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Manifestation of strong correlations in transport in ultraclean SiGe/Si/SiGe quantum wells
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We observe that in a strongly interacting two-dimensional electron system in ultraclean SiGe/Si/SiGe
quantum wells, the resistivity on the metallic side near the metal-insulator transition increases with decreasing
temperature, reaches a maximum at some temperature, and then decreases by more than one order of magnitude.
We scale the resistivity data in line with expectations for the transport of strongly correlated Fermi systems and
find a nearly perfect agreement with theory over a wide range of electron densities.
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Much interest has recently been directed toward the be-
havior of low-disorder, strongly interacting electrons in two
dimensions (2D), for which the interaction parameter ry =
1/(mng)"?ag greatly exceeds unity (here ng is the areal
density of electrons and ap is the effective Bohr radius
in semiconductor). These systems are characterized by the
strong metallic temperature dependence of the resistivity at
subkelvin temperatures [1-5], which can exceed an order
of magnitude. The phenomenon still lacks a comprehensive
quantitative microscopic description. Early theoretical work
focused on the interplay between disorder and interactions
using renormalization-group scaling theory [6—10]; later, the
theory was extended by Punnoose and Finkel’stein to take
account of the existence of multiple valleys in the electron
spectrum [11,12]. This approach did allow for the existence
of the metallic state, stabilized by the electron-electron inter-
actions, in 2D systems, which is concurrent with experiments
(see, e.g., Refs. [13-21]). According to this scenario, at tem-
peratures well below the Fermi temperature, 7, the resistivity
p should grow with the decreasing temperature reaching a
maximum at T = Tp,.x, and then decrease as T — 0. The
maximum in p(7) dependence corresponds to the temperature
at which the temperature-dependent screening of the disorder
arises, and the interaction effects become strong enough to
stabilize the metallic state and overcome the quantum local-
ization. This theoretical prediction, which is applicable only
within the so-called diffusive regime (roughly, kg7 t/h < 1,
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where t is the mean-free time), was found to be consis-
tent with the experimental p(7') data in silicon metal-oxide-
semiconductor field-effect transistors (MOSFETS) [11,19,22],
but only in a narrow range of electron densities near the
critical density n. for the metal-insulator transition. In con-
trast, the corresponding strong changes in the resistivity with
temperature are experimentally observed in a wide range of
the electron densities: up to five times the critical density 7.,
including the ballistic regime (roughly, kg7t /h > 1), where
the scaling theory is no longer applicable [23].

It should be noted, on the other hand, that according
to Ref. [24], a similar physical mechanism, namely, the
elastic but temperature-dependent scattering of electrons by
the self-consistent potential created by all other electrons
(i.e., the Friedel oscillations), works in principle in both
diffusive and ballistic regimes. The interaction corrections in
the corresponding limits are consistent with the logarithmic-
in-T corrections to the conductivity following from the
renormalization-group scaling theory for diffusion modes
[6-12], as well as with the linear-in-T corrections to the
conductivity predicted in earlier theories of temperature-
dependent screening of the impurity potential [25-28], where
the leading term has the form o (T') — 0(0) & T /Tg; note that
the Fermi temperature Ty is in general determined by the
effective electron mass m renormalized by interactions [29].
The theory of interaction corrections [24] and the screening
theory [26] in its general form, which takes into account the
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mass renormalization, allowed one to extract the effective
mass from the slope of the linear-in-7 correction to the
conductivity in the ballistic regime [39,40]. It was shown in
Ref. [39] that the so-obtained effective mass sharply increases
with decreasing electron density and that the m(ng) depen-
dence practically coincides with that obtained by alternative
measurement methods [41,42]. However, corresponding small
corrections calculated in the ballistic regime cannot convinc-
ingly explain the order of magnitude changes in the resistivity
p(T) observed in the experiment. In principle, in the spirit of
the screening theories [26,28], one can expect the resistivity
to be a function of 7' /Tr with a maximum at Ty,.x ~ Tf, above
which the electrons are not degenerate. As of now, there are
no accepted theoretical predictions allowing for a quantitative
comparison with the experiment.

An alternative viewpoint in interpreting the temperature
dependence of the resistivity is based on the so-called Wigner-
Mott scenario, which focuses on the role of strong electron-
electron interactions. The simplest theoretical approach to
nonperturbatively tackle the interactions as the main driving
force for the metal-insulator transition is based on dynamical
mean-field theory (DMFT) methods of Refs. [33,43,44] using
the Hubbard model at half filling. On the metallic side near
the metal-insulator transition, the resistivity was predicted
to initially increase as the temperature is reduced, reach a
maximum, Py, at temperature T ~ T, and then decrease
as T — 0. It was also shown that the resistivity change
p(T) — p(0), normalized by its maximum value, is a universal
function of T /Thax.

Yet another approach to treat the strongly interacting 2D
electron systems, focused on the Pomeranchuk effect ex-
pected within a phase coexistence region between the Wigner
crystal and a Fermi liquid, was proposed in Refs. [45—47].
The predicted p(7T) dependence is also nonmonotonic: the
resistivity increases with decreasing temperature at 7 2 Tr
and decreases at lower temperatures. However, no quantitative
treatment of this problem, capable of quantitative comparison
with experiment, currently exists.

To shed new light on the long-standing puzzle of the
nature of the strong metallic temperature dependence of the
resistivity in 2D electron systems, here we examine strongly
correlated and ultraclean SiGe/Si/SiGe quantum wells, in
which the disorder potential is drastically weaker than that
in the best silicon MOSFETs. We immediately observe that
the resistivity, on the metallic side near the metal-insulator
transition, increases with decreasing temperature, reaches a
maximum at a temperature Tp,,x, and then decreases by more
than one order of magnitude. The observed resistivity drop
at T < Tyax in these samples is twice as large compared to
the best 2D electron systems studied so far. We scale our
data in line with dynamical mean-field theory, according to
which, the resistivity change p(7') — p(0), normalized by its
maximum value, is a universal function of T /T;,.x, and find
a nearly perfect agreement with the predicted dependence in
a wide range of electron densities except for the immediate
vicinity of the metal-insulator transition, (ns — n.) < 0.1 ne.
For comparison, we also perform the scaling analysis in the
spirit of the renormalization-group scaling theory and find
that, although the theory is consistent with the experimental
results over a modest range of parameters, the data do not

scale well in the wide range of the electron densities. This
is not particularly surprising because the scaling theory is
expected to be valid only in the diffusive regime and at
resistivity small compared to w//e?. Thus, the resistivity data
are best described by the dynamical mean-field theory. No-
tably, similar behavior of the resistivity p(7 ) can be expected
within the screening theory in its general form, which adds
confidence in both theories.

The samples studied are ultra-low-disorder SiGe/Si/SiGe
quantum wells similar to those described in detail in
Refs. [48,49]. The peak electron mobility in these samples is
240 m?/V s, which is two orders of magnitude higher than that
in the cleanest Si MOSFETs. The 15-nm-wide silicon (001)
quantum well is sandwiched between Siy gGeg» potential bar-
riers. The samples were patterned in Hall-bar shapes with the
distance between the potential probes of 150 um and a width
of 50 um using standard photo-lithography. Measurements
were carried out in an Oxford TLM-400 dilution refrigerator.
The data were taken by a standard four-terminal lock-in
technique in a frequency range 0.5—11 Hz in the linear regime
of response.

Temperature dependences of the resistivity for two sam-
ples in the metallic regime are shown in Fig. 1 in the
range of electron densities where the p(7) curves are non-
monotonic: at temperatures below a density-dependent tem-
perature Ty, they exhibit metallic temperature behavior
(dp/dT > 0), while above Ty, their behavior is insulating
(dp/dT < 0). Note that the changes in the resistivity with
temperature at T < Ty, are strong and may exceed an order
of magnitude [more than a factor of 12 for the lowest curve
in Fig. 1(b)]. The data recalculated into the conductivity as a
function of temperature are displayed in the inset of Fig. 1(b).
Also shown are linear fits to the data. The observed linear
temperature dependence is consistent with the ballistic regime
not too close to the critical density n.. As inferred from
the temperature dependence of the conductivity, the transient
region between ballistic and diffusive regimes corresponds to
electron densities around ~1.1 x 10'° cm~2.

The results of the scaling of our data for two samples in the
spirit of dynamical mean-field theory [33,43,44] are shown in
Fig. 2. The data scale perfectly in a wide range of electron
densities and are described well by the theory in the weak-
disorder limit; we emphasize that at some electron densities,
the changes of the resistivity with temperature exceed an
order of magnitude. Deviations from the theoretical curve
arise in the high-temperature limit in the transient region and
become pronounced for 7 > T« at electron densities within
~10% of the critical value, which in these samples is close to
ne ~ 0.88 x 10'° cm~2. The fact that in the low-temperature
limit the same data display linear-in-7 corrections to the
conductivity [see the inset in Fig. 1(b)], which are in agree-
ment with both the theory of interaction corrections [24] and
the generalized screening theory [40], reveals the consistency
of these theories and the DMFT. We argue that the DMFT
can be applied to strongly interacting 2D electron systems.
Indeed, the Friedel oscillations near the impurities in real
electron systems, even weakened by strong electron correla-
tions [50], signify that there is a short-range spatial charge
order that plays the role of an effective lattice. Note that the
theory was also successful [43,44] in quantitatively describing
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FIG. 1. Nonmonotonic temperature dependences of the resistiv-
ity of the 2D electron system in SiGe/Si/SiGe quantum wells on the
metallic side near the metal-insulator transition for samples A (a) and
B (b). The electron densities are indicated in units of 10'° cm~2. The
inset in (b) shows p~!(T) dependences for four electron densities in
sample B (the symbols are the same as in the main figure). The solid
lines are linear fits to the data.

nonmonotonic p(7') dependences in silicon MOSFETSs and p-
GaAs heterostructures, although the changes in the resistivity
were significantly weaker in those systems.

For proper perspective and comparison, we also perform
a scaling analysis in the spirit of the renormalization-group
scaling theory [11,12], according to which the normalized re-
sistivity p/pmax should be a universal function of the product
Pmax IN(T /Thnax). The results are plotted in Fig. 3. In both
samples, only the data obtained at ng = 1.18 x 10'® cm~2
for sample A [Fig. 3(a)] and at ng = 1.17 x 10'° cm™2 for
sample B [Fig. 3(b)] coincide nearly perfectly with the the-
oretical curve, although some deviations occur at the lowest
temperature. Pronounced deviations from the theory are evi-
dent at both higher and lower ng. At lower electron densities,

max

dpldp

max

dpldp

FIG. 2. The ratio [p(T) — p(0)]/[omax — £(0)] as a function of
T /Tax for samples A (a) and B (b). Solid lines show the results of the
dynamical mean-field theory in the weak-disorder limit [33,43,44].
The electron densities are indicated in units of 10'© cm™2.

the scaled experimental curves become wider than the the-
oretical one, and at higher densities, they become narrower.
A similar shrinkage of the scaled curves with increasing n;
was reported earlier in Refs. [11,19,43]. One should take into
account, however, that a theory [11,12] has been developed
for 2D electron systems that, on the one hand, are in the
diffusive regime and, on the other hand, their resistivities are
low compared to mh/e’: at higher values of p, higher-order
corrections become important and cause deviations from the
universal scaling curve. As a result, the applicable range of
parameters becomes very narrow.

A question of how DMFT and the scaling theory are
connected naturally arises. Both theories predict nonmono-
tonic temperature dependences of the resistivity. Within the
renormalization-group scaling theory [11,12], the maximum
in the p(T) dependences occurs at a temperature well below
Tr, at which the temperature-dependent interactions become
strong enough to stabilize the metallic state and overcome the
effect of the quantum localization. This theory is relevant only
in the diffusive regime. Within the DMFT, in contrast, the
maximum corresponds to the quasiparticle coherence temper-
ature T* ~ Tg: below this temperature, the elastic electron-
electron scattering corresponds to coherent transport, while at
higher temperatures the inelastic electron-electron scattering
becomes strong and gives rise to a fully incoherent transport.
Even though the theoretical estimates of the positions of the
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FIG. 3. The ratio p/pmax as a function of the product
Pmax IN(T /Thhax ) for samples A (a) and B (b). Solid lines are the result
of the renormalization-group scaling theory [11,12]. The electron
densities are indicated in units of 10'® cm~2.

maxima may be crude, the origins of the maxima are clearly
different within these two theories in view of the role of the
disorder. It should be stressed, on the other hand, that the func-
tional forms of p(7T) dependences, including the maximum
at Thax ~ Tr, expected from both the screening theory in its
general form and DMFT, are similar. In particular, the linear
temperature dependence of the conductivity at 7 < Tr fol-
lowing from the generalized screening theory [40] and from
the theory of the corrections to the conductivity due to the
scattering on Friedel oscillations in the ballistic regime [24]
is consistent with the prediction of the DMFT. The similarity
of the theoretical predictions adds confidence in both theories

and gives a hint that the underlying microscopic mechanism
may be the same, i.e., electron-impurity or impurity-mediated
electron-electron scattering for the strongly interacting case,
as mentioned above.

Finally, we mention that similar nonmonotonic p(7") de-
pendences are observed [51,52] in quasi-two-dimensional or-
ganic charge-transfer salts (so-called Mott organics). Inter-
estingly, the DMFT is capable of quantitatively describing
p(T) dependences in these systems [44], which points to
the applicability of this theory to various strongly correlated
systems.

Summarizing, we have observed that in a strongly interact-
ing 2D electron system in ultra-low-disorder SiGe/Si/SiGe
quantum wells, the resistivity on the metallic side near
the metal-insulator transition increases with decreasing tem-
perature, reaches a maximum at a temperature Tp,.x, and
then decreases by more than one order of magnitude.
We have found that the normalized resistivity change
[o(T) — p(0)]/[Pmax — £(0)] is a universal function of
T /Tyax in a wide range of electron densities, which is in
nearly perfect agreement with the dependence predicted by
the dynamical mean-field theory. Notably, similar behavior
of the resistivity p(7) can be expected within the screening
theory in its general form, which adds confidence in both
theories. The renormalization-group scaling theory is found
to be consistent with the experimental results within a modest
range of electron densities near the metal-insulator transition,
as expected.
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