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Radioactive decay seen as temporal canonical ensemble
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Abstract: The operator of time formalism is applied to radioactive decay. It appears that the proposed approach offers a

better insight and understanding of the phenomena in a way that the decay exponential-law becomes the Boltzmann

distribution in Gibbs treatment of canonical ensemble. The radioactive decay is seen as temporal canonical ensemble where

the radioactive constant appears as the analog of the absolute temperature multiplied by Boltzmann constant. The

stochastic character of decay process becomes plausible in the proposed approach and the explanation why decay is

characterized by fixed quantity, and not by some parameter, is offered.
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1. Introduction

Perhaps the most intriguing fact about the radioactive

decay is that such a process is stochastic in its nature. This

means that we are unable to predict when some radioactive

system (particle) will decay. We can only say what is the

probability that it will decay at the moment t or later, and

this is given by the well-known exponential law e�kt,

where k is radioactive constant characteristic for the

decaying system under consideration [1]. The unpre-

dictability of when the decay will occur is not the only

thing that puzzles us regarding the decay. There are

questions about what influences decay in general, how, if

possible, can we alter k and can if we can anyhow prepare

the systems to decay faster/slower. These topics are going

to be addressed in the present article, and this will be done

in a manner that is not, up to my knowledge, previously

considered.

Let us jump to the conclusion and say that it is not the

Hamiltonian that governs the decay, but some other

observable. More concretely, the observable that is, so to

say, dynamical analog of the time, here denoted by

Ĝ ¼ Gðq̂; p̂Þ, dictates, by its spectrum, at which moments

the particle can decay. This observable appears in the

equation that is the time analog of the Schrödinger equation

[2], so it appears to be, for the decay, what the Hamiltonian

is for the canonical ensemble.

In order to show how the decay process can be treated as

a temporal canonical ensemble, the formalism of the

operator of time, that we have proposed in [2–6], will be

used. There is a whole variety of topics and approaches

related to the operator of time, e.g., [7–9] and references

therein. Our approach is similar to the one in [10], and

references therein, and [11], and its crucial point is to treat

the time and energy like the coordinate and momentum are

usually treated. This means that another Hilbert space,

where the operators of time and energy act, is introduced,

just as it is done for each degree of freedom in the standard

formulation of quantum mechanics. In this way the Pauli’s

objection, saying that if Ĥ is bounded from below, which is

the case for all physical systems, then there is no self-

adjoint operator of time conjugate to Ĥ in the sense of the

Weyl commutation relations, is avoided. Then, the same

commutation relation that holds for the coordinate and

momentum is imposed for the energy and time, which

leads to unbounded spectrum of these operators. Finally,

the original and the so-called second Schrödinger equation,

that we have introduced in [2], as constraints in the overall

Hilbert space select physically meaningful states that have

non-negative energy and time.
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2. Operators of time and energy

As it is done for every spatial degree of freedom, a separate

Hilbert spaceHt, where operators of time t̂ and energy ŝ act

non-trivially, can be introduced. So, for the case of one

degree of freedom, there are q̂� Î, p̂� Î, Î � t̂ and Î � ŝ,

that act in Hq �Ht, and for these self-adjoint operators the

following commutation relations hold:

1

i�h
½q̂� Î; p̂� Î� ¼Î � Î;

1

i�h
½Î � t̂; Î � ŝ� ¼ � Î � Î:

The other commutators vanish. The operators of time t̂ and

energy ŝ have continuous spectrum f�1;þ1g, just as the
operators of coordinate and momentum q̂ and p̂ have. The

eigenvectors of t̂ are jti for every t 2 R. (The question

related to the norm and the measurement of jti is analyzed
in [10].) In jti representation, the operator of energy is

given by i�h o
ot

and its eigenvectors jEi in the same

representation are e
1
i�hEt for every E 2 R. In [3], we have

shown how the unbounded spectrum of the operator of

energy is regulated by the Schrödinger equation. Let us

stress here that the Schrödinger equation, that appears as a

constraint in Hq �Ht, selects physically meaningful states

with non-negative energies, due to the bounded from below

spectrum of Hamiltonian. In [2], we have introduced the

so-called second Schrödinger equation:

t̂jwi ¼ Gðq̂; p̂Þjwi: ð1Þ

In (1), one demands that the operator of time and its

dynamical counterpart Gðq̂; p̂Þ act equally on the states of

quantum mechanical system, just like in the original

Schrödinger equation ŝjwi ¼ Hðq̂; p̂Þjwi one demands that

the operator of energy and the Hamiltonian, as its

dynamical counterpart, act equally on the states of quantum

mechanical system. (That this is the Schrödinger equation

could be verified by taking its jqi � jti representation.) As
the original Schrödinger equation, the Eq. (1) represents

constraint in Hq �Ht, as well. The typical solution of (1)

is jwti � jti, where Gðq̂; p̂Þjwti ¼ tjwti and t̂jti ¼ tjti. It is
the time analog of jwEi � jEi that solves the original

Schrödinger equation if Hðq̂; p̂ÞjwEi ¼ EjwEi and

ŝjEi ¼ EjEi. (In jqi � jti representation, the last state

becomes wEðqÞe
�1
i�h Et.)

Due to the Big Bang as the beginning of time, it seems

reasonable to assume that Gðq̂; p̂Þ has bounded from below

spectrum, just like the Hamiltonian. In what follows, for

the sake of simplicity, we shall assume that Gðq̂; p̂Þ and

Hðq̂; p̂Þ have discrete eigenvalues ti and Ei, and the solu-

tions of original and the so-called second Schrödinger

equations will be denoted by jEii � jEii and jtii � jtii,
respectively.

3. Results and discussions

In the proposed framework of Hq �Ht, the well-known

statements regarding canonical ensemble are as follows.

Suppose the system is characterized by the Hamiltonian of

the form Ĥ ¼
P

i EijEiihEij. The canonical ensemble is the

statistical operator:

q̂E ¼ 1

Z

X

i

e�bEi jEiihEij � jEiihEij: ð2Þ

In the last expression, the first jEiihEij is the projector on

the eigenstate of Hamiltonian for eigenvalue Ei, that is jEii
which belongs to Hq, while the second one is the projector

on the eigenvector of ŝ for the same eigenvalue Ei, that is

jEii which belongs to Ht. The canonical partition function

ZE is determined by the normalization condition:

ZE ¼ Tr
X

i

e�bEi jEiihEij � jEiihEij: ð3Þ

Usually, b is seen as ðkBTÞ�1
, where kB is the Boltzmann

constant and T is the absolute temperature, but b�1 can be

taken as temperature per se.

The Boltzmann distribution e�bEi is a probability dis-

tribution over various states jEii � jEii. According to the

second law of thermodynamics, the state of equilibrium

maximizes the entropy, and maximization of entropy leads

to Gibbs prescription for the statistical operator (2), i. e., to

Boltzmann distribution. Among all ensembles with the

same mean value of Ĥ or ŝ, the canonical ensemble has the

maximal entropy. The expression relating temperature,

internal energy hĤi and entropy �hq̂lnq̂i is:

b ¼ ðkBTÞ�1 ¼ � ohĤi
ohq̂lnq̂i ¼ � oTrq̂Ĥ

oTrq̂lnq̂
: ð4Þ

For the canonical ensemble (2), it holds:

½q̂E; ŝ� ¼ 0; ð5Þ

the meaning of which is that q̂ does not depend on time:

oq̂E
ot̂

¼ 0; ð6Þ

since ŝ is the generator of time translation.

On the other side, radioactivity is described by the well-

known formula:

NðtiÞ ¼ N0e
�kti : ð7Þ

Here, NðtiÞ is the number of decaying systems (particles)

present at the moment ti if there were N0 at the moment t0.

(For the sake of simplicity, we shall consider time as

having discrete values ti.) Equivalent description of the

decay process is to ask what is the probability that some

system will last until ti, when the decay occurs, and the

corresponding expression for this is:
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e�kti
P

i e
�kti

: ð8Þ

If Ĝ has a discrete spectrum, then the solutions of (1) are

jtii � jtii. By using the probability distribution (8), one can

form a statistical operator:

q̂t ¼
1

P
i e

�kti

X

i

e�kti jtiihtij � jtiihtij: ð9Þ

This statistical operator represents temporal canonical

ensemble that describes the decay process. There is a

complete analogy between q̂E and q̂t, the meaning of which

is that as the probability distribution e�bEi determines how

likely it is to find the system under consideration having the

energy Ei, the probability distribution e�kti determines how

likely it is to find that the system under consideration will

last until the moment ti. The analogy is complete in the

sense that the canonical ensemble and the radioactive

decay appear to be essentially the same phenomena for the

two conjugate observables ŝ and t̂. This does not come as a

surprise after noticing the similarity between the original

and the so-called second Schrödinger equation and the fact

that both, Ĥ and Ĝ, which determine solutions of these

equations, have bounded from below spectra. Having this

in mind, instead of approaching heuristically as was done

here, one can start with q̂E, substitute Ei with ti and b with

k, and by proceeding in the reverse order arrive to the

decay formula (7). What was said for the canonical

ensemble and its derivation, exactly the same can be said

for the temporal canonical ensemble. Namely, among all

ensembles with the same mean value of Ĝ or t̂, the tem-

poral canonical ensemble has the maximal entropy, i. e.,

maximization of entropy leads to the Gibbs prescription for

the statistical operator (9).

Obviously, in analogy with the canonical partition

function ZE, one can introduce its temporal counterpart:

Zt ¼ Tr
X

i

e�kti jtiihtij � jtiihtij: ð10Þ

Moreover:

k ¼ � ohĜi
ohq̂lnq̂i ¼ � oTrq̂Ĝ

oTrq̂lnq̂
; ð11Þ

so one can relate the radioactive constant to the mean value

of Ĝ. For instance, by using the example given in [2], if

Gðq̂; p̂Þ is:

Gðq̂; p̂Þ ¼ �h

m2c4
ð p̂

2

2m
þ 1

2
mxq̂2Þ;

then the solutions of the so-called second Schrödinger

equation (1) are jwni � jtni, n 2 N, where jwni are the well-
known solutions of the eigenvalue problem for the

Hamiltonian of harmonic oscillator and:

tn ¼
�h2x
m2c4

ðnþ 1

2
Þ:

By introducing d ¼ �h2x
m2c4

, the relation between k and hĜi is
then:

hĜi ¼ 1

2
cot hðkd

2
Þ: ð12Þ

So, this example shows that by measuring the half-life, one

can find the mean value of Ĝ. Let us also mention that if,

instead of the non coherent mixture (9), one takes the

adequate coherent mixture of involved states, with the

coefficients that are square roots of the probabilities, then

one gets the same results for measurement of time and all

the other compatible observables. Similar argument would

hold for the standard canonical ensemble in relation to the

measurements of the energy and the compatible observ-

ables. However, the coherent mixtures (pure states) and the

non coherent mixtures (mixed states) can be distinguished

if one measures the observables that, so to say, are not

diagonal when represented in the basis of vectors that are

coherently mixed.

From the obvious fact that commutator ½q̂t; t̂� vanishes, it
follows:

oq̂t
oŝ

¼ 0; ð13Þ

since t̂ is a generator of energy translation. The meaning of

this equation is that the radioactive decay, seen as the

temporal canonical ensemble, does not depend on the (in-

ternal) energy, what is well known from the experience.

As the absolute temperature appears in b ¼ ðkBTÞ�1

after the Boltzmann constant is introduced, with the

appropriate constant l, one can define the persistence P by:

k ¼ ðlPÞ�1:

However, there is a difference between the absolute tem-

perature and the persistence (or b and k). Namely, it is

possible to change the temperature of the canonical

ensemble by putting it in a contact with the other one.

During thermalisation, systems exchange energy. If one

system changes its state from the one with energy E1 to the

state with E2, then the other system can change its state,

too. If the difference in the energy between the energy

levels of the second system does not match E2 � E1, then

the part of the energy can come from or go to the kinetic

energy of the systems under consideration. In this process,

system can instantaneously change its momentum. On the

other side, similar changes of the states with the sharp

values of time are limited by the impossibility to exceed

the speed of light. If one system changes its state from the

one with duration of existence t1 to the state with t2, then

the other system has to change its state in a way by exactly
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matching t2 � t1. Otherwise, since the coordinate is for the

time what the momentum is for the energy (appropriate

components of a quadri vector), the instantaneous change

in the coordinate, by some finite amount, would be nec-

essary. Since this can contradict the fact that the velocity

greater than c is impossible, the process analog to the

thermalisation and the changes in the persistence of the

temporal canonical ensembles are hard to manage. This is

the reason why the radioactive elements are characterized

by the radioactive constant, while b, or T as the parameter

that characterizes the canonical ensemble (2), can vary.

The radioactive decay offers the concrete example

where the formalism related to the so-called second

Schrödinger equation, that has been introduced in [2], finds

its applicability. There, we have introduced the ’dynami-

cal’ counterpart of the time Ĝ and, from the above given,

its importance becomes obvious for it is for the decay what

the Hamiltonian is for the standard canonical ensemble.

The eigenstates of G determine at which instance of time

the decay can happen, which is the analog of the eigen-

states of Hamiltonian, that determine the energy levels of

the considered system. On the other side, one may prefer to

simplify the formalism by neglecting the second Hilbert

space (Ht) and the operators that act there. By doing this,

there would be no significant consequences toward the

main argument of this article, which is that the radioactive

decay can be seen as the (temporal) canonical ensemble.

However, by excluding the second Hilbert space and the

related operators, one would lose the possibility to consider

the Schrödinger and the so-called second Schrödinger

equation since, so to say, left sides of these equations are

attached to Ht, while the right sides are related to Hq. We

have proceeded our argumentation here in Hq �Ht since

we wanted to be as formal and complete as possible.

Regarding the comparison of our approach to the

radioactive decay with the other ones, let us say that we are

not treating the decay as a dynamical process that is gov-

erned by some Hamiltonian. In our proposal, Hamiltonian

is related to the energy and the standard canonical

ensemble, while Ĝ is connected to the temporal canonical

ensemble, i. e., radioactive decay. Among others, this

means that we do not start with the pure state of two

coupled systems and then reach the formal description of

the statistical character of the radioactive decay by

neglecting one of the involved systems. In other words,

what one gets by tracing out the degrees of freedom of one

of the coupled systems is the mixture of the second kind,

while we see the radioactive decay as the mixture of the

first kind. We believe that the proper formal description of

the decay process should use mixtures of the first kind

since they are more appropriate for the objective

phenomena.

In proposed formalism, the exponential decay law

appears to be the probability distribution characteristic for

canonical ensembles. In this way, the Boltzmann distribu-

tion, used in the Gibbs treatment of the canonical ensem-

bles, gets on its universality. The normalized Boltzmann

distribution gives the probability to find the system in some

state, say jtaihtaj � jtaihtaj. As is the case for every mixed

state, a priori it is not possible to know the state of some

particular system from the ensemble described by (9). This

is why the radioactive decay looks like the stochastic

process. Namely, we do not know when some system will

decay because we do not know in which state jtaihtaj �
jtaihtaj the system is. We only know the probability to find

the system in jtaihtaj � jtaihtaj, i.e., the probability that the

system will not decay before ta. In other words, the

radioactive decay is not essentially different from any other

mixed state regarding the randomness and the stochasticity.

It is not possible to predict when some system will decay as

it is not possible to be certain about the energy of some

system that belongs to the canonical ensemble.

4. Conclusions

We have applied the operator of time formalism in order to

discuss the radioactive decay. We have shown that this

formalism offers the new insight into the decay in a sense

that the decay exponential-law is seen as the Boltzmann

distribution in the Gibbs treatment of the canonical

ensemble. In other words, the radioactive decay is seen as

the temporal canonical ensemble. Within our approach, the

radioactive constant is the analog of the absolute temper-

ature multiplied by the Boltzmann constant, and this led us

to the introduction of the new quantity, which we have

called persistence, which is the analog of the absolute

temperature in the treatment of the canonical ensemble.

Finally, we have offered a new explanation of the

stochastic character of the decay process.
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