the relation
between mobility and diffusion constant. The dependence of
the �0 factor on temperature is presented in Fig. 5. For h̄�

J = 1
the graph of the dependence of �0 on temperature can be
divided into three parts. This term is constant (and equal to its

0.01 0.1 1 10

10-5 10-5

10-4 10-4

10-3 10-3

10-2 10-2

10-1 10-1

FIG. 5. Temperature dependence of the γ and the �0 term that
determine the mobility for h̄�

J = 1 and G
J = √

6 (solid line), as well
as for h̄�

J = 0.2 and G
J = 1 (dashed line).

zero temperature limit) at low temperatures and then sharply
increases as the temperature increases (due to exponential rise
in the number of phonons) and again becomes nearly constant
at high temperatures (when the number of phonons is close to
reaching its classical limit). The first part of this dependence
then leads to ∼ 1

T dependence of mobility at low tempera-
tures, the second part to an increase of mobility at medium
temperatures, and the third part leads again to a decreasing
mobility at high temperatures. On the other hand, for h̄�

J =
0.2 the temperature at which �0 reaches the zero-temperature
limit is extremely low (below the temperatures presented in
the figures) and therefore the graph of the dependence of
�0 on temperature consists of two parts—in the first part
it sharply increases as the temperature increases and then
becomes nearly constant. The first part of this dependence
leads to an increase of mobility as the temperature increases,
while the second part leads to a mobility that decreases.

3. Intermediate values of electron-phonon coupling

In this subsection, we discuss the results obtained for
intermediate values of electron-phonon coupling and small
and intermediate values of phonon energy, such as the results
presented in Fig. 4(a) for G

J = 0.5 and the results in Fig. 4(b)
for G

J = 1. At these electron-phonon coupling strengths, there
exists a temperature where a sudden change of parameters of
optimal unitary transformation occurs. At this temperature,
calculated temperature dependence of mobility ceases to be
continuous and the mobility exhibits a slight drop as the
temperature increases, see Figs. 4(a) and 4(b). On the other
hand, it has been well established that the Holstein model
does not exhibit a phase transition and, consequently, the
temperature dependence of physical observables such as the
mobility should be smooth [47]. The discontinuity obtained
in the calculation is therefore an artifact of our variational
procedure. Nevertheless, the fact that the drop of mobility
at this temperature is only slight gives confidence that the
calculated values of mobilities around this temperature still
represent a reasonable estimate of the true mobility in this
range of temperatures. To further assess the abruptness of
this apparent transition using the whole function rather than
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FIG. 6. Time dependence of the real part of the quantity μ′(t ),
which is proportional to current-current correlation function and
whose integral over time is equal to mobility. The dependence is
shown for h̄�

J = 1 and (a) G
J =

√
2

10 , (b) G
J = 1, and (c) G

J = √
6. Since

the relation Reμ′(t ) = Reμ′(−t ) holds, only the part with t > 0 is
shown.

a single number, we present in Fig. 6(b) the real part of the
quantity μ′(t ) at temperatures before and after the transition in
the case G

J = 1 and h̄�
J = 1. By comparing the dashed line at

the temperature just before the transition and the dotted line at
a temperature just after the transition, we see rather similar be-
havior of the μ′(t ) dependence. This gives further confidence

that our estimate of mobility in this range of temperatures
is reasonable. It is important to note that the discontinuity
of the mobility is only slight (being much smaller than the
discontinuity of the unitary transformation parameters) due to
the fact that the transformed Hamiltonian was partitioned in
such a way to minimize the effects of residual interaction and
that the effects of interaction were then included up to lowest
nontrivial order.

4. Large phonon energy

In the case of large phonon energy h̄�
J = 3, for interaction

strengths G
J � 4 it is not possible to apply the formulas for the

weak and strong electron-phonon coupling limits, derived in
previous sections. Namely, in the case of low electron-phonon
interaction and h̄�

J > 2, the perturbative formula given in
Eq. (48) gives an infinite lifetime for k points in the middle
of the band for which neither absorption nor emission of
phonons is allowed. This would then lead to infinite mobility.
On the other hand, in the case of a strong electron-phonon
interaction, we see from Fig. 3 that the spectral function keeps
the momentum dependence and one cannot use the strong
electron-phonon coupling derivation where it was assumed
that this dependence was lost.

As in previous cases, the linewidth of the spectral function
becomes narrow at small temperature. It is then numerically
challenging to perform the calculation due to small linewidth
of the spectral function, and at the same time none of the
previously derived weak- or strong-coupling limits can be
applied. To perform the calculation in the case of low tem-
perature as well, we employ a different strategy. Our aim
is to calculate the self-energy �k(ω)|h̄ω=ek−μF (which will
further be denoted briefly as �k) at the frequency where the
spectral function Ak(ω − μF ) has a maximum for a given k.
The energy ek is given as

ek = Ek + h̄Re�k. (67)

We further use the fact that all contributions to self-energies
are related to the Green’s function by the relation of the form

�
(a)
k (ω) = 1

Nk

∑
q

χ (a)(k, q)GR
k+q(ω + n�) (68)

and we obtain the equation

�
(a)
k = 1

Nk

∑
q

χ (a)(k, q)
ek−ek+q

h̄ + n� − i · Im�k+q
. (69)

To find the �k terms, we start with some initial guess. Then
we use Eq. (69) to evaluate the contributions �

(a)
k which we

add up to obtain the new �k. This procedure is repeated until
convergence is reached. In Appendix E we provide the details
of performing the summation in Eq. (69), which should be
done carefully since the denominator may take rather small
values.

To evaluate the mobility, we then assume spectral function
in the form

Ak(ω − μF ) = παke−αk|ω− ek
h̄ |, (70)

where αk = − 2
πIm�k

. This choice of spectral function was
made to satisfy the condition that it has the same maximum
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as the spectral function −2Im�k

(ω− ek
h̄ )

2+(Im�k )2
that would be obtained

by assuming that �k(ω) = �k, i.e., that the self-energy for
a given k does not depend on frequency. We have assumed
the exponentially decaying shape of the spectral function in
Eq. (70) since it was the best among several investigated
shapes (Gaussian, Lorentzian, exponential). With the spectral
function given by Eq. (70) at hand, we proceed to evaluate
the mobility. The derivation of the corresponding expression
is given in Appendix D.

The results presented in Fig. 4(c) indicate that the mobility
decreases with an increase of temperature for electron-phonon
interaction strengths G

J � 4. The dependencies are smooth as
there is no temperature with a sharp change in parameters
of the unitary transformation. The results obtained using
the approach based on the narrow linewidth approximation
[labeled as “nl” in Fig. 4(c)] are in excellent or reasonably
good agreement with the results of the full calculation for
lowest temperatures at which a full calculation could be per-
formed. Some discrepancies originate from the assumptions
used to calculate the mobility based on the narrow linewidth
approximation. In particular, it was assumed that the spectral
function has a single maximum, while we see in Fig. 3 some
spectral weight redistribution, especially at high momenta.
Nevertheless, the results obtained using the narrow linewidth
approximation can be considered a very good estimate of the
results at low temperatures.

5. Charge transport regimes

Next we discuss the charge carrier transport regimes for
different system parameters. To facilitate the discussion, we
estimated the mean free path of the charge carrier. It was
estimated as

lMFP = vsτc, (71)

where vs is the mean-square velocity of the carrier and τc is
the coherence time. The coherence time was estimated from
the decay of the correlation function μ′(t ); when this decay
is slower, coherence time is longer. The coherence time was
quantified as

τc = 1

2

∫ ∞

−∞
dt

∣∣∣∣Reμ′(t )

Reμ′(0)

∣∣∣∣. (72)

The mean-square velocity was obtained from

v2
s = 1

Nce2
0

〈 j(0) j(0)〉. (73)

The dependence of the mean free path on temperature for
different system parameters is presented in Fig. 7. We gen-
erally find that the mean free path decreases as temperature
increases.

At low electron-phonon interaction strength (for example,
G
J =

√
2

10 for h̄�
J = 1) the mean free path is significantly larger

than the lattice constant and conventional band transport takes
place. The correlation function μ′(t ) exhibits a slow decay,
shown in Fig. 6(a). As the temperature increases, this decay
becomes faster [see Fig. 6(a)] and the mean free path de-
creases but remains above the lattice constant. For somewhat
larger interaction strengths (for example, G

J = 1 for h̄�
J = 1)

0.1

1

10

100

0.1 1 10

FIG. 7. Temperature dependence of the mean free path for dif-
ferent values of system parameters.

at a certain temperature the mean free path reaches the lattice
constant (Mott-Ioffe-Regel limit) and the transport becomes
incoherent, as can be also verified by fast decay of the
correlation function in Fig. 6(b). Finally, for large interaction
strength (for example, G

J = √
6 for h̄�

J = 1) the mean free
path at low temperature is significantly larger than the lattice
constant, while the correlation function exhibits a series of
peaks whose envelope slowly decays. In this regime, one can
consider that the system consists of small polarons localized
to lattice sites. These polarons form a narrow band due to
electronic coupling between the sites. The transport can then
be thought of as polaron-coherent band transport in such a
narrow band. As the temperature increases, the mean free path
reduces toward the lattice constant and the transport turns into
a thermally activated small-polaron hopping. Further increase
of temperature leads to small-polaron dissociation and turns
the transport into an incoherent regime.

Overall, we find for all system parameters the crossover
from coherent transport at low temperatures toward incoherent
transport at high temperatures. The difference between the
case with small and large electron-phonon interaction comes
from the fact that small-polaron formation takes place at
large electron-phonon interactions. For this reason a thermally
activated region occurs when small-polaron dissociation takes
place, while this region is absent for small electron-phonon
interaction. Time dependence of the correlation function is
an excellent signature of the transport regime. The high-
temperature incoherent regime can be identified by a cor-
relation function with a single pronounced peak at t = 0
which decays to zero on a timescale smaller than the phonon
oscillation period [see, for example, the results in Figs. 6(b)
and 6(c) for kBT

J > 1]. On the other hand, coherent regimes
can be identified by a correlation function that slowly decays
over many phonon oscillation periods. In the case of small
electron-phonon interaction strength it exhibits a continuous
decay [see, for example, Fig. 6(a)], while in the case of large
electron-phonon interactions it consists of a series of peaks
whose amplitude decays slowly [see, for example, the full line
in Fig. 6(c)].

While the discussion in this section was illustrated with
example for the h̄�

J = 1 case, all comments remain valid also
for other h̄�

J ratios, as can be checked by analyzing the results
presented in Figs. 1, 4, and 7. An interesting additional ef-
fect for h̄�

J = 0.2 and intermediate values of electron-phonon
coupling (for example, G

J = 0.5) is the presence of region
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with nonpolaronic charge carriers but with mean free path
comparable to lattice spacing. Such regions are believed to
be of interest for description of small-molecule-based organic
semiconductors [48]. This region is present at temperatures in
the range kBT

J ∼ (0.1 − 0.5) for G
J = 0.5 (see Figs. 4 and 7).

IV. DISCUSSION AND CONCLUSION

Next we compare our approach to other related studies.
In Ref. [40] the authors also investigated the model with

local electron-phonon coupling using the approach based on
unitary transformation of the Hamiltonian and the use of
Kubo’s formula for mobility. There are two main differences
between their work and our work: (i) In Ref. [40] Lang-Firsov
transformation with fixed parameters was used, while we
optimize the parameters of the transformation to minimize
the effects of residual interacting part of the Hamiltonian.
(ii) In Ref. [40] the mobility is evaluated by taking the
averages with respect to diagonal part of the transformed
Hamiltonian. Such an approach would lead to infinite mobility
since time decay of current-current correlation function is not
captured. This was overcome in Ref. [40] by introduction of
coherence time τ through an additional e−( t

τ
)2

factor in Kubo’s
formula, which was justified on physical grounds by the pres-
ence of interactions other than electron-phonon interaction in
a real material. This parameter is, however, extrinsic to the
initial model Hamiltonian. On the other hand, in our approach
the time decay of current-current correlation function comes
out naturally from finite width of the spectral function that
leads to time decay of the 〈ak(t )†ak〉 and 〈ak(t )a†

k〉 terms in
Eq. (40).

In Ref. [38] the mobility within the Holstein model was
also analyzed using a unitary transformation of the Hamil-
tonian, followed by calculation of mobility from quantum
master equations for density matrices. We have fully followed
Ref. [38] regarding the choice of unitary transformation and
its parameters and there are no differences in that regard. On
the other hand, the two approaches for mobility calculation
are rather different. In particular, in Ref. [38] a finite phonon
lifetime was introduced to avoid certain singularities, as well
as additional scattering rate that mimics other interactions.
As we already pointed out, our approach does not require
introduction of such parameters extrinsic to initial model
Hamiltonian.

Despite the fact that Holstein model is the most widely
studied model of electron-phonon interaction, the mobility in
the Holstein model was investigated using a fully many-body
approach, such as quantum Monte Carlo, only recently [32].
The reason for this probably lies in the fact that calculation
of finite-temperature correlation functions in quantum Monte
Carlo is significantly more challenging than, for example,
the calculation of ground-state energies. In the case h̄�

J =
1, the authors of Ref. [32] find that mobility decreases as
the temperature increases when electron-phonon coupling is
small, while the dependence exhibiting one minimum and one
maximum is obtained for large electron-phonon coupling [see
Fig. 3(a) in Ref. [32] and Fig. 8]. Exactly the same behavior
is obtained in our calculations for h̄�

J = 1. This is rather
satisfying given the fact that we restrict the calculation of self-
energy to lowest nontrivial term in expansion in terms of

0.1 1 10
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G/J=0.141
G/J=1
G/J=2.83
G/J=0.141 (qmc)
G/J=1 (qmc)
G/J=2.83 (qmc)

FIG. 8. Comparison of temperature dependence of mobility ob-
tained in this work (unlabeled data sets) with quantum Monte Carlo
results of Ref. [32] (data sets labeled as “qmc”). The straight line
labeling the ∼ 1

T dependence is given as a guide to the eye.

dressed Green’s functions and that we restrict the evaluation
of mobility also to lowest nontrivial term. On the other hand,
a fully quantitative agreement of our results with quantum
Monte Carlo results of Ref. [32] could not be achieved. This
comparison is presented in Fig. 8. The agreement is excellent
at low electron-phonon coupling strengths. At intermediate
electron-phonon coupling our results are somewhat above the
range of Monte Carlo statistical error interval for high tem-
peratures and deviate more at lower temperatures, while for
large electron-phonon coupling our results are systematically
above the quantum Monte Carlo results. It would be certainly
of strong interest for future studies to understand the origin of
these differences and to improve the quantitative agreement
between the two approaches. At present, we comment on
the results at lowest temperatures and largest electron-phonon
coupling strengths [say, kBT

J ∈ (0.01 − 0.1) and G
J = 2.83].

In this parameter range the lowest eigenstates of H̃ form a
narrow band spanned by the states a†

k|vac〉, where |vac〉 is
the vacuum state. The dispersion of this band has the width

of approximately Wb = 4Je−( G
h̄�

)
2

. The next band formed by
the states a†

kb†
R|vac〉 is approximately at energy h̄� above

the lowest band. Exact result for the mobility reads [43]

μ = πβ
∑

n,m e−βẼn |〈m| j̃|n〉|2δ(Ẽm−Ẽn )∑
m e−βẼm

, where |m〉 and Ẽn denote the

eigenvectors and eigenvalues of H̃ . In this parameter range
the following inequalities hold: kBT � Wb and kBT � h̄�.
Therefore, only the lowest band contributes to the mobility
and the term e−βẼn is approximately 1 (if the energies are
measured with respect to the bottom of the lowest band).
Consequently, the ∼ 1

T dependence of mobility on temperature
is expected since only the β prefactor in the expression for μ

introduces the temperature dependence. Such a dependence
is indeed obtained in our approach (see Fig. 8) but not in
quantum Monte Carlo results of Ref. [32].

There is also a variety of studies where electrical transport
in system of electrons that interact with lattice is modeled
using a mixed quantum-classical approach [48–52]. In these
approaches electrons are treated as quantum particles, while
the lattice is treated classically. One of the issues with such
an approach is that simulations with Ehrenfest dynamics lead
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to overheating of the electronic subsystem [53]. This issue
can be overcome to a large extent using a surface-hopping
approach [54] and its modifications and extensions [50,51].
Nevertheless, classical approximation for lattice motion can
be valid only at sufficiently high temperatures, while at low
temperatures quantum description of lattice motion is in-
evitable. In Ref. [55] the mobility was evaluated using Kubo’s
formula, where integral of current-current correlation function
was evaluated using analytic continuation and the saddle-
point approximation. It remains unclear whether the approx-
imations of the method will be valid throughout the whole
range of relevant system parameters.

There is a variety of works on organic semiconductors
where mobility is calculated by assuming carrier hopping
from one site to another with hopping rates determined
as [56,57]

W = J2

h̄2

∫ ∞

−∞
dt e

−2
∑

f

(
G f

h̄� f

)2[(
nph

f +1
)

e−i� f t +nph
f ei� f t

]
(74)

or using the Marcus formula [58–62]

W = J2

h̄

√
π

kBT �
e− �

4kBT (75)

with � = 2
∑

f
G2

f

h̄� f
. The mobility can then be obtained from

the Einstein relation between the diffusion coefficient and
mobility, which, in the case of one dimension, leads to

μ = e0a2
l

kBT
W. (76)

The mobility given by Eqs. (74) and (76) can be obtained
from Eq. (56) by assuming that the spectral function takes the
form of a delta function, in which case the 〈a(t )†a〉〈a(t )a†〉
term in Eq. (56) becomes a constant. The mobility obtained
from Eqs. (75) and (76) can be obtained by introducing several
further approximations, such as (i) a short-time approximation
of exponential terms e±i� f t = 1 ± i� f t − 1

2�2
f t

2 and (ii) a

high-temperature approximation 2nph
f + 1 = 2kBT

h̄� f
which is

valid for kBT � h̄� f . We further note that the integral given
in Eq. (74) is divergent in the case of single-phonon mode,
since the function under the integral is periodic with period
2π
�

(note that in realistic systems phonon-phonon interaction
and other carrier scattering mechanism lead to decay of the
function in the integral in Eq. (74) and the absence of this
divergence). In the case of multiple-phonon modes, the period
(if it exists) is determined from the lowest common multiple
of periods 2π

� f
. In practice, for large electron-phonon couplings

in the case of multiple-phonon modes, the function under the
integral in Eq. (74) quickly decays to zero and the integral
can be straightforwardly numerically calculated [56,63]. This
discussion points out to the limits of mobility expressions
Eqs. (74)–(76) and Eqs. (75) and (76). Equations (74)–(76)
are valid for strong electron-phonon coupling and narrow
linewidth of the spectral function, while additional condition
for the validity of (75) and (76) is high temperature. The
results presented in Fig. 4 suggest that Eqs. (75) and (76) give
most reliable results for smallest h̄�

J at high temperatures.
Next, we discuss the possibility of using the main ideas

of our approach for other electron-phonon interaction Hamil-

tonians. In this work, we have focused on Hamiltonians
with local electron-phonon interaction, where phonon mode
at a certain site couples with an electron from the same
site as described by the a†

RaR(bR + b†
R ) term. In this case,

unitary transformation that we use leads to exact diagonal-
ization of the Hamiltonian in the limits of strong and weak
electron-phonon interaction. For this reason, it is expected
that for other cases, the remaining nondiagonal part of the
transformed Hamiltonian can be treated perturbatively. In a
recent work, the same unitary transformation was successfully
applied to a one-dimensional lattice version of the Fröhlich
Hamiltonian where phonon mode couples also to electrons
from other sites [64], as described by the a†

RaR(bS + b†
S)

term. The most general form of the Hamiltonian includes
also the terms where the phonon from a certain site mod-
ifies the electronic transfer integral between other sites, as
described by the a†

RaS(bT + b†
T) terms. On the technical side,

there are no obstacles in applying the same unitary trans-
formation in this case as well. However, it is questionable
whether the remaining nondiagonal term will be small then.
Nevertheless, one can then apply a more general unitary
transformation, where nonlocal terms would be included in
the transformation [65–67]. The results of these calculations
could then be compared to available quantum Monte Carlo
results [68].

In conclusion, we presented an approach for calculation
of finite-temperature mobility in systems with local electron-
phonon interaction. The approach combines unitary trans-
formation of the Hamiltonian, Matsubara Green’s function
technique for evaluation of spectral functions, and Kubo’s
linear response theory for calculation of mobility. It was
demonstrated that the approach yields physically plausible
results for temperature dependence of mobility in the Holstein
model, without introducing any regularization parameters ex-
trinsic to the model Hamiltonian. It is expected that with
appropriate modifications of the unitary transformation the
approach could be also applicable to more general Hamilto-
nians. Bearing in mind that the approach is computationally
relatively inexpensive, it holds promise for future applications
to electron-phonon interaction Hamiltonians obtained from
ab initio calculations of realistic materials.
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APPENDIX A: UPPER BOUND ON FREE ENERGY AND
EQUATION FOR OPTIMAL PARAMETERS OF UNITARY
TRANSFORMATION IN THE ONE-DIMENSIONAL CASE

In this section, we present explicit formulas for upper
bound on free energy and for optimal parameters of uni-
tary transformation in the case of a one-dimensional model
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with nearest-neighbor electronic coupling J . In this case, the
energy dispersion Ek reduces to

Ek = E ′ − 2Jeff cos (kal ), (A1)

where

Jeff = Jθ (0)
al

. (A2)

The upper bound on free energy is given as

Fub = −kBT ln
∑

k

e−βEk . (A3)

After replacement of the sum
∑

k with corresponding integral
Nkal
2π

∫ π/al

−π/al
dk and using the identity I0(z) = 1

π

∫ π

0 ez cos θdθ ,
we come to the expression

Fub = E ′ − kBT ln I0(2βJeff ). (A4)

We search for the parameters Dn, f that minimize Fub. By set-
ting partial derivatives ∂Fub

∂Dn, f
to zero, we obtain the expression

Dn, f + Jeff

h̄� f

I1(2βJeff )

I0(2βJeff )

(
2nph

f + 1
)
(2Dn, f −Dn−1, f −Dn+1, f )

= G f

h̄� f
δn,0. (A5)

Equation (A2) can be rewritten in the form

Jeff = Je−∑
n, f (Dn, f −Dn−1, f )2(nph

f + 1
2 ). (A6)

We use Eqs. (A5) and (A6) to find the parameters Dn, f . In
more detail, for given Jeff the expression (A5) can be consid-
ered as a system of linear equations for unknown parameters
Dn, f . By replacing the solution of this system in Eq. (A6), this
equation becomes a nonlinear equation with a single unknown
variable Jeff . We find all its solutions using the bisection
method. When the number of solutions is larger than 1, we
choose the solution with smallest Fub.

APPENDIX B: EVALUATION OF SELF-ENERGIES AND
SPECTRAL FUNCTIONS

The Matsubara Green’s function is defined as

Gk(τ ) = −〈
Tτ aH̃

k (τ )a†
k

〉
H̃ , (B1)

where

aH̃
k (τ ) = e

τ
h̄ (H̃−μF N )ake− τ

h̄ (H̃−μF N ) (B2)

and averaging 〈. . .〉H̃ denotes the grand-canonical ensemble
average

〈X 〉H̃ = Tr[Xe−β(H̃−μF N )]

Tr[e−β(H̃−μF N )]
, (B3)

while Tτ denotes the τ -ordering operator, which arranges
operators with earliest τ to the right. Gk(τ ) can further be
expressed as

Gk(τ ) = −
〈
Tτ S(h̄β )aH̃0

k (τ )a†
k

〉
H̃0

〈S(h̄β )〉H̃0

. (B4)

The operator S(h̄β ) is given via Dyson’s series as

S(h̄β ) =
∞∑

n=0

(−1)n

n! · h̄n

∫ h̄β

0
dτ1 . . .

×
∫ h̄β

0
dτnTτ [Ṽ H̃0 (τ1) . . . Ṽ H̃0 (τn)]. (B5)

To evaluate the Matsubara Green’s function given in Eq. (B4)
we restrict ourselves up to terms quadratic in the interaction Ṽ
which is the lowest order that gives a nontrivial contribution.
We consider only the connected diagrams from the nominator
because the contribution of disconnected diagrams cancels
exactly the diagrams in the denominator. The Green’s function
then reads

Gk(τ ) = G (0)
k (τ ) − 1

2N2
k h̄2

∫ h̄β

0
dτ1

∫ h̄β

0
dτ2

∑
k1,q1,k2,q2

〈
TτBH̃0

k1,q1
(τ1)BH̃0

k2,q2
(τ2)

〉
H̃0

× 〈
Tτ aH̃0

k (τ )aH̃0
k1+q1

(τ1)†aH̃0
k1

(τ1)aH̃0
k2+q2

(τ2)†aH̃0
k2

(τ2)a†
k

〉
H̃0

, (B6)

where G (0)
k (τ ) is the Matsubara Green’s function for the noninteracting Hamiltonian. Using Wick’s theorem we obtain

〈
Tτ aH̃0

k (τ )aH̃0
k1+q1

(τ1)†aH̃0
k1

(τ1)aH̃0
k2+q2

(τ2)†aH̃0
k2

(τ2)a†
k

〉
H̃0

= −δk,k1+q1δk1,k2+q2δk,k2G (0)
k (τ − τ1)G (0)

k1
(τ1 − τ2)G (0)

k2
(τ2)

− δk,k2+q2δk2,k1+q1δk,k1G (0)
k (τ − τ2)G (0)

k2
(τ2 − τ1)G (0)

k1
(τ1). (B7)

In the last expression the terms that would lead to disconnected diagrams were excluded. The terms that contain the factors
proportional to the number of carriers were also excluded since these vanish in the limit of low carrier concentration. The term
with phonon operators reads

−〈
TτBH̃0

k1,q1
(τ1)BH̃0

k2,q2
(τ2)

〉
H̃0

= Nkδq1,−q2Dk1,k2,q1 (τ1 − τ2), (B8)
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where

Dk1,k2,q1 (τ1 − τ2) = −
∑

f

φ2
q1, f

[
nph

f e� f |τ1−τ2| + (
nph

f + 1
)
e−� f |τ1−τ2|]

−
∑

X,Y,Z

JXJYeik1·Xeik2·Yeiq1·Zθ
(0)
X θ

(0)
Y [θX,Y,Z(|τ1 − τ2|) − 1]

+
∑

X,Z, f

φq1, f JXθ
(0)
X eiq1·Z(eik2·X − e−ik1·X)(DZ, f − DZ+X, f )

× [(
nph

f + 1
)
e−� f |τ1−τ2| − nph

f e� f |τ1−τ2|]sgn(τ1 − τ2) (B9)

and

θX,Y,Z(τ ) = exp

⎧⎨
⎩−

∑
f

[(
nph

f + 1
)

e−� f τ + nph
f e� f τ

]∑
U

(
DU, f − DU+X, f

)(
DU+Z, f − DU+Z+Y, f

)⎫⎬⎭. (B10)

Using Eqs. (B6)–(B8) we find

Gk(τ ) = G (0)
k (τ ) +

∫ h̄β

0
dτ1

∫ h̄β

0
dτ2G (0)

k (τ − τ1)

[
−1

Nkh̄2

∑
q

Dk−q,k,q(τ1 − τ2)G (0)
k−q(τ1 − τ2)

]
G (0)

k (τ2). (B11)

In the last expression one can directly read the self-energy as

�k(τ ) = −1

Nkh̄2

∑
q

Dk−q,k,q(τ )G (0)
k−q(τ ). (B12)

Next, we transform the last expression to the Matsubara
frequency domain by using the relations between the Green’s
functions or self-energies in the time and frequency domain
that read:

G(τ ) = 1

h̄β

∑
n

e−iωnτG(iωn), (B13)

G(iωn) =
∫ h̄β

0
dτG(τ )eiωnτ , (B14)

where ωn = (2n+1)π
h̄β

for fermionic Green’s function and self-

energies, while ωn = 2nπ
h̄β

for bosonic Green’s function and
self-energies. We come to the expression

�k(iωn) = −1

Nkh̄2

∑
q

1

h̄β

∑
m

Dk−q,k,q(iωn − iωm)G (0)
k−q(iωm).

(B15)

Next, we evaluate retarded self-energy by performing analytic
continuation of Eq. (B15). To this end, we first express
Dk−q,k,q(iωn − iωm) and G (0)

k−q(iωm) in terms of correspond-

ing spectral functions Dk−q,k,q(ω) and A(0)
k−q(ω) as

Dk−q,k,q(iωn − iωm) = 1

2π

∫ ∞

−∞
dω1

Dk−q,k,q(ω1)

iωn − iωm − ω1
,

(B16)

G (0)
k−q(iωm) = 1

2π

∫ ∞

−∞
dω2

A(0)
k−q(ω2)

iωm − ω2
. (B17)

To evaluate the sum
∑

m
1

h̄β
1

iωn−iωm−ω1

1
iωm−ω2

, we define an
auxiliary function h of complex variable z as

h(z) = −nF (z)
1

z − (iωn − ω1)

1

z − ω2
, (B18)

where nF (z) = 1
eh̄βz+1 is the Fermi-Dirac function. The func-

tion h(z) decays faster than 1
|z| as |z| → ∞ and, consequently,

∮
C

h(z)dz = 0, (B19)

where contour C is a circle with an infinitely large radius.
On the other hand, the same integral can be calculated using
Cauchy’s residue theorem. Poles of the function h(z) are at
iωm, iωn − ω1, and ω2 and, consequently,∮

C
h(z)dz = 2π i

[
1

β h̄

∑
m

1

iωm − iωn + ω1

1

iωm − ω2

− nF (iωn − ω1)

iωn − ω1 − ω2
− nF (ω2)

ω2 − iωn + ω1

]
. (B20)

Using the identity nF (iωn − ω1) = −nB(−ω1) [where
nB(z) = 1

eh̄βz−1 is the Bose-Einstein function], neglecting
the nF (ω2) term which vanishes in the limit of low carrier
concentration, Eqs. (B19) and (B20) lead to∑

m

1

h̄β

1

iωn − iωm − ω1

1

iωm − ω2
= − nB(−ω1)

iωn − ω1 − ω2
.

(B21)

From Eqs. (B15)–(B17), and (B21) one obtains

�k(iωn) = 1

Nkh̄2

1

(2π )2

∑
q

∫
dω1dω2Dk−q,k,q(ω1)A(0)

k−q(ω2)

× nB(−ω1)

iωn − ω1 − ω2
. (B22)
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After performing analytic continuation by the substitution
iωn → ω + i0+ and using the identity that relates the retarded
Green’s function G(0),R

k−q with the spectral function

G(0),R
k−q (ω − ω1) = 1

2π

∫
dω2A(0)

k−q(ω2)
1

ω + i0+ − ω1 − ω2

(B23)

and the identity that relates bosonic spectral function Dk−q,k,q
and greater function D>

k−q,k,q

i nB(−ω1)Dk−q,k,q(ω1) = D>
k−q,k,q(ω1) (B24)

we obtain the expression for retarded self-energy

�R
k (ω) = i

2πNkh̄2

∑
q

∫
dω1D>

k−q,k,q(ω1)G(0),R
k−q (ω − ω1).

(B25)

The greater function D>
k−q,k,q can be evaluated from its defi-

nition in the time domain

−i
〈
Bk1,q1 (t )Bk2,q2 (0)

〉
H̃0

= Nkδq1,−q2 D>
k1,k2,q1

(t ). (B26)

After evaluation of the expectation value on the left-hand side
of Eq. (B26), we obtain

D>
k−q,k,q(ω) = −2π i

∑
f

|φq, f |2
[
nph

f δ(ω + � f ) + (
nph

f + 1
)
δ(ω − � f )

] + 2π i
∑

X,Y, f

φqJX(eik·X − e−i(k−q)·X)

× eiq·Yθ
(0)
X (DY, f − DX+Y, f )

[(
nph

f + 1
)
δ(ω − � f ) − nph

f δ(ω + � f )
]

− i
∑

X,Y,Z

JXJYθ
(0)
X θ

(0)
Y ei(k−q)·XeikYeiqZ

∫ ∞

−∞
dt eiωt [θX,Y,Z(t ) − 1]. (B27)

From Eqs. (B25) and (B27) we obtain the final expression for retarded self-energy,

�R
k (ω) = �

(1)
k (ω) + �

(2)
k (ω) + �

(3)
k (ω), (B28)

where

�
(1)
k (ω) = 1

Nkh̄2

∑
q, f

|φq, f |2
[(

nph
f + 1

)
G(0),R

k−q (ω − � f ) + nph
f G(0),R

k−q (ω + � f )
]
, (B29)

�
(2)
k (ω) = −1

Nkh̄2

∑
q, f

φq, f
[(

nph
f + 1

)
G(0),R

k−q (ω − � f ) − nph
f G(0),R

k−q (ω + � f )
]

×
∑
X,Y

JXθ
(0)
X (DY, f − DX+Y, f )eiq·Y[eik·X − e−i(k−q)X], (B30)

�
(3)
k (ω) = 1

Nkh̄2

∑
q

∑
X,Y,Z

JXJYθ
(0)
X θ

(0)
Y ei(k−q)·XeikYeiqZ

∫ ∞

−∞
dt eiωt [θX,Y,Z(t ) − 1]G(0),R

k−q (t ). (B31)

APPENDIX C: MOBILITY IN THE LIMIT OF WEAK ELECTRON-PHONON COUPLING FOR THE HOLSTEIN MODEL

In this section, we derive the formula that is used to calculate the mobility in the limit of weak electron-phonon coupling for
Holstein model with single-phonon mode. The scattering time is given as

1

τk
= 2π

h̄

1

Nk

∑
q

G2[(nph + 1)δ(Ek − h̄� − Ek−q) + nphδ(Ek + h̄� − Ek−q)], (C1)

where Ek = −2J cos (kal ). After replacing the summation with corresponding integration, we obtain

1

Nk

∑
q

δ(Ek − h̄� − Ek−q) = al

2π

∫ π/al

−π/al

dq δ{−2J cos(kal ) − h̄� + 2J cos[(k − q)al ]}. (C2)

Next, we exploit the formula

δ[ f (x)] =
∑

n

δ(x − xn)

| f ′(xn)| , (C3)

where xn are zeros of the function f (x). The function f (q) = −2J cos (kal ) − h̄� + 2J cos [(k − q)al ] has two zeros q± =
k ± 1

al
arccos[cos (kal ) + h̄�

2J ] when |k| > kA, where kA = 1
al

arccos(1 − h̄�
2J ). Consequently, we obtain

1

Nk

∑
q

δ(Ek − h̄� − Ek−q) = 1

2πJ
√

1 − [
cos(kal ) + h̄�

2J

]2
(C4)
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when |k| > kA. Otherwise, this sum is equal to zero. In a similar manner, we find

1

Nk

∑
q

δ(Ek + h̄� − Ek−q) = 1

2πJ
√

1 − [
cos(kal ) − h̄�

2J

]2
(C5)

when |k| < kB, where kB = π
al

− 1
al

arccos(1 − h̄�
2J ). The scattering time is finally given as

τk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h̄J
G2nph

√
1 − [

cos (kal ) − h̄�
2J

]2
if |k| < kA,

h̄J
G2

1
nph√

1−
[

cos (kal )− h̄�
2J

]2
+ nph+1√

1−
[

cos (kal )+ h̄�
2J

]2

if kA < |k| < kB,

h̄J
G2(nph+1)

√
1 − [

cos (kal ) + h̄�
2J

]2
if |k| > kB.

(C6)

The mobility is given as

μ = β

e0

∑
k nkτkJ 2

k∑
k nk

. (C7)

For the model at hand, the Jk term reads Jk = 2Je0al
h̄ sin (kal ). In the limit of low concentration the populations take the form

nk ∝ e−βEk . After replacing the summation with corresponding integration, we obtain

μ = e0a2
l

h̄

4βJ3

πG2I0(2βJ )

⎡
⎣ 1

nph

∫ kAal

0
du e2βJ cos u sin2 u

√
1 −

(
cos u − h̄�

2J

)2

+
∫ kBal

kAal

du e2βJ cos u sin2 u
1

nph√
1−
(

cos u− h̄�
2J

)2
+ nph+1√

1−
(

cos u+ h̄�
2J

)2

+ 1

nph + 1

∫ π

kBal

du e2βJ cos u sin2 u

√
1 −

(
cos u + h̄�

2J

)2
⎤
⎦. (C8)

The last formula should be applied only when h̄�
2J < 1. In the opposite case, there exist k points for which electron scattering

via phonon emission or absorption is not possible because final-state energy is outside the range of band energies. For these k
points, the scattering time calculated using Eq. (C1) is infinite, as well as the mobility obtained using Eq. (C7).

The time given in (C1) is the carrier scattering time. When vertex corrections are included in the formula for the mobility, the
momentum relaxation time given as

1

τ
(m)
k

= 2π

h̄

1

Nk

∑
q

G2[(nph + 1)δ(Ek − h̄� − Ek−q)(1 − cos θk,k−q) + nphδ(Ek + h̄� − Ek+q)(1 − cos θk,k+q)], (C9)

appears in the expression for mobility Eq. (C7) (θk1,k2 is the angle between vectors k1 and k2 which can take only the values of
0 or π in one dimension). It turns out that these two times are identical for the one-dimensional Holstein model, i.e., τ

(m)
k = τk.

To show that this is the case, we note that when |k| > kA the following identity holds:

1

Nk

∑
q

δ(Ek − h̄� − Ek−q)(1 − cos θk,k−q ) =
∫ π/al

−π/al
dq[δ(q − q+)(1 − cos θk,k−q+ ) + δ(q − q−)(1 − cos θk,k−q− )]

4πJ
√

1 − [
cos(kal ) + h̄�

2J

]2
. (C10)

Since one of the cos θk,k−q± terms is equal to 1 and the other is equal to −1, the last expression reduces to

1

Nk

∑
q

δ(Ek − h̄� − Ek−q)(1 − cos θk,k−q ) = 1

2πJ
√

1 − [
cos(kal ) + h̄�

2J

]2
, (C11)

which is the same as (C4). In a similar manner one can show that other relevant terms in the evaluation of τ
(m)
k and τk are the

same.

104304-17
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APPENDIX D: CALCULATION OF MOBILITY FOR
NARROW LINEWIDTHS OF THE SPECTRAL FUNCTION

To evaluate the mobility in this case we start from
Eqs. (39)–(43). We also make use of the fact that in the
case of a single-phonon mode, the function θX,Y,Z(t )θ (0)

X θ
(0)
Y

is periodic in time with period 2π
�

and we represent it using
the Fourier series

θX,Y,Z(t )θ (0)
X θ

(0)
Y =

∑
n

c(n)
X,Y,Zein�t (D1)

with

c(n)
X,Y,Z = �

2π

∫ π/�

−π/�

dte−in�tθX,Y,Z(t )θ (0)
X θ

(0)
Y . (D2)

The mobility then reads

μii = βe0

4πNch̄2

∑
k1,k2

∑
n

fii(k1, k2, n)

×
∫

dω nF (ω)Ak1 (ω)Ak2 (ω + n�), (D3)

where

fii(k1, k2, n)

= − 1

Nk

∑
X,Y,Z

JXJY(X)i(Y)ie
ik1(Y+Z)eik2(X−Z)c(n)

X,Y,Z.

(D4)

We find that the most significant contribution to the mobility
comes from the term with k1 = k2 and n = 0 in Eq. (D3).
Making use of the spectral function given in Eq. (70) we find
in this case ∫

dω nF (ω)Ak1 (ω)Ak2 (ω + n�)

=
∫

dω nF (ω)Ak1 (ω)2

= π2α2
ke−βek

4αk

4α2
k − β2

(D5)

and

Nc = 1

2π

∫
dω nF (ω)Ak(ω) =

∑
k

e−βek
α2

k

α2
k − β2

. (D6)

The mobility then reads

μii = βe0

4π h̄2

∑
k f (k, k, 0)π2e−βek 4α3

k
4α2

k−β2∑
k e−βek

α2
k

α2
k−β2

. (D7)

APPENDIX E: EVALUATION OF THE �(a) SUMS

In this section, we present the numerical procedure that we
used to evaluate the sums given in Eq. (69) that we repeat here:

�
(a)
k = 1

Nk

∑
q

χ (a)(k, q)
ek−ek+q

h̄ + n� − iIm�k+q
. (E1)

We first transform the sum into an integral and obtain in the
one-dimensional case

�
(a)
k = al

2π

∫ π/al

−π/al

dq
χ (a)(k, q)

ek−ek+q

h̄ + n� − iIm�k+q

. (E2)

The interval (−π/al , π/al ) was then divided into Nk equal
intervals and the integral was rewritten as

�
(a)
k = al

2π

N−1∑
i=0

∫ qi+1

qi

dq
χ (a)(k, q)

ek−ek+q

h̄ + n� − iIm�k+q

, (E3)

where qi = −π/al + i
N π/al . To evaluate the integral

Ii =
∫ qi+1

qi

dq
χ (a)(k, q)

ek−ek+q

h̄ + n� − iIm�k+q

, (E4)

we note that the functions χ (a)(k, q), ek+q, and �k+q are
slowly varying functions of q. However, since the denomi-
nator can take the values close to zero, the whole function
under the integral can very rapidly with q. We introduce the
quantities

χ = 1
2 [χ (k, qi ) + χ (k, qi+1)], (E5)

� = 1
2 [�(k + qi ) + �(k + qi+1)], (E6)

and we perform linear interpolation of ek+q as

ek+q = ek+qi + (q − qi )
ek+qi+1 − ek+qi

qi+1 − qi
. (E7)

We then approximate the integral as

Ii ≈ χ

∫ qi+1

qi

dq

× 1
ek
h̄ + n� − [ ek+qi

h̄ + 1
h̄ (q−qi )

ek+qi+1 −ek+qi

qi+1−qi

]−iIm�
.

(E8)

The integral is then of the form

Ii = χ

∫ qi+1

qi

dq
1

A + B(q − qi ) + iC
(E9)

with A = ek
h̄ + n� − ek+qi

h̄ , B = − 1
h̄

ek+qi+1 −ek+qi

qi+1−qi
, C = −Im�.

Evaluation of the integral leads to the result

Ii = χ

B

[
1

2
ln(v2 + C2)

∣∣∣v=A+B(qi+1−qi )

v=A

− i arctan
v

C

∣∣∣v=A+B(qi+1−qi )

v=A

]
. (E10)
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