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Dynamical mean-field theory for spin-dependent electron transport in spin-valve devices
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We present a combination of density functional theory and dynamical mean-field theory (DMFT) for comput-
ing the electron transmission through two-terminal nanoscale devices. The method is then applied to metallic
junctions presenting alternating Cu and Co layers, which exhibit spin-dependent charge transport and the
giant magnetoresistance (GMR) effect. The calculations show that the coherent transmission through the 3d
states is greatly suppressed by electron correlations. This is mainly due to the finite lifetime induced by the
electron-electron interaction and is directly related to the imaginary part of the computed many-body DMFT
self-energy. At the Fermi energy, where in accordance with the Fermi-liquid behavior the imaginary part of the
self-energy vanishes, the suppression of the transmission is entirely due to the shifts of the energy spectrum
induced by electron correlations. Based on our results, we finally suggest that the GMR measured in Cu/Co
heterostructures for electrons with energies about 1 eV above the Fermi energy is a manifestation of dynamical
correlation effects.
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I. INTRODUCTION

Spintronics [1] employs the electron spin for sensing
and information technology applications. The prototypical
spintronic device is the spin valve. It consists of two or
more conducting ferromagnetic layers—typically, 3d tran-
sition metals (TMs), whose electrical resistance changes
depending on the relative alignment of the layers’ magnetiza-
tion [2,3]. This phenomenon is called giant magnetoresistance
(GMR) effect and is exploited in the read heads of hard-
disk drives. The GMR is due to the different conductance of
the majority and of the minority electrons in ferromagnets.
The earlier GMR experiments [4,5] were conducted with the
so-called current-in-plane configuration, whereas recent ex-
periments use thin film heterostructures, where the current
flows perpendicular to the various layers’ planes, achieving
higher performances [6].

Over the last two decades, there has been consider-
able progress in the computational modeling of current-
perpendicular-to-plane spin valves. In particular, the ballistic
transport properties have been addressed by using the
Landauer-Büttiker formalism [7–9], where the conductance is
determined by the electron transmission through the device
region placed between two semi-infinite electrodes. The trans-
mission is calculated via the tight-binding approach [10,11]
or, in first-principles studies, via Kohn-Sham density func-
tional theory (DFT) [12–14] within the local spin density
approximation (LSDA) [15,16] or the generalized gradient
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approximation [17–19]. Various implementations exist, based
on transfer matrix [20–22], layer-Korringa–Kohn–Rostoker
[23], mode-matching [24], or nonequilibrium Green’s func-
tion (NEGF) techniques [25–28]. The main assumption is
that all the materials in a device can be treated at the effec-
tive single-particle level, and that the DFT Kohn-Sham band
structure provides an accurate first-principles representation
of quasiparticle spectral properties. However, this may not
hold true for ferromagnetic 3d TMs used in spin valves since
they are moderately correlated [29]. To our knowledge, no
first-principles studies have addressed the impact of electron
correlations on the transport properties of spin valves. In light
of this, the goal of our paper is to present a computational plat-
form to compute the transmission coefficient and the GMR of
two-terminal spintronic devices with electronic spectra treated
beyond the single-particle Kohn-Sham DFT picture.

Significant progress in the theoretical understanding of
correlation effects in materials has been achieved with the
dynamical mean-field theory (DMFT) [30–33]. In the so-
called LSDA + DMFT scheme [33,34], LSDA calculations
provide the material-dependent inputs (orbitals and hop-
ping parameters) from first-principles, while DMFT solves
the many-body problem for the local interactions. In the
case of 3d ferromagnetic TMs, LSDA + DMFT has been
applied to address spectral properties of bulk materials
[35,36] and surfaces [36], digital heterostructures [37,38],
alloys [39], interfaces containing half-metallic ferromagnets
[40,41], and to estimate magnetic moments above and below
the Curie temperature [35]. In all these studies, LSDA +
DMFT provides qualitative and quantitative improvements
over DFT for the description of the electronic and magnetic
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properties of TMs. In the context of two-terminal devices,
LSDA + DMFT has been applied to compute the linear-
response conductance of point contacts [42–44], molecular
junctions [45–50], and heterostructures comprising a single
correlated layer [51,52] but, to our knowledge, never to ad-
dress spin-dependent effects in TM-based spin valves.

In this paper, we describe the integration of the LSDA +
DMFT framework within the Smeagol quantum transport
code [27,53]. In particular, we generalize layer-DMFT
[54–57] toward first-principles calculations for perpendicular-
to-the-plane spintronic devices in the so-called zero-bias limit.
Our implementation is based on the NEGF method to ob-
tain the spin-dependent transmission coefficient through a
correlated region attached to two semi-infinite electrodes.
Second-order perturbation theory in the screened electron-
electron interaction U is employed as the DMFT solver,
allowing for the fast evaluation of the self-energy directly
on the real frequency axis with no need of analytic con-
tinuation schemes. LSDA + DMFT transport calculations
carried out by means our implementation are, in practice,
only slightly more computationally demanding than standard
DFT + NEGF calculations. The solver is accurate for moder-
ately correlated materials such as ferromagnetic TMs, where
U is smaller than the bandwidth. Nonetheless, our implemen-
tation can be easily extended to include any other solver, and
therefore also allowing one to treat strongly correlated sys-
tems. We expect that this will pave the way toward systematic
studies of correlation effects in quantum transport.

The performance of our method is illustrated in detail
for a number of prototypical spintronic heterostructures with
alternating Cu and Co layers, where electrons are correlated
in the 3d orbitals. We demonstrate that electron correla-
tions drastically affect the transmission coefficient, the energy
level alignment between the 3d and s states, and, therefore,
zero-bias transport properties. Moreover, we suggest that the
GMR effect, which has been measured in hot electron trans-
port experiments [58], is a striking manifestation of electron
correlation.

The paper is organized as follows. To begin, in Sec. II A,
we review the basic theory of quantum transport formulated
in terms of the NEGF, and its combination with DFT. Then,
in Sec. II B, we extend the NEGF technique to systems for
which an effective single-particle picture is not appropri-
ate. We present our numerical implementation of DMFT in
Secs. II C–II E and the basic equations for the perturbative im-
purity solver in Sec. II F. The computational details are given
in Sec. III. The results are presented in Sec. IV. Specifically,
we describe the DFT and LSDA + DMFT calculations for
a single Co layer sandwiched between two Cu electrodes in
Sec. IV A, and we study the GMR effect in a complex het-
erostructure in Sec. IV B. Finally, we present our conclusions.

II. METHOD AND IMPLEMENTATION

A. Transport via DFT + NEGF

The typical system that we consider is shown schemat-
ically in Fig. 1 and represents a two-terminal device. The
transport direction is along the z Cartesian axis. We employ
a linear combination of atomic orbitals basis set. The system

FIG. 1. (a) Schematic representation of a two-terminal device,
which includes a central region (CR) placed between two semi-
infinite electrodes. (b) The CR has Hamiltonian Hσ (k), and the effect
of the electrodes on the central region is captured via the left and right
electrode self-energies. Note that we do not indicate the spin index
and the k dependence in the picture to maintain the notation lighter.
(c) The correlated subspace of Hamiltonian H̄σ

C (k) can be separated
from the rest of the CR, which we refer to as the bath. The correlated
subspace and the bath are coupled through the coupling Hamiltonian
H̄σ

B,C (k).

is divided in three parts: a central region (CR) and left (L)
and right (R) electrodes, from which electrons flow in and
out. To start, we assume that electrons in both the CR and
the electrodes are effectively noninteracting. Each electrode
is semi-infinite and periodic away from the CR; k = (kx, ky )
indicates the wave vector in the transverse direction. Hσ (k)
is the k-dependent single-particle Hamiltonian of the CR for
electrons of spin σ =↑,↓. Note that we assume that there are
no spin-mixing terms in the Hamiltonian. Since, in general,
the basis set is nonorthogonal, there is also a spin-independent
orbital overlap S(k) of the CR. We denote with N the number
of basis orbitals of the CR. Hσ (k) and S(k) are therefore
matrices of dimension N × N . Each electrode is in local ther-
mal equilibrium at its own chemical potential μL/R due to
its infinitely large size. When there is no applied bias volt-
age across the electrodes, we have μL = μR = EF , where EF

the Fermi energy. When a finite bias voltage V is applied,
the chemical potentials are shifted as μL/R = EF ± eV/2,
where e is the electron charge.

To describe the electronic structure and the quantum trans-
port properties of the device, we use the NEGF approach
[59]. The effect of electrodes on the CR is then captured
via the momentum- and energy-dependent retarded electrode
self-energies, �σ

L (k, E ) and �σ
R (k, E ). Their anti-Hermitian

parts,

�σ
L/R(k, E ) = i

[
�σ

L/R(k, E ) − �σ
L/R(k, E )†

]
, (1)
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represent the strength of the electronic coupling between the
electrodes and the CR. The properties of the CR are then fully
described by the retarded and lesser CR Green’s functions,
defined as

gσ (k, E ) = [
ES(k) − Hσ (k) − �σ

L (k, E ) − �σ
R (k, E )

]−1
,

(2)

gσ<(k, E ) = gσ (k, E )
[
�σ<

L (k, E ) + �σ<
R (k, E )

]
gσ (k, E )†,

(3)

where the lesser electrodes’ self-energies are

�σ<
L(R)(k, E ) = i fL(R)(E )�σ

L(R)(k, E ), (4)

with fL/R(E ) = [eβ(E−μL/R ) + 1]−1 the Fermi function of the
left/right electrode; here β = 1/kBθ , with kB representing
the Boltzmann constant, and θ the electronic temperature. The
Green’s functions of the CR and the self-energies are N × N
matrices like Hσ (k).

The density matrix of the CR is given by

ρσ = 1

Nk

∑
k

[
1

2π i

∫
dE gσ<(k, E )

]
, (5)

where Nk is the number of k points in the Brillouin zone. In
our calculations, Hσ (k) is the DFT Kohn-Sham Hamiltonian
within the LSDA, and it is therefore density dependent. Equa-
tions (2), (3), and (5) need to be evaluated self-consistently
[26–28]. This method is usually called DFT + NEGF, and it is
the state-of-the-art approach to study spin-dependent transport
through nanodevices. Here, we use the implementation of
DFT + NEGF in the Smeagol transport code [27,53], which
obtains the LSDA Kohn-Sham Hamiltonian from the DFT
package SIESTA [60].

The current across the CR is evaluated as [26–28,59]

I = e

h

∑
σ

∫
T σ (E )[ fL(E ) − fR(E )]dE , (6)

where h is Planck’s constant and

T σ (E ) = 1

Nk

∑
k

T σ (k, E ),

T σ (k, E ) = Tr
[
�σ

L (k, E )gσ (k, E )†�σ
R (k, E )gσ (k, E )

]
(7)

is the spin- and energy-dependent transmission coefficient.
The device conductance is finally defined as G = dI/dV .

The approach described so far is general and can be applied
to any electronic system. However, in the rest of this paper,
our focus will be on metallic heterostructures. Because of
electronic screening, there can be no bias voltage drop across
the electrodes. Therefore, we take the linear-response limit,
also denoted as the zero-bias limit, μL − μR → 0. At zero
temperature (θ = 0), the conductance reduces to the well-
known Landauer formula

G = G0

2

∑
σ

T σ (EF ), (8)

where G0 = 2e2/h is the quantum of conductance. No-
tably, for noninteracting electrons, the Landauer and the
so-called Kubo approaches are equivalent [61,62], so the

linear-response transport properties of a system can be com-
puted by either approach.

B. Transport beyond the single-particle picture

The described NEGF method for transport is formally ex-
tended beyond the effective single-particle picture by adding
the many-body retarded and lesser self-energies, �σ

MB(k, E )
and �σ<

MB(k, E ) to Eqs. (2) and (3) (see, for example,
Ref. [63]). Thus, the Green’s functions of the CR with inter-
acting electrons become [64–66]

Gσ (k, E ) = [
ES(k) − Hσ (k) − �σ

L (k, E ) − �σ
R (k, E )

− �σ
MB(k, E )

]−1
(9)

and

Gσ<(k, E ) = Gσ (k, E )
[
�σ<

L (k, E ) + �σ<
R (k, E )

+ �σ<
MB(k, E )

]
Gσ (k, E )†. (10)

Equation (9) can be re-expressed as a Dyson equation

Gσ (k, E ) = gσ (k, E ) + gσ (k, E )�σ
MB(k, E )Gσ (k, E ), (11)

which allows us to obtain the retarded many-body Green’s
function, also called the dressed Green’s function, from the
noninteracting, or bare, Green’s function gσ (k, E ) of Eq. (2).

The formal introduction of the many-body self-energies
shows that the electron-electron interaction effectively acts on
the system as an additional electrode. We can then define the
effective coupling matrix [46]

�σ
MB(k, E ) = i

[
�σ

MB(k, E ) − �σ
MB(k, E )†

]
, (12)

and express �<
MB(k, E ) as [46]

�σ<
MB(k, E ) = iF σ

MB(k, E )�σ
MB(k, E ). (13)

This equation has the same structure as Eq. (4), but F σ
MB(k, E )

is a matrix which describes the out-of-equilibrium distribution
of the interacting electrons in the CR, and it is not the Fermi
function. The resulting current was computed by Meir and
Wingreen in a seminal work [67] and can be written as [46]

I = Ic + Inc. (14)

Ic is the coherent contribution expressed as in Eq. (6), but with
the transmission coefficient T σ (E ) evaluated with the retarded
dressed Green’s function, i.e., replacing T σ (k, E ) with

T σ
MB(k, E ) = Tr

[
�σ

L (k, E )Gσ (k, E )†�σ
R (k, E )Gσ (k, E )

]
.

(15)

Inc is the noncoherent contribution and reads [46,68]

Inc =
∑

σ

Tr
{[

F σ
MB(k, E ) − fR(E )

]

× �σ
MB(k, E )Gσ (k, E )†�σ

MB(k, E )Gσ (k, E )
}
. (16)

It accounts for an effective interaction electrode. Electrons
can be seen as entering the interaction electrode, where they
undergo some scattering processes losing coherence before
being reinjected into the system [69]. The mathematical form
of Inc resembles that of Ic. However, F σ

MB(k, E ) cannot be
brought outside the trace, and Inc cannot be associated to a
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transmission coefficient for the flow of electrons from the
interaction electrode [68].

Given Eq. (14), the conductance G can similarly be sep-
arated into a coherent and noncoherent contribution. In the
linear-response limit relevant for metallic heterostructures, the
calculation of such a noncoherent contribution is, however,
an outstanding problem. To date, it has only been solved
assuming either a specific shape for the matrix F σ

MB(k, E )
(Refs. [64,70]) or that the CR consists of a single orbital,
so �σ

L/R are numbers instead of matrices [67]. Alternatively,
in the Kubo formalism, noncoherent contributions would be
captured by vertex corrections [71], but we are not aware of
any study where these have been derived from first-principles
calculations. Since the goal of our paper is not to provide
a solution for this problem but to present our implementa-
tion of LSDA + DMFT, we focus here on analysis of the
transmission coefficient in Eq. (15) rather than on the con-
ductance. Importantly, T σ

MB(k, EF ) can be directly measured
in experiments through the injection of hot electrons or
holes in metallic heterostructures [58,72,73]. Therefore, our
calculations can provide physically relevant and verifiable
predictions on correlation effects in quantum transport. This
will be further discussed in Sec. IV B.

In the zero-bias limit implied for metallic systems,
T σ

MB(k, EF ) is calculated with the retarded dressed Green’s
function evaluated in thermodynamics equilibrium. The
fluctuation-dissipation theorem holds, and gives [63]

Gσ<(k, E ) = i f (E )Dσ (k, E ), (17)

where f (E ) = fL(E ) = fR(E ), and

Dσ (k, E ) = i[Gσ (k, E ) − Gσ (k, E )†] (18)

is the spectral function. Thus, only Gσ (k, E ) is required to
fully describe the system. In summary, solving the interacting
problem and calculating the transport properties within the
mentioned approximations reduce to the evaluation of the
retarded self-energy �σ

MB(k, E ) and of the Dyson equation,
Eq. (11).

C. Projection to the correlated subspace

The discussion in the previous section provided formal
equations to study transport in correlated nanodevices. How-
ever, calculations including all the orbitals of the CR represent
a great challenge in practical calculations. To simplify the
problem, we take advantage of the fact that in the case of
TM-based heterostructures there are 4s and 3d valence states.
4s states are delocalized forming energy bands with a large
dispersion, and electronic correlations are well described at
the effective single-particle Kohn-Sham level. In contrast,
open 3d shells are more tightly bound to the ionic cores,
and, as such, they are moderately correlated. We then define
the correlated subspace (C) as the subspace of the CR that
includes all 3d orbitals. Assuming that there are NTM TM
atoms inside the CR, the correlated subspace C has dimension
2(5 × NTM) (the factor 2 accounts for the spin). The correlated
subspace can be projected out from the rest of the system,
which we refer to as the “bath” (B), and which includes the
orthogonal subspace to C within both the CR and electrodes.
To carry out such projection, we use the scheme presented in

Ref. [46], and we perform the basis change, which transforms
the CR overlap and Hamiltonian matrix as

S̄(k) =
(

1 0
0 S̄B(k)

)
= W (k)†S(k)W (k), (19)

H̄σ (k) =
(

H̄σ
C (k) H̄σ

C,B(k)

H̄σ
B,C (k) H̄σ

B (k)

)
= W (k)†Hσ (k)W (k).

(20)

In the transformed matrices S̄(k) and H̄σ (k), the top left block
describes the correlated subspace C, the bottom right block
describes the part of the bath included in the CR, and the off-
diagonal blocks describe the connection terms. The matrices
W (k) are defined in Eq. (10) of Ref. [46]. The transformation
is designed in such a way that the orbitals of C become
orthogonal and they have zero overlap with the bath orbitals
[see Eq. (19)].

H̄σ
C (k) in Eq. (20) is the noninteracting Hamiltonian matrix

of C of dimension 5NTM × 5NTM. Using the second quantiza-
tion formalism, we can introduce the Hamiltonian operator of
C,

ˆ̄Hσ
C (k) =

∑
i, j,λ1,λ2,σ

[
H̄σ
C (k)

]
iλ1, jλ2

d̂†
iλ1σ

d̂ jλ2σ , (21)

where d̂†
iλσ and d̂iλσ are the electron creation and annihila-

tion operators at orbital λ within atom i and spin σ (i =
1, . . . , NTM and λ = 1, . . . , 5, σ =↑,↓). [H̄σ (k)]iλ1, jλ2 is the
Hamiltonian matrix element between the d orbital λ1 of atom
i and the d orbital λ2 of atom j. Further, to describe the
electron-electron interaction for the electrons in C, we add an
explicit Coulomb term as follows:

ˆ̄Hσ (k)C,U = ˆ̄Hσ
C (k) − Ĥσ

C,dc

+ 1

2

∑
i,λ1,λ2,λ3,
λ4,σ1,σ2

Uλ1,λ2,λ3,λ4 d†
iλ1σ1

d†
iλ2σ2

diλ4σ2 diλ3σ1 ,

(22)

where Uλ1,λ2,λ3,λ4 are the four-index Hubbard-U matrix ele-
ments, which account for the screened Coulomb interaction
between all 3d orbitals located on the same atom. Uλ1,λ2,λ3,λ4

are parameterized in terms of the average effective Coulomb
interaction U and exchange J (Ref. [74]):

U = 1
(2l+1)2

∑
λ1,λ2

Uλ1,λ2,λ1,λ2 , (23)

J = 1
2l (2l+1)

∑
λ1 �=λ2,λ2

Uλ1,λ2,λ2,λ1 . (24)

The reason for using the multiorbital Hubbard-like form is
the local nature of the screened Coulomb interaction, which
allows us to ignore the Coulomb integrals involving correlated
orbitals of different atoms. Ĥσ

C,dc is the double-counting cor-
rection, which is needed to cancel the Coulomb interactions
already taken into account in the LSDA exchange-correlation
potential. The exact form of the double-counting correction
is not known, but several approximations have been proposed
and are used in practice [33,35,75,76]. We will describe our
practical treatment of the problem in Secs. II F and II G.

We note that taking the static mean-field approximation for
the Hubbard-like interaction in the Hamiltonian of Eq. (22)
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leads to the so-called LSDA + U method [77–80]. This is one
of the simplest corrective approaches formulated to improve
the accuracy of the LSDA functional for correlated materials.
We will further discuss it in Sec. II F and present some cal-
culations in Appendix A. LSDA + U has found widespread
use for the computational design of functional materials.
However, it was already shown in early works [80] that it
can give worse results than LSDA for the electronic spectra
and, therefore, the transport properties of the ferromagnetic
metallic systems of our interest. To obtained improved results,
the Hubbard-like interaction in ˆ̄Hσ (k)C,U needs to be treated
beyond the static mean-field approximation introducing a
many-body energy-dependent self-energy as we will describe
in the rest of the paper.

D. Green’s function and many-body self-energy
of the correlated subspace

The bare and dressed Green’s functions, gσ (k, E ) and
Gσ (k, E ), are expressed in the transformed basis as [46]

ḡσ (k, E ) =
(

ḡσ
C (k, E ) ḡσ

C,B(k, E )

ḡσ
B,C (k, E ) ḡσ

B(k, E )

)

= W (k)−1gσ (k, E )W (k)−1† (25)

and

Ḡσ (k, E ) =
(

Ḡσ
C (k, E ) Ḡσ

C,B(k, E )

Ḡσ
B,C (k, E ) Ḡσ

B(k, E )

)

= W (k)−1Gσ (k, E )W (k)−1†, (26)

where W (k)−1 is the inverse of the transformation matrix
used in Eqs. (19) and (20). ḡσ (k, E ) and Ḡσ (k, E ) have the
same block structure as the Hamiltonian matrix in Eq. (20).

The blocks ḡσ
C (k, E ) and Ḡσ

C (k, E ) are the bare and dressed
Green’s function matrices of the correlated subspace. They
satisfy the Dyson equation for the correlated subspace,

Ḡσ
C (k, E ) = [

ḡσ
C (k, E )−1 − �̄σ

C (k, E )
]−1

, (27)

where �̄σ
C (k, E ) is the many-body self-energy of C and also

includes also the double-counting correction. This self-energy
formally specifies the electron correlations inside C due to the
interaction in Eq. (22). In the following sections, we will see
how �̄σ

C (k, E ) is computed in practice.
From �̄σ

C (k, E ), we can easily obtain the many-body self-
energy of whole CR. In the transformed basis, it reads

�̄σ
MB(k, E ) =

(
�̄σ

C (k, E ) 0
0 0

)
, (28)

since the bath is noninteracting by construction. In the original
basis, the CR many-body self-energy is calculated as

�σ
MB(k, E ) = W (k)−1†

�̄σ
MB(k, E )W (k)−1. (29)

The many-body self-energy is therefore propagated to the
bath.

E. DMFT

The many-body problem within the correlated subspace
C is solved via DMFT, which means that we only consider
electron correlations local in space. The self-energy �̄σ

C (k, E )
of C is therefore approximated by the DMFT self-energy,

�̄σ
C,DMFT(E ) =

⎛
⎝�̄σ

1 (E ) 0 ... 0
0 �̄σ

2 (E ) ... 0
0 0 ... �̄σ

NTM
(E )

⎞
⎠, (30)

where �̄σ
i (E ) is the 5 × 5 block for the 3d orbitals of the atom

i. We note that, in general, each block �̄σ
i (E ) can be non-

FIG. 2. Schematic representation of the DMFT self-consistent loop.
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diagonal. Equation (30) generalizes to multiorbital systems
the DMFT self-energy used in layer-DMFT for tight-binding
models [54,55,81]. Practically, �̄σ

C,DMFT(E ) is computed by
mapping the correlated subspace into a set of auxiliary im-
purity problems, one per atom. Each impurity problem is
numerically solved obtaining the corresponding (local) many-
body self-energies �̄σ

i (E ). The procedure is embedded into a
self-consistency loop presented in Fig. 2. Within our imple-
mentation, the CR is projected onto the correlated subspace at
each DMFT iteration and, after solving the impurity problem,
the self-energy is transformed back to the original space. By
doing so, one retains more information about the states out-
side the correlated subspace. This is an approach that follows
from previous implementations of LSDA + DMFT for peri-
odic systems [82–86] and is here generalized to device setups.
The self-consistent DMFT loop is summarized as follows:

(i) We compute the dressed CR Green’s function Gσ (k, E )
in Eq. (9). In the first iteration, we use �σ

MB(k, E ) = 0 as a
guess for the many-body self-energy.

(ii) We carry out the transformation in Eq. (26), and
we separate the Green’s function of the correlated subspace
Ḡσ

C (k, E ) from the rest of the system.
(iii) We define the so-called local Green’s function:

Ḡσ
loc(E ) = 1

Nk

∑
k

Ḡσ
C (k, E ). (31)

(iv) We build the 5 × 5 dynamical field matrix Gσ
i (E ) for

each atom i in the correlated subspace

Gσ
i (E ) = {[

Ḡσ
loc,i(E )

]−1 + �̄σ
i (E )

}−1
, (32)

where Ḡσ
loc,i(E ) is the 5 × 5 block of the local Green’s func-

tion matrix relative to the atom i.
(v) We map each of the NTM atoms inside C into an Ander-

son impurity model. This is done by defining the bare impurity
Green’s function of atom i as gσ

imp,i(E ) = Gσ
i (E ).

(vi) We solve the impurity problems as described in
Sec. II F thus obtaining the impurity many-body self-energies
�σ

imp,i(E ).
(vii) We set �̄σ

i (E ) = �σ
imp,i(E ) for each atom i, and we

then compute the DMFT self-energy in Eq. (30).
(viii) We transform back the self-energy to the original

basis using Eq. (29). This gives the updated CR many-body
self-energy �σ

MB(k, E ). We then go back to step (i) to start the
next iteration.

After converging the self-consistent DMFT equations, we
compute the density of states (DOS),

DOSσ (E ) = 1

Nk

∑
k

Dσ (k, E ), (33)

where Dσ (k, E ) is the spectral function defined in Eq. (18),
and the transmission coefficient T σ (E ) = 1

Nk

∑
k T σ

MB(k, E )
with T σ

MB(k, E ) defined in Eq. (15). The transmission co-
efficient is, in principle, independent on the basis and can
equivalently be computed in the original or in the transformed
basis. However, it is more convenient to use the original basis
thus employing the same module already implemented for
DFT + NEGF in the SMEAGOL code.

We note that, in spite of the local approximation of DMFT,
the self-energy in the original basis, �σ

MB(k, E ), acquires a

k dependence because of the matrices W (k)−1 in Eq. (29).
The matrices W (k) and their inverse are computed once at
the beginning of the DMFT cycle and then stored. They
are a basis transformation and basis orbitals do not change
within the DMFT loop. We would need to update them if
we performed full charge self-consistent calculations includ-
ing self-energy effects. Our implementation can, in principle,
deal with these calculations, but in practice they remain too
computationally demanding for real device setups. Moreover,
we expect that charge self-consistency will have a minor
impact for the metallic systems studied in this paper as
the main effect of correlation is to reduce the DOS spin
splitting, without altering the chemical bond and the charge
distribution around the atoms.

Although in this paper we consider only moderately cor-
related systems, and the impurity solver is designed for them
(see the next section), it is important to remark that our DMFT
algorithm is general and also applicable to study nanojunc-
tions comprising strongly correlated materials. In these cases,
one would only need to opt for a different impurity solver,
for example, employing the noncrossing [87,88] or the one-
crossing approximations [89,90]. Any impurity solver can in
principle be interfaced with our code in a straightforward way.

F. Solution of the impurity problem

As outlined in the previous section, DMFT requires the
solution of auxiliary impurity problems to determine the
self-energies �̄σ

i (E ) = �σ
imp,i(E ). The impurity solvers gen-

erally used for ferromagnetic metals, such as continuous time
quantum Monte Carlo [91] or the spin-polarized T -matrix
fluctuating exchange approximation [29,92–94], are formu-
lated on the imaginary frequency axis. Spectral functions are
obtained indirectly via the numerical analytical continuation
to the real energy axis [95–98]. Unfortunately, this often leads
to numerical difficulties, since the analytical continuation of
discrete numerical data is not unambiguous. Moreover, it ne-
cessitates the appropriate treatment of the high-frequency tails
[99]. These issues become even more pressing in the case
of transport calculations, since the transmission coefficient
in Eq. (15) is computed from the retarded Green’s functions,
which may present many specific energy-dependent features.
For this reason, here we consider the second-order pertur-
bative treatment proposed in Refs. [100,101], and which is
implemented to provide the self-energy directly on the real
energy axis, while retaining the multiorbital nature of the
many-body problem. In spite of its simplicity, we showed in
Ref. [101] that the second-order self-energy already accounts
for all characteristic spectroscopic features caused by electron
correlation in ferromagnetic TMs.

The systems considered in this paper have diagonal dynam-
ical field matrices Gσ

i (E ) in Eq. (32) because of symmetry.
This greatly reduces the computational effort for solving the
impurity problem. The diagonal elements of the impurity
Green’s function and self-energy for an orbital λ of an atom
i are denoted as gσ

imp,iλ(E ) and �σ
imp,iλ(E ). They are related

through the impurity Dyson equation

Gσ
imp,iλ(E )−1 = gσ

imp,iλ(E )−1 − �σ
imp,iλ(E ), (34)

with Gσ
imp,iλ(E ) the impurity dressed Green’s function.
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The self-energy up to the second order in diagrammatic
perturbation theory in U over the band width is written as

�σ
imp,iλ(E ) ≈ �

σ (1)
imp,iλ + �

σ (2)
imp,iλ(E ) − �σ

dc,iλ. (35)

�σ
dc,iλ represents the double-counting correction, which we

will discuss at the end of this section. The first-order term is

�
σ (1)
imp,iλ =

∑
λ1σ1

Uλλ1λλ1 nσ1
iλ1

−
∑
λ1

Uλλ1λ1λnσ
iλ1

, (36)

and is the well-known Hartree-Fock approximation, where
nσ

iλ = ∫ ∞
−∞ dE f (E )Imgσ

imp,iλ(E ) is the occupation of the or-
bital λ of spin σ for the impurity i; f (E ) is the Fermi function.
�

σ (1)
imp,iλ is local in time, i.e., energy independent. It therefore

represents a one-electron potential producing only a shift of
the noninteracting energy levels. In practice, if only �

σ (1)
imp,iλ

and the double-counting correction were included in the cal-
culations, this would correspond to using LSDA + U instead
of DMFT, as also mentioned at the end of Sec. II D.

The second-order self-energy �
σ (2)
imp,iλ(E ), which includes

the dynamical correlations, can be split into its real and imag-
inary parts. The imaginary part is given by [102]

Im
[
�

σ (2)
imp,iλ(E )

] = −π
∑

λ1λ2λ3σ1

Uλλ1λ2λ3Uλ3λ2λ1λ

∫ ∞

−∞
dε1

∫ ∞

−∞
dε2Dσ1

iλ1
(ε1)Dσ

iλ2
(ε2)Dσ1

iλ3
(ε1 + ε2 − E )

× { f (ε1) f (ε2) + [1 − f (ε1) − f (ε2)] f (ε1 + ε2 − E )}

+ π
∑

λ1λ2λ3

Uλλ1λ2λ3Uλ2λ3λ1λ

∫ ∞

−∞
dε1

∫ ∞

−∞
dε2Dσ

iλ1
(ε1 + ε2 − E )Dσ

iλ2
(ε2)Dσ

iλ3
(ε1)

× { f (ε2) f (ε1) + [1 − f (ε2) − f (ε1)] f (ε1 + ε2 − E )}, (37)

where

Dσ
iλ(E ) = − 1

π
Im

[
gσ

imp,iλ(E )
]

(38)

is the spectral function of gimp,iλ(E ). The real part is computed
by the Kramers-Kronig relations as

Re
[
�

σ (2)
imp,iλ(E )

] = − 1

π

∫ ∞

−∞
dε

Im
[
�

σ (2)
imp,iλ(ε)

]
E − ε

. (39)

We note that the dressed rather than the bare impurity Green’s
function could be used in the evaluation of self-energy contri-
butions [63]. This would require a self-consistent solution of
Eqs. (34), (36), and (37). In this paper, we do not consider this
approach to reduce the computational cost of the calculations.
Effectively, we neglect some of the second-order diagrams in
the perturbative expansion [63] and, therefore, some multi-
band screening effects. However, these effects are expected to
be small [101], and hence not significant for the goals of this
paper.

Our calculations in Sec. IV are practically performed as
follows. We approximate the first order and double-counting
contributions of the self-energy with the static potential of the
LSDA + U formulation by Dudarev et al. [79]:

�
σ (1)
imp,iλ − �σ

dc,iλ ≈ V σ
U,iλ = (U − J )

(
1
2 − nσ

iλ

)
. (40)

V σ
U,iλ is obtained through a charge self-consistent calculation.

Then this static potential is included into the bare Green’s
function. This means that gσ

iλ(E ) is replaced by the LSDA +
U Green’s function:

gσ
LSDA+U,iλ(E ) = [

gσ
imp,iλ(E )−1 − V σ

U,iλ

]−1
. (41)

The Dyson equation, Eq. (34), retains its structure, but the
total self-energy �σ

imp,iλ(E ) is substituted by the correlation
self-energy �σ

corr,iλ(E ) = �σ
imp,iλ(E ) − V σ

U,iλ, which is evalu-
ated using gσ

LSDA+U,iλ(E ) in Eq. (37). Further details can be

found in Ref. [101], where the performance of the method
for ferromagnetic TMs is also assessed against the results of
photomoemission spectroscopy experiments.

G. On-site energy shift

DFT + NEGF calculations are performed in the grand-
canonical ensemble. Here, rather than fixing the total number
of electrons inside the CR, the Fermi energy is fixed by the
chemical potential of the electrodes, μL = μR = EF . The total
number of electrons in the CR typically fluctuates during the
charge self-consistent DFT cycle until it eventually converges
to the nominal value given by the sum of the various CR
atomic valence (+core) electrons for pseudopotentials-based
(all-electron) implementations. A similar behavior is expected
also in charge self-consistent LSDA + DMFT two-terminal
device calculations. However, these charge self-consistent
LSDA + DMFT calculations are computationally too de-
manding for realistic systems like those studied here. In line
with typical calculations for periodic systems, we therefore
perform self-energy self-consistent DMFT calculations, but
we do not iterate the evaluation of the charge density. The total
number of electrons of the CR is found to deviate slightly from
the nominal value. To reimpose the correct electron counting
for periodic systems, one usually adjusts the chemical poten-
tial of the impurity until the correct occupation is obtained. We
adapt this process to the transport setup by adding an on-site
atom-dependent potential vi to all correlated 3d orbitals. In
other words, we readjust the real part of the many self-energy
as Re[�σ

imp,iλ(E )] → Re[�σ
imp,iλ(E )] + vi. We note that this

is an ad hoc adjustment based on the electron counting. Yet,
preliminary studies, albeit for different and simpler systems,
seem to suggest that such adjustment reproduces quite well
the results of fully charge self-consistent calculations [103].
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III. COMPUTATIONAL DETAILS

DFT calculations are performed treating core elec-
trons with norm-conserving Troullier-Martin pseudopoten-
tials [104]. The valence states are expanded through a
numerical atomic orbital basis set including multiple-ζ and
polarized functions [60]. The electronic temperature is 300 K.
The real space mesh is set by an equivalent energy cutoff of
300 Ry. A k-point mesh equal to kx × ky = 24 × 24 is used
to compute the self-consistent charge density with DFT. This
charge density is then used as input in a non-self-consistent
DFT calculation with 80 × 80 k-points to obtain the DOS.
All energies are shifted in such a way to set the Fermi level at
0 eV. The Cu lattice constant is set to the experimental value,
3.615 Å, and we do not optimize the structures.

DMFT calculations are performed using the bare Green’s
function g(k, E ) of Eq. (25) calculated for 32 × 32 k-points.
The temperature is 300 K. An energy grid comprising 3200
points and extending from −16 to 6 eV is employed to cal-
culate the second-order self-energy. The Coulomb parameters
Uλ1,λ2,λ3,λ4 are expressed in terms of Slater integrals F 0, F 2,
and F 4 (Ref. [105]). These are connected to the average ef-
fective Coulomb and exchange interactions of Eqs. (23) and
(24) through the relations U = F 0 and J = (F 2 + F 4)/14.
The ratio F 4/F 2 is assumed to correspond to the atomic value
≈0.625 (Ref. [106]).

IV. RESULTS

We now apply the method to heterostructures presenting al-
ternating Cu and Co layers, sandwiched between semi-infinite
Cu electrodes. The goal is to illustrate the capabilities of
our implementation of LSDA + DMFT and, in doing so, to
gain some general understanding about the impact of electron
correlation effects on the electronic structure and transport
properties. We first consider a single Co layer and then a
more complex heterostructure, whose CR comprises two Co
trilayers separated by a Cu spacer, and which display the
GMR effect.

LSDA + DMFT is systematically compared to DFT within
the LSDA, which is the standard theoretical approach con-
sidered in previous works about Co and Cu heterostructures
(for example, see Refs. [107–110]). For completeness and
to further compare static versus dynamic mean-field effects,
we also present some results of LSDA + U calculations in
Appendix A.

The correlated subspace includes only the Co 3d orbitals,
while the Cu 3d orbitals are considered uncorrelated, since
they are fully filled and located in energy at about 2 eV below
the Fermi level. We use the four-index interaction term as
shown in Eq. (22) with the average Coulomb and exchange
interactions set to U = 3.0 eV and J = 0.9 eV. These are
standard values for Co, and we obtain a DOS similar to that
obtained in calculations [51] based on the exact muffin-tin
orbital (EMTO)-DMFT method [111–114]. In Appendix B,
we present a systematic analysis of the dependence of the
results on the interaction parameters. Finally, the potential vi

mentioned in Sec. II G, and added to maintain the nominal
charge of the central region, is set to be the same for all Co
atoms as they are found to be almost equivalent.

FIG. 3. Cu/Co/Cu (top panel) and Cu/Co3/Cu3/Co3/Cu (bot-
tom panel) two-terminal devices. The atoms Co1, Co2, and Co3 in
Cu/Co3/Cu3/Co3/Cu are labeled in the figure.

A. Correlated Co monolayer

We denote the system as Cu/Co/Cu. The simulation cell
is shown in the top panel of Fig. 3. The transport direc-
tion z is oriented along the Cu(001) direction. The DOS of
the Co monolayer is shown in Fig. 4. It is similar to that
of bulk fcc Co showing a strong ferromagnetic character
[115]. In the LSDA results, the majority (spin-up) d states
are almost fully occupied, and they are split by about 1.5 eV
from the minority (spin-down) states, which cut through the
Fermi level. A small spin polarization is also induced via
hybridization on the Cu layers in proximity to Co as discussed
in Appendix C. In the DMFT calculations, the dynamical
self-energy induces a redistribution of the spectral weight.
The changes in the DMFT DOS with respect to the DFT
DOS are more pronounced for the majority than for the mi-
nority channel. The majority 3d states are shifted toward
the Fermi level, while the position of the minority states is
barely affected. As a result, the spin splitting is reduced by
about 0.6 eV compared to the DFT value, and it becomes
equal to 0.9 eV. Besides that, the DOS is considerably nar-
rowed for energies close to the Fermi level, while it broadens
below E − EF ≈ −3 eV. Overall, these changes are typical
for correlation effects in TMs. As discussed in a number of
works (for example, Refs. [35,36,51,116]) DMFT accurately
captures them. In particular, the good performance of our

FIG. 4. DOS of the Co layer in the Cu/Co/Cu system, calculated
by using DFT and DMFT.
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FIG. 5. Real part (solid black line) and imaginary part (dashed
red line) of the many-body self-energy averaged over all Co 3d
orbitals in the Cu/Co/Cu system. The upper panel is for major-
ity (spin-up), while the bottom panel is for minority (spin-down)
electrons.

implementation with the perturbative solver is demonstrated
in Ref. [101] through a comparison against photoemission
spectroscopy experiments.

The changes in the DOS due to dynamical correlation ef-
fects are understood by inspecting the many-body self-energy.
To simplify the analysis, we express it in the transformed ba-
sis, Eq. (30), noting that the main features in the Co DOS look
the same in the original and transformed basis. We further take
the average over the orbital indexes �σ (E ) = ∑

λ �σ
λ (E )/5

to point out those general features which will be important
later when analyzing the transmission coefficient (the overbar
above the self-energy symbol used in Sec. II E is neglected
here to make the notation lighter). �σ (E ) is shown in Fig. 5.
It has Fermi-liquid character near the Fermi level: The imag-
inary part goes to zero as −Im�σ (E ) ∝ (E − EF )2. Away
from the Fermi energy, it is much larger for the majority than
for the minority channel, indicating that the majority electrons
are more correlated than the minority electrons. The absolute
magnitude of Im�↑(E ) grows for E − EF � −2 eV, resulting
in the substantial broadening of the DOS in that energy range
as already seen in Fig. 4. Re�↑(E ) shows a maximum at
E − EF ≈ −2.5 eV. This causes the large shift in the energy
of the 3d states from the DFT position toward the Fermi level
discussed above. In the minority channel, Re�↓(E ) has a peak
below the Fermi energy, specifically at E − EF ≈ −1.2 eV.
The 3d states, in particular 3dx2−y2 , at that energy are therefore
moved from their DFT position towards the Fermi level. For
negative energies, the absolute value of Im�↓(E ) is consid-
erably smaller than that of Im�↑(E ). Minority 3d states are
indeed much less broadened than majority states in the energy
region far below the Fermi level as distinctly seen in the DOS
in Fig. 4. In contrast, Im�↓(E ) becomes quite large above
the Fermi level, in particular, for E − EF � 1 eV. This feature
will have an impact on the transmission coefficient in that

(a)

(b)

(c)

FIG. 6. (a) Transmission coefficient as a function of energy for
the Cu/Co/Cu system, for majority (spin-up) electrons. (b) Trans-
mission coefficient as a function of energy for minority (spin-down)
electrons. (c) Spin polarization as a function of energy. DFT (DMFT)
results are in black (red).

energy region, and it will also be important for the results of
the next section.

The spin-dependent DFT and DMFT transmission T σ (E ),
obtained, respectively, using Eqs. (7) and (15), is depicted in
Fig. 6. In the DFT calculations, the transmission is quite large
(>0.5) over the whole displayed energy range because the
system is an all-metal heterostructure. On the other hand, in
the DMFT calculations, the transmission is drastically sup-
pressed. This is because of two effects dominant at different
energies. First, the Co 3d states acquire a finite relaxation time
τ , which is related to the imaginary part of the many-body
self-energy, τ−1 ∝ Im�σ . Second, the occupied Co 3d states
are dragged toward the Fermi level by the real part of the
self-energy. As a result of that, the s conduction electrons
undergo a more pronounced elastic scattering at the Co layer
in the DMFT than in the DFT picture. Focusing, in particular,
on the majority spin channel [Fig. 6(a)], we note that T ↑(E )
calculated with DFT presents quite sharp peaks in the energy
region between E − EF ≈ −5 and −1.3 eV, where the 3d
states are located. These peaks are suppressed in the DMFT
transmission, mostly because of the finite relaxation time. In
contrast, at energies from E − EF ≈ −1.3 eV to 1 eV, where
there are s states, and Im�↑(E ) is very small, the DMFT
majority transmission T ↑(E ) is reduced compared to the DFT
one because of the elastic scattering of the conduction s elec-
trons with the Co 3d orbitals. In the minority spin channel, this
effect is less important as the energy position of the 3d states
is not drastically modified by DMFT [see Fig. 6(b)]. Yet, we
observe a suppression of the transmission T ↓(E ) in the two
energy regions −1.8 � E − EF < 0 eV and 0 < E − EF �
2 eV due to the finite relaxation time. The transmission right
at the Fermi energy remains, however, almost unaffected since
Im�↓(EF ) = 0 due to the Fermi liquid nature of the system
and Re�↓(EF ) ≈ 0.
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Using the transmission coefficients, we can now compute
the energy-dependent spin-polarization:

SP(E ) = T ↑(E ) − T ↓(E )

T ↑(E ) + T ↓(E )
. (42)

The results are plotted in Fig. 6(c). DFT gives a positive spin
polarization at all energies below the Fermi level, and the
largest values are found in the range from E − EF ≈ −4 to
−2 eV, where the majority Co 3d states are located. In con-
trast, DMFT predicts that the spin-polarization in that energy
region becomes very small and negative as a consequence of
the suppression of the transmission in the majority channel.
Near the Fermi energy, the DFT and DMFT spin polarization
are almost identical and equal to 0.24 as both T ↑(E ) and
T ↓(E ) are hardly affected by dynamical correlations. The
most interesting energy region is for E − EF � 0.5 eV. Here
the DFT spin polarization vanishes, but the DMFT one is quite
large and positive. This is because, as seen above, T ↑(E ) is
due only to uncorrelated s electrons and remains large in both
DFT and DMFT, whereas T ↓(E ) has a contribution from the
minority d states, which acquire a finite relaxation time in
DMFT, owing to the significant imaginary part of the self-
energy, and therefore gets partly suppressed. This important
feature was already anticipated above when discussing the
shape of Im�↓(E ), and it will have further interesting impli-
cations for the GMR effect studied in the next section.

B. Correlated Co multilayered device

We consider here the heterostructure shown in the bot-
tom panel of Fig. 3 and named Cu/Co3/Cu3/Co3/Cu, whose
central region comprises two Co trilayers separated via a Cu
spacer. It represents a spin valve, where the magnetization of
the first Co trilayer on the left side of the central region can be
set parallel (P) or antiparallel (AP) to the magnetization of the
second Co trilayer on the right side.

The DOS of one of the trilayers is presented in Fig. 7. Co1,
Co2, and Co3 are the nonequivalent Co atoms in the three
different layers (see Fig. 3). For all of them, DMFT induces
a redistribution of the majority spectral weight compared to
DFT, thus reducing the spin splitting of the 3d states. The
effect of electron correlations is therefore the same as de-
scribed in the previous section for the single Co layer, and
the many-body self-energy (not shown) has a similar shape.

The spin-dependent transmission coefficients T σ
P (E ) and

T σ
AP(E ) for the P and AP magnetic configurations are shown

in Fig. 8. The most striking feature is the suppression of the
transmission through the Co 3d states predicted by DMFT re-
gardless of the Co trilayers’ magnetic alignment. The effect is
more dramatic here than in the Co monolayer case. T σ

P(AP)(E )
is of the order of 0.01 in the energy region between E − EF ≈
−4 eV and ≈ −2 eV in Cu/Co3/Cu3/Co3/Cu, while it re-
mained as large as about 0.25 in Cu/Co/Cu. The cause is
the presence of six Co layers instead of just one. Electrons
acquire a finite relaxation time in each layer because of the
imaginary part of the many-body self-energy. If there were
more Co layers, the transmission would drop further. Similar
results are found for both spin channels. Overall, our analysis
demonstrates that DMFT quantitatively captures the reduction
of the coherent transmission due to electron relaxation.

FIG. 7. DOS of the Co atoms in three different layers of the
Cu/Co3/Cu3/Co3/Cu system, calculated with DFT and DMFT. The
atoms Co1, Co2, and Co3 are indicated in Fig. 3.

We now analyze in more detail the P magnetic con-
figuration. Both T ↑

P (E ) and T ↓
P (E ) are qualitatively very

similar to the transmission coefficients previously obtained
for Cu/Co/Cu. In the majority channel, the conduction at
energies E − EF � −0.5 is due to s electrons. They are nearly
free in DFT, whereas DMFT predicts a large scattering with
the Co 3d states. These correlated states are placed close to
the Fermi energy by the real part of the self-energy causing the
reduction of the transmission. At the Fermi level, DMFT gives
T ↑

P (EF ) = 0.33, which is half the DFT result, 0.76. In the
minority channel, the reduction of the transmission coefficient
at the Fermi level is slightly smaller. We obtain that T ↓

P (EF )
is equal to 0.22 and 0.35 in DFT and DMFT, respectively.
On the other hand, above the Fermi energy, T ↓

P (E ) is fully
suppressed in DMFT. This is because the imaginary part of
the spin-down self-energy is quite large, as we highlighted in
previous section. Thus, we find that the total P transmission is
TP(E ) = T ↑

P (E ) + T ↓
P (E ) ≈ T ↑

P (E ).
In the AP configuration, an electron belonging to the ma-

jority band in the left Co trilayer will belong to the minority
in the right trilayer, and vice versa [117]. The transmission
coefficient for spin up and spin down is identical, T ↓

AP(E ) =
T ↑

AP(E ). Spin-up (-down) electrons incoming from the left
electrode with energies near EF go through the majority s
(minority 3d) states of the left Co trilayer as well as the
minority 3d (majority s) states of the right Co trilayer. Be-
cause of the mismatch between the s and 3d states, electrons
undergo a large elastic scattering in the central region, and the
AP total transmission TAP(E ) = T ↓

AP(E ) + T ↑
AP(E ) is signifi-

cantly reduced compared to the P total transmission TP(E ).
This physics is already captured at the qualitative level with
DFT as shown in early works [107]. However, our calcula-
tions indicate that there is a further drastic suppression of
the transmission due to electron relaxation in the 3d states.
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FIG. 8. Spin up, spin down, and total transmission coefficient, T ↑(E ), T ↓(E ) and T (E ) = T ↑(E ) + T ↓(E ), for Cu/Co3/Cu3/Co3/Cu
(left panels: P configuration; right panels: AP configuration). In the bottom right panel, the cyan (green) curve represents the AP transmission

coefficient calculated using the model approximation TAP(E ) ∼ 2
√

T ↑
P (E )T ↓

P (E ) with the DFT (DMFT) T ↑
P (E ) and T ↓

P (E ).

This is evident when comparing the DFT and DMFT TAP(E )
for E − EF > −0.5 eV in Fig. 8. Overall, the dynamical self-
energy contribution leads to a total P transmission TP(E ),
which is twice as large as the AP one, TAP(E ).

To better understand the impact of electron correlations
on the transmission, we model the left Co/Cu and the right
Cu/Co interfaces as two independent scatterers in series. We
can then use the phenomenological expression for the AP
transmission in terms of the spin-up and spin-down P trans-

mission, TAP(E ) ∼ 2
√

T ↑
P (E )T ↓

P (E ) (Ref. [28]). The results
are represented in the bottom right panel of Fig. 8 as the
cyan and green lines for DFT and DMFT, respectively. In
the DMFT case, the model accurately describes TAP(E ) for
negative energies up to E − EF ≈ −0.3 eV. This indicates that
quantum interference effects in that energy region are largely
suppressed by DMFT as a results of the imaginary part of the
many-body self-energy.

Finally, we quantitatively characterize the spin-transport
properties of the system by computing the GMR ratio as a
function of the energy

GMR(E ) = TP(E ) − TAP(E )

min[TP(E ), TAP(E )]
, (43)

where min[TP(E ), TAP(E )] indicates the smallest transmission
coefficient between TP(E ) and TAP(E ) at the energy E . The
results are shown in Fig. 9. For negative energies, GMR(E )
is very large in DFT, whereas it is negligible in DMFT, since
both TP(E ) and TAP(E ) are suppressed by electron relaxation.
On the other hand, DMFT predicts a significant GMR(E )
for energies E − EF � −0.5 eV, where the P transmission is
associated to spin-up s electrons and, as such, is large and

unaffected by correlation, while the AP transmission is re-
duced as both spin-up and spin-down electrons travel through
the 3d states of either Co trilayers. This is a very interesting
finding with important implications as discussed below.

The linear magnetoresistive response that is generally con-
sidered in the literature [11,107] is obtained by evaluating
Eq. (43) at the Fermi energy. DMFT predicts an increment
of about 30% with respect to DFT. Specifically, we get
GMR(EF ) = 0.45 in DMFT and GMR(EF ) = 0.35 in DFT.
However, we must point out that this result is very sensitive
to the interaction parameters U and J as we discuss in detail
in Appendix B. Despite that, we observe that, for this specific
system, DMFT always predicts an enhancement of GMR(EF )
compared to the DFT.

A direct comparison of the linear response transport
properties of metallic heterostructures with experiments has

FIG. 9. Energy-dependent GMR calculated by DFT (black line)
and DMFT (red line).
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generally been difficult [110,108]. In most devices, the metal-
lic layers are very thick (∼100 nm), and the physics is
dominated by diffuse scattering and disorder [6], which cover
any other phenomena, and which cannot be easily included
in first-principles computational approaches. However, more
recently, the direct measurement of transmission through ma-
terials has become possible in hot electron or hole transport
experiments [58,72,73]. In particular, Kaidatzis et al. studied
Co/Cu heterostructures using the ballistic electron emission
microscope technique [58]. By injecting electrons from a
metallic tip into high-energy Co/Cu conduction states, the
authors could extract the spin-dependent transmission coeffi-
cients and, therefore, compute GMR(E ) as defined in Eq. (43)
for a wide energy range above EF . One of their most in-
teresting results is that GMR(E ) is as large as about 2 at
E − EF ≈ 1 eV. It then decreases monotonically with energy,
but nonetheless remains significant and equal to about 0.5
at E − EF ≈ 2 eV. This behavior is clearly well captured, at
least at the qualitative level, by the DMFT results of Fig. 9.
GMR(E ) presents a maximum at E − EF ≈ 1 eV (albeit equal
to about 1.2 rather than 2) and falls off toward 0.5 for larger
energies in agreement with the experiments. On the other
hand, the effect is totally absent in the DFT results, where
GMR(E ) is seen to rapidly drop just above EF , thus becoming
negligible at large energies. Based on these observations, we
propose that the hot electron GMR is a clear manifestation
of dynamical correlation effects. Our study demonstrates the
potential of our implementation of DMFT for understanding
new physics in metallic heterostructures.

V. CONCLUSIONS

We present a computational scheme, which uses LSDA +
DMFT in combination with the NEGF approach to inves-
tigate spin-dependent electron transport through nanoscale
two-terminal devices, including electron correlation effects.
We consider second-order perturbation theory for the impurity
solver, which allows us to compute the many-body self-energy
directly for real energies, thus avoiding numerical problems
due to the analytic continuation. Perturbation theory is only
appropriate for moderately correlated systems, such as 3d fer-
romagnetic TMs. However, our code can be easily interfaced
with other impurity solvers to treat also strongly correlated
materials. LSDA + DMFT calculations with our perturbative
solver are only slightly more complicated and computa-
tional demanding than standard DFT + NEGF calculations,
thereby making our method an ideal tool for the wider user
community.

We apply our LSDA + DMFT method to heterostructures
comprising alternating Co and Cu layers to obtain their zero-
bias coherent transmission coefficient. We find that such
transmission is suppressed by electron correlations at energies
away from EF . This is due to the finite imaginary part of the
many-body self-energy, which corresponds to the inverse of
an effective electron lifetime. In contrast, at EF , the imaginary
part of the self-energy vanishes due to the Fermi liquid behav-
ior, so the changes in the transmission are entirely determined
by the correlation-induced shift of the energy spectrum. In
particular, the elastic scattering of uncorrelated majority s
electrons with the Co 3d states can be enhanced in DMFT

compared to DFT. In some cases, this can greatly affect the
linear-response spin-dependent coherent conductance.

The calculated transmission coefficient as a function of the
energy can be used to interpret hot electron transport experi-
ments. In particular, based on our LSDA + DMFT results, we
suggest that the GMR measured in Cu/Co heterostructures
for electrons with energies 1 eV larger than EF is a peculiar
manifestation of dynamical correlation effects. Encouraged
by our study, we believe that LSDA + DMFT will soon help
to find other many-electron features in quantum transport
experiments.
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APPENDIX A: LSDA + U CALCULATIONS

We present here the electronic and transport properties of
Cu/Co/Cu calculated by using the LSDA + U approach. We
consider the formulation by Dudarev et al. [79] introduced in
Sec. II F. The inspection of results help to grasp the impact of
dynamical over static mean-field approximations. The DOS
of the Co atom is shown in Fig. 10(a) for U equal to 1.5 eV,
2.5 eV, 3 eV, and 3.5 eV, while J is fixed at 0.5 eV. Since
the majority states are almost fully filled, the Hubbard-like
mean-field corrective potential, which is defined in Eq. (40),
drags the spin-up LSDA DOS toward lower energies by about
−0.5(U − J ). In contrast, in the minority channel, the effect
of the potential is less marked. The main peak in the DOS,
which is due to the dxy orbital above the Fermi level, is moved
by about 0.1(U − J ) toward high energies. Overall, the DOS
spin splitting becomes larger when increasing U . This general
behavior was already found in early DFT + U calculations for
ferromagnetic TMs [80]. As already discussed in our previous
work [101], the U static potential actually worsens, instead of
improving, the capability of DFT to reproduce the electronic
spectra of 3d TMs leading to a drastic overestimation of
the DOS spin-splitting. Dynamical correlations are needed to
correct that.

The transmission coefficient is displayed in Fig. 11 for the
same U values used before. In general, we find that there is no
drastic reduction of the transmission compared to the LSDA
case as the static mean-field potential does not account for
relaxation times, differently from the case of the dynamical
many-body self-energy. The transmission can be easily related
to the main features in the DOS. In particular, we focus on the
energy region near the Fermi energy (see inset in Fig. 11).
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(a)

(b)

FIG. 10. DOS of the Co layer in the Cu/Co/Cu system, calcu-
lated by using LSDA + U and DMFT for 1.5 eV (black line), 2.5 eV
(red line), 3 eV (green line), and 3.5 eV (blue line). J is constant and
equal to 0.5 eV.

In the majority channel, the transport is mostly due to the s
electrons. Their scattering with the d states is systematically
reduced as these states move toward lower energies when
increasing U . As a result, T ↑(EF ) increases. This behavior is
the opposite with respect to that found in DMFT (see Sec. IV
and, moreover, Appendix B). In the spin-down channel, we
found that the shift of the unoccupied states from the Fermi
level induced by the static mean-field potential leads to an
increase of the transmission coefficient with U . The overall

FIG. 11. Spin up and spin down transmission coefficients as a
function of the energy for the Cu/Co/Cu system calculated by means
of LSDA + U with U equal to 1.5 eV (black line), 2.5 eV (red line),
3 eV (green line) and 3.5 eV (blue line). J is constant and equal to
0.5 eV. The insets zoom in the energy region near the Fermi level.

FIG. 12. DOS of the Co layer in the Cu/Co/Cu system, calcu-
lated by using DMFT for U = 3 eV and J equal to 0.5 eV (black
line), 0.9 eV (red line), and 1.2 eV (green line).

effect is quite small, but it gives a slight increase in SP(EF ),
which reaches the largest value of 0.31 for U = 3.5 eV.

APPENDIX B: U AND J DEPENDENCE
OF THE LSDA + DMFT RESULTS

We discuss here the dependence of our LSDA + DMFT
results on the strength of the local Coulomb interaction pa-
rameters U and J . The DOS of the Co atom in Cu/Co/Cu
is shown in Fig. 10(b) for U varying from 1.5 eV to 3.5 eV,
and J fixed at 0.5 eV. The majority 3d states move in energy
toward the Fermi level with U , while the position of the
minority states is much less affected. As a consequence, we
find a general reduction of the DOS spin splitting. Such reduc-
tion contrasts the enhancement predicted by the LSDA + U
calculations in Appendix A. Dynamical correlations play a
crucial role in counterbalancing static mean-field effects as
also discussed in our previous work, Ref. [101]. Interest-
ingly, although spin-down states do not move in energy, some
redistribution of their spectral weight occurs, resulting in a
considerable spectral narrowing in the case of the largest
considered U values.

A reduction of the DOS spin splitting is also found when
increasing J . Figure 12 displays the results of calculations for
J = 0.5 eV, J = 0.9 eV, and J = 1.2 eV, and U fixed at 3 eV.
The spin-up 3d states move toward the Fermi level with J ,
while the spin-down DOS is hardly modified. Differently from
what we find when varying the U parameter, we note that J
has only a very minor effect of the spectral width.

The spin-dependent DMFT transmission coefficient for
Cu/Co/Cu is shown in Fig. 13 for different U values and J =
0.5 eV. T ↑(E ) and T ↓(E ) are increasingly suppressed with U
in those energy regions, where the transport is through the d
states and electronic relaxation is large. This effect is evident,
in particular, for −4 � E − EF � 1.5 eV in the majority spin
channel, and for E − EF � −1.5 eV and E − EF � 0.5 in the
minority channel. In the other energy regions, the physics is
dictated by the scattering of the s electrons with the 3d states.
The systematic shift in energy of the spin-up 3d states toward
the Fermi level lowers the spin-up transmission in the region
−1 � E − EF � −0.2 eV (see the inset in Fig. 13). Notably, a
similar behavior is also found when increasing J instead of U .
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FIG. 13. Spin-up and spin-down transmission coefficient for the
Cu/Co/Cu system calculated by means of LSDA + DMFT with U
equal 1.5 eV (black line), 2.5 eV (red line), 3 eV (green line), and
3.5 eV (blue line). J is constant and equal to 0.5 eV. The insets zoom
in the energy region near the Fermi level.

This is shown in Fig. 14 for J = 0.5 eV, J = 0.9 eV, and J =
1.2 eV, and for U = 3 eV. The transmission T ↑(E ) calculated
for these parameters differs mostly at E − EF ≈ −0.4 eV. At
the Fermi energy, any correlation effects are, however, small.
When we compute the spin-polarization defined in Eq. (42),
we find a negligible dependence on the interaction strength
parameters. The results for SP(EF ) are shown in Table I.
SP(EF ) is very close to the LSDA DFT value, 0.24, for all
considered U and J parameters.

FIG. 14. Spin-up and spin-down transmission coefficient for the
Cu/Co/Cu system calculated by means of LSDA + DMFT with
U = 3 eV and J equal to 0.5 eV (black line), 0.9 eV (red line), and
1.2 eV (green line). The insets zoom in the energy region near the
Fermi level.

TABLE I. SP(EF ) calculated by means of DMFT for various U
and J values.

U J SP(EF )

1.5 0.5 0.26
2.5 0.5 0.27
3.0 0.5 0.22
3.5 0.5 0.21
3.0 0.9 0.25
3.0 1.2 0.21

Finally, we assess the calculation of GMR(E ) for
Cu/Co3/Cu3/Co3/Cu. The results are shown in Fig. 15 for
U = 1.5 eV, U = 2.5 eV, U = 3 eV, U = 3.5 eV, and J =
0.5 eV. In the case of small U , the shape of the GMR(E ) func-
tion resembles that computed with DFT in Fig. 9. GMR(E )
is large for negative energies, while it drops above the Fermi
level. In contrast, when increasing U , GMR(E ) is drastically
suppressed for E − EF � −0.5 eV, while it systematically
increases for positive energies. The maximum at E − EF ≈
0.7 eV rises from 0.7 for U = 1.5 eV to 1.75 for U = 3.5 eV,
indicating how this feature is related to electron correlations
(see also Sec. IV B).

Spin transport at the Fermi level is strongly dependent on U
and also J . The values for GMR(EF ) calculated for different
parameters are listed in Table II. They vary from 0.45 (for U =
1.5 eV and J = 0.5 eV) to 1.1 (for U = 3 eV and J = 0.5 eV),
which is almost four times the LSDA DFT value, 0.35. This is
because a small energy shift of 3d states has a large effect on
the transmission coefficient. Therefore, quantitative accurate
predictions at the Fermi energy remain rather challenging,
and we suggest that studies of linear-response spin transport
properties based on LSDA + DMFT should always be accom-
panied by a careful inspection of the dependence of the results
on U and J .

APPENDIX C: DOS OF THE CU ATOMS

In the studied heterostructures, the DOS of the Cu layers
in proximity to Co is modified, and a small spin polariza-
tion is induced on both the Cu s and 3d states through their
hybridization with the Co 3d orbitals. We see this effect in
Fig. 16 for Cu/Co/Cu. The modification is significant for

FIG. 15. GMR(E ) calculated by DMFT with U equal to 1.5 eV
(black line), 2.5 eV (red line), 3 eV (green line), and 3.5 eV (blue
line).
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TABLE II. GMR(EF ) calculated by means of DMFT for various
U and J values.

U J GMR(EF )

1.5 0.5 0.45
2.5 0.5 0.68
3.0 0.5 1.1
3.5 0.5 0.91
3.0 0.9 0.45
3.0 1.2 0.5

a Cu atom, which is nearest neighbor to Co [Fig. 16(a)].
It becomes small for Cu atoms in the next-nearest-neighbor
position [Fig. 16(b)]. It is then already negligible for third-
nearest neighbor Cu atoms [Fig. 16(c)], whose DOS closely
resembles that of bulk Cu.

Even though no on-site interaction terms are added to
the Cu atoms, their states are affected by the dynamical
self-energy, which propogates from the Co layer (i.e., the
correlated subspace) to the surrounding (i.e., the bath) via
the hybridization and the transformation in Eq. (29). The
DOS for Cu atoms in the nearest-neighbor position to the
Co layer presents some clear differences in DMFT and DFT
calculations [Fig. 16(a)]. In particular, the proximity-induced
spin-polarization is reduced in DMFT as we can clearly see
in the energy region between E − EF ≈ −2 eV and −1 eV.

(a)

(b)

(c)

FIG. 16. DOS of three Cu atoms in the vicinity of the Co layer in
Cu/Co/Cu. The Cu atoms are (a) nearest neighbor to Co, (b) next-
nearest neighbor to Co, and (c) Cu third-nearest neighbor to Co. The
result of both DFT and DMFT are presented for comparison.

Such reduction is a consequence of the smaller Co 3d spin
splitting given by DMFT compared to DFT. Correlation ef-
fects disappear as the DOS of a Cu atom becomes more
bulk-like [Fig. 16(c)].
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