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We study the question of what kind of a macroscopic superposition can(not) naturally exist as a ground
state of some gapped local many-body Hamiltonian. We derive an upper bound on the energy gap of an
arbitrary physical Hamiltonian provided that its ground state is a superposition of two well-distinguishable
macroscopic “semiclassical” states. For a large class of macroscopic superposition states we show that the
gap vanishes in the macroscopic limit. This in turn shows that preparation of such states by simple cooling
to the ground state is not experimentally feasible and requires a different strategy. Our approach is very
general and can be used to rule out a variety of quantum states, some of which do not even exhibit
macroscopic quantum properties. Moreover, our methods and results can be used for addressing quantum
marginal related problems.
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Introduction.—Ever since Schrödinger’s cat gedanken
experiment [1] the question of whether a macroscopic
system can be found in a quantum superposition state
remains unanswered. Various attempts were made to address
our inability to detect macroscopic quantum superpositions.
Decoherence-type arguments are commonly employed in
which one advocates that the quantumness of a macroscopic
system is lost due to interactions with a noisy environment
[2]. Alternatively, it was indicated that classical behavior can
emerge because our measurements suffer from limited
resolution or limited sensitivity [3–5]. Moreover, various
spontaneous collapse models introduce a stochastic non-
linear modification of the Schrödinger equation that causes
macroscopic superpositions to quickly appear as classical,
while giving the same experimental predictions as quantum
theory in the microscopic regime [6].
Naturally, the boundary between the quantum and

classical realms should be explored by experiments
[7–9]. In recent decades, typical quantum features have
been demonstrated in large molecules [10,11], hundreds of
photons [12,13], superconducting circuits [14,15], micro-
mechanical oscillators [16,17], and fragmented Bose con-
densates [18,19]. Nonetheless, quantum superpositions of
truly macroscopic objects remain an uncharted territory that
will hopefully be revealed by future experiments.
Recently, different measures have been proposed to

quantify macroscopicity of quantum states [20–30]. The
literature about this topic is diverse and various measures are
mutually compared in Refs. [20,21] and summarized in
Ref. [22]. Generally speaking, a macroscopic quantum state
(MQS) is a state capable of displaying macroscopic quantum
effects that can be utilized to validate quantum mechanics
(against classical theories) on a macroscopic scale. An

important task is the identification of a characteristic
parameter that measures the “size” or “macroscopicity” of
a certain quantum state [7], such as the characteristic energy,
mass, number of elementary constituents, etc. Here we focus
on the case of macroscopically large number of particles N
that interact via a local Hamiltonian.
An important subclass of MQS are macroscopic super-

positions (MS): states of the type jψi ¼ jψ1i þ jψ2i, where
jψ1;2i are macroscopically well-distinguishable states.
However, such a definition is not operational as there
are infinitely many decompositions of the kind jψ1i þ jψ2i
and it might not be clear how to unambiguously identify the
“semiclassical” components of the MS. Therefore, we
define MS with respect to a measurement of an additive
(collective) observable [20,21,23,28,29]. A pure state jψi is
MS if a measurement of some additive observable Ŝ can
sharply distinguish the semiclassical states that constitute
MS; e.g., the distribution of eigenvalues of Ŝ exhibits two
well-resolvable regions (see Fig. 1). Our main focus here is
on (i) the possibility of the natural appearance of such states
as unique ground states of macroscopic quantum systems
and, consequently, (ii) the feasibility of preparing MS by
simply cooling down such systems. The latter might be
achievable provided that the system has a unique MS
ground state; i.e., there is a finite energy gap in the
thermodynamic limit. In this respect, it was proven that
no MS of “locally distinguishable” states can be the unique
ground state of N spins described by a local Hamiltonian
whose energy gap is at least O(1=polyðNÞ) [31].
Conversely, numerical evidence was given in Ref. [32]
that the energy gap of a certainN-qubit Hamiltonian decays
exponentially fast in the macroscopic limit when its ground
state actually is MS. Moreover, relation between the
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spectral gap and ground state properties of spin lattice
systems was studied in Refs. [33,34].
We provide a simple sufficient criterion enforcing the

energy gap to vanish in the thermodynamic limit for a very
general class of ground states of local many-body
Hamiltonians. The most important feature of our approach
is an operational method to identify semiclassical states that
constitute the macroscopic superposition. We show that in
many cases local Hamiltonians are not capable of linking
such states, so that the corresponding MS can only
represent a degenerate ground state in the macroscopic
limit. Our main theorem provides an interesting relation
between the energy gap and the order of interaction (i.e.,
the number K in the case of a K-body interaction).
Therefore, one may derive the lowest order of interaction
for which a given MS might be a unique ground state. We
discuss our results in the context of different physical
systems and various proposals for preparation of MS.
Furthermore, we show that a certain class of states that
are not even considered to be macroscopically quantum
(e.g., W states) cannot naturally exist as ground states of
gapped local Hamiltonians. Finally, we demonstrate that
the methods and results derived here are relevant for
quantum marginal related problems.
Preliminaries.—Let us consider a system of N interact-

ing particles described by a K-local Hamiltonian
Ĥ ¼ P

ði1;i2;…;iKÞ∈I ðKÞ
N
Ĥi1i2…iK , where Ĥi1i2…iK is the con-

tribution due to interaction between particles i1; i2;…; iK
and I ðKÞ

N is the set of all K-tuples of N interacting particles.
We call K the order of interaction. For instance, usual
physical interactions are pairwise with the order K ¼ 2.
We begin with the following general lemma:
Lemma.—Let a Hamiltonian Ĥ have a unique ground

state of the form jψi ¼ a1jψ1i þ a2jψ2i, where jψ1;2i are
normalized, hψ2jψ1i ¼ λ and a1; a2 > 0. Then the energy
gap ΔE satisfies the inequality

ΔE ≤
jhψ2jĤjψ1i − λE0j
a1a2ð1 − jλj2Þ ; ð1Þ

where E0 denotes the ground state energy (see
Supplemental Material [35] for the proof).
Without loss of generality we set E0 ¼ 0 hereafter. We

start our analysis with the simple observation that the
energy gap is essentially upper bounded by a magnitude of
the matrix element hψ2jĤjψ1i ¼ H21 [assuming that the
overlap λ is vanishingly small and a1;2 ¼ OðN0Þ when
N → ∞]. Therefore, the system cannot have a finite gap in
the macroscopic limit if H21 is vanishing when N → ∞.
An archetypal example of MS is a so-called GHZ state

[44], closely related to an original Schrödinger’s proposal
as it is a superposition of two macroscopically distinct
states of N particles, i.e., jψi ∝ jφ1i⊗N þ jφ2i⊗N . The
states jφ1;2i are normalized with the fixed nonzero overlap
ω ¼ jhφ1jφ2ij < 1. Here, one can naturally identify the
two constituents jψ1;2i ¼ jφ1;2i⊗N with exponentially

small overlap jλj ¼ ωN and a1;2 →
N→∞

1=
ffiffiffi
2

p
. Denote by

H½K�
21 the maximal magnitude of all matrix elements

hφ2j⊗KĤi1;i2;…;iK jφ1i⊗K. The value of H½K�
21 does not scale

with N and solely depends on the nature of the interaction.
It is not difficult to see that

jH21j ≤ jI ðKÞ
N jωN−KH½K�

21 ≤
�
N

K

�
ωN−KH½K�

21 ; ð2Þ

since for K fixed the total number of interaction terms

grows at most polynomially with N, i.e., jI ðKÞ
N j ≤

ð NKÞ ¼ OðNKÞ. Therefore, we conclude that the energy
gap vanishes exponentially fast when N → ∞, as long as
the order of interaction is fixed. In other words, all the states
jψðαÞi ∝ jφ1i⊗N þ eiαjφ2i⊗N give the same energy in the
thermodynamic limit and the ground state becomes at least
doubly degenerate. Consequently, cooling down the system
towards zero temperature will result in a classical mixture
1
2
jψð0Þihψð0Þj þ 1

2
jψðπÞihψðπÞj. In order to make the

energy gap finite in the thermodynamic limit, it is necessary
that the order of interaction K grows with the number of
particles N, which is usually considered nonphysical.
This reasoning can be trivially extended to a finite
sum jφ1i⊗N þ � � � þ jφni⊗N of macroscopically distin-
guishable states, i.e., hφijφji ¼ OðN0Þ when i ≠ j. In
the Supplemental Material [35] we show that the same
result holds for a more general class of states, i.e., the
superpositions of locally distinguishable states that have
been considered in literature as a natural generalization of
the GHZ-like states [20,24].
Whereas the previous examples are fairly easy to grasp,

as the superimposed states are identifiable by definition,
such a clean prescription is not a priori available for
arbitrary MQS. Therefore, we continue our analysis by
invoking a measurement of some collective observable Ŝ
that should serve as a reference point to identify jψ1;2i.

FIG. 1. The distribution pm of eigenvalues sm of an additive
observable Ŝ for a MS state jψ1i þ jψ2i. A continuous curve is
used for aesthetic purposes. The distribution has two well-
resolved regions (left and right from the separation point sm̄)
each corresponding to the superimposed semiclassical states jψ1i
and jψ2i, respectively. The distance between the regions is
Δ ≔ jhŜiψ2

− hŜiψ1
j. The separation probability related to the

finite-sized shaded segment js − sm̄j ≤ δ ¼ OðN0Þ should be
vanishing in the macroscopic limit N → ∞.
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Consider a system of N particles in a total Hilbert space
HN ¼⊗N

i¼1 Hi, with dimðHiÞ ¼ d. Let Ŝ ¼ P
N
i¼1 Ŝi be an

additive observable. The single-particle operators satisfy
Ŝijσi; μiii ¼ σijσi; μiii, where σi ∈ fς1 < ς2 < … < ςlg
and 2 ≤ l ≤ d, while μi ¼ 1;…; μðσiÞ enumerate the
degeneracies obeying

P
l
l¼1 μðςlÞ ¼ d. We denote the

different eigenvalues of Ŝ by s1 < s2 < … < sM,
where sm ¼ Pl

l¼1 nm;lςl, nm;l ∈ N0 and
Pl

l¼1 nm;l ¼ N.
Clearly, s1 ¼ Nς1 and sM ¼ Nςl. The states jσ; μi ¼
⊗N

i¼1 jσi; μiii constitute a complete basis in HN , i.e.,P
σ

P
μ jσ; μihσ; μj ¼ 1, where σ ¼ ðσ1; σ2;…; σNÞ and

μ ¼ ðμ1; μ2;…; μNÞ. This yields a decomposition

jψi ¼
X

σ

X

μ

jσ; μihσ; μjψi ¼
XM

m¼1

ffiffiffiffiffiffi
pm

p jsmi; ð3Þ

where Ŝjsmi ¼ smjsmi, and jsmi contains all the terms from
the multisums such that

P
N
i¼1σi¼sm. The numbers pm ≥ 0

correspond to the probabilities of obtaining the value sm
when measuring the observable Ŝ in the state jψi,
hence,

P
M
m¼1 pm ¼ 1.

Now, if the state jψi is MS of two states jψ1i and jψ2i,
then we expect that the probability distribution Pψ ¼
fpmgMm¼1 has two distinguishable regions with correspond-
ing probabilities of the order OðN0Þ and with vanishingly
small probability within the finite-sized bordering segment
around some eigenvalue sm̄ of Ŝ (see Fig. 1). Those regions
should precisely be related to the semiclassical constituents
of the state jψi. The distance between the regions Δ ≔
jhŜiψ2

− hŜiψ1
j is closely related to the fluctuation of the

observable Ŝ in the state jψi and it is commonly assumed
that MS displays Δ ¼ OðNÞ [20,29,30]. However, we will
address quantum states from another aspect, which will
render our main result independent ofΔ. Namely, the prime
quantity in our analysis is the separation probability
Pψðjs − sm̄j ≤ δÞ, i.e., the probability of finding the result
s, when measuring Ŝ, within a tiny segment of size 2δ ¼
OðN0Þ centered at the separation point sm̄. We will provide
an upper bound on the energy gap, which essentially
depends on the separation probability and the order of
interaction. Thus, the interplay between the two will have a
crucial role in vanishing of the gap.
Next, we will make use of sm̄ to express the ground state

in the form of a superposition

jψi ¼ a1jψ1i þ a2jψ2i; ð4Þ
with

a1jψ1i¼
X̄m−1

m¼1

ffiffiffiffiffiffi
pm

p jsmi; a2jψ2i¼
XM

m¼m̄

ffiffiffiffiffiffi
pm

p jsmi; ð5Þ

where a1 ¼ðp1þ���þpm̄−1Þ1=2, a2¼ðpm̄þ�� �þpMÞ1=2,
and, presumably, a1;2 ¼ OðN0Þ. By construction, one has
hψ2jψ1i ¼ 0. We will employ the introduced separation to
derive an upper estimate of the energy gap.

Let us suppose that the Hamiltonian of the physical
system is 2-local, i.e., Ĥ ¼ P

ði;jÞ∈I ð2Þ
N
Ĥij, where Ĥij

represents pairwise interaction between particles i and j

and I ð2Þ
N is the set of pairs of interacting particles.

Obviously, the number of interaction terms in the

Hamiltonian satisfies jI ð2Þ
N j ≤ NðN − 1Þ=2 ¼ OðN2Þ. The

magnitude of the matrix element in the inequality (1) can be
estimated in order to obtain the following central result:
Theorem.—Under the assumptions given in the text, the

energy gap of the system is bounded as

ΔE ≤
jI ð2Þ

N j
2a21a

2
2

max
ði;jÞ∈I ð2Þ

N

∥Ĥij∥ · Pψ ðjs − sm̄j ≤ 2δςÞ; ð6Þ

where maxði;jÞ∈I ð2Þ
N
∥Ĥij∥ sets the characteristic energy scale

(independent of N) and δς ¼ ςl − ς1. Here, ∥ · ∥ denotes
the operator spectral norm. The complete proof is given in
the Supplemental Material [35].
The bound (6) is valid for any sm̄, which has been

arbitrary up to now. Clearly, one should select Ŝ and the
corresponding sm̄ so that Pψðjs − sm̄j ≤ 2δςÞ vanishes as
fast as possible for N → ∞. In the previously discussed
GHZ-like case, the separation probability scales as
exp½−OðNÞ� and the energy gap vanishes exponentially
fast with N. Furthermore, it is clear that for any state
exhibiting Pψ ¼ oð1=N2Þ the gap will vanish in the
thermodynamic limit and the state can only represent a
degenerate ground state. In general, such a state does not
necessarily display anomalous fluctuation of Ŝ. One can
even find examples where Δ ¼ OðN0Þ [such as jψi¼
ðjsm1

iþjsm2
iÞ= ffiffiffi

2
p

, where sm1
¼sm̄−2δ and sm2

¼sm̄þ2δ,
with δ > δς]. Conversely, when the system features
a finite energy gap, the relation (6) puts a lower bound
Pψðjs − sm̄j ≤ 2δςÞ ≥ Oð1=N2Þ for any gapped 2-local
Hamiltonian and arbitrary observable Ŝ.
The appearance of probabilities corresponding to the

interval of size 4δς centered at sm̄ is a direct consequence of
the 2-local nature of the Hamiltonian. We note that the
Theorem could easily be generalized for arbitrary K-local

Hamiltonians. In that case, one would consider the set I ðKÞ
N

ofK-tuples of interacting particles, for which jI ðKÞ
N j≤ðNKÞ¼

OðNKÞ, and the corresponding estimate of the gap
would involve the probability Pψ ðjs − sm̄j ≤ 2KδςÞ.
Thus, for a gapped K-local Hamiltonian we conclude
that the best possible separation probability one can
achieve for a ground state is asymptotically lower
bounded by Oð1=NKÞ. Consequently, all the states exhib-
iting the scaling Pψ ¼ oð1=NKÞ are excluded as possible
unique ground states.
Various examples.—Our general result nicely complies

with the investigation of ground states of various physical
systems. For example, a twofold fragmented condensate of
interacting bosons trapped in a single well [18] features a
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doubly degenerate ground state, in the thermodynamic
limit. It was shown in Ref. [19] that in the appropriate Fock
space basis the corresponding ground states are identical to
the photon cat states. In accordance with our findings, the
proposed preparation of these states requires other means
than simple cooling, i.e., the rapid sweep of interaction
couplings [45]. Another example is a one-dimensional
array of circuit quantum electrodynamic (cQED) systems
in the ultrastrong cavity-qubit coupling regime [46]. The
authors showed that the photon hopping between cavities
can be mapped to the Ising interaction between the lowest
two levels of individual cQED of the chain. Based on the
mapping, they found two nearly degenerate GHZ-type
ground states with energy splitting exponentially small
in the system size. Again, this is in perfect agreement with
our results. Moreover, we mention the study of a bosonic
Josephson junction made of N ultracold and dilute atoms
confined by a quasi-one-dimensional double-well potential
within the two-site Bose-Hubbard model framework [47].
Detailed treatment showed that the ground state of the
system evolves towards NOON state when increasing
attractive interatomic interaction. The estimated gap between
two lowest energy states vanishes exponentially with N, in
full compliance with our considerations. Our work also
nicely agrees with Ref. [48] where the possibility of creating
many-particle catlike states was examined for a Bose-
Einstein condensate trapped in a double-well potential. It
was discussed in detail that creating cat states via adiabatic
manipulation of the many-body ground state is experimen-
tally unfeasible due to the fact that the end state is nearly
degenerate with the first-excited state; hence, such a process
would require an exponentially long time. This difficulty
was surpassed by proposing to exploit dynamic evolution
following a sudden flipping of the sign of the atomic
interaction, accomplished via Feshbach resonance technique
[49]. Finally, we mention that our treatment assumes a close
correspondence between the macroscopicity of the system
and the number of its constituents. However, the macro-
scopicity might be related to other quantities and only
weakly depend on the system size. SQUID systems, which
were proposed as good candidates to host the “genuine”
MS [7], are a paramount example of that. Although our
results are not directly applicable to such a case, in the
Supplemental Material [35] we provide a discussion of
SQUIDs showing some similarities with our findings.
Our generic analysis demonstrates that more sophisticated

experimental techniques are needed for the preparation of a
variety of macroscopic superpositions in the thermodynamic
limit. This may require some form of dynamical driving of a
system, as in the mentioned examples, advanced matter-
wave interferometric approaches [50] or use of demanding
postselection techniques [51].
Furthermore, we present an example to demonstrate that

our results can be used to address the states that are more
general than MQS (see Supplemental Material [35]).
Consider a lattice model of N spin-1=2 particles interacting

with the fixed number of neighbors. Thus, one has d ¼ 2,

l ¼ 2, δς ¼ 1, and jI ð2Þ
N j ¼ OðNÞ. In order to prove that

the model becomes gapless in the limit N → ∞, one has to
find an appropriate additive observable Ŝ for which the
ground-state-related separation probability vanishes as
oð1=NÞ. Collective states that naturally appear in spin
systems are the Dicke states [52] jj; mi (m ¼ −j;…; j),
where j ¼ N=2. They are permutation invariant and satisfy
Ĵ2jj;mi ¼ jðjþ 1Þjj; mi and Ĵzjj; mi ¼ mjj; mi. All
Dicke states are unique ground states of some fully 2-

local, gapped Hamiltonian for which jI ð2Þ
N j ¼ NðN − 1Þ=2

(all the particles mutually interact pair wisely, such
as indistinguishable particles) [31]. However, such
Hamiltonians do not correspond to the present case.
Therefore, we will show that, for example, an N-qubit
W state jj; j − 1i, which represents the case of symmet-
rically distributed one-spin excitations, cannot be a unique
ground state of any considered spin-lattice model. First,
we find the appropriate collective observable to be Ĵx. Let
jj; mix (m ¼ −j;…; j) be the common eigenbasis of
Ĵ2 and Ĵx. The related probability distribution is pm ¼
jhj; j − 1jj; mixj2 (see Fig. 1 in the Supplemental Material
[35]), sm ¼ m, and we choose sm̄ ¼ 0 for j integer or sm̄ ¼
1=2 for j half-integer. As presented in the Supplemental
Material [35], we find

pm ¼ 2m2

22jj

�
2j

jþm

�
∼

2m2

ffiffiffi
π

p
j3=2

; ð7Þ

where the last asymptotic behavior holds for fixed m and
j → ∞. We conclude that the separation probability
Pψðjs − sm̄j ≤ 2Þ scales as Oð1=j3=2Þ, i.e., Oð1=N3=2Þ.
Thus, the W state can only be a degenerate ground state
of the arbitrary spin-lattice model considered here.
Moreover, the distance between the two peaks has sublinear
asymptotic scaling ∼

ffiffiffiffiffiffiffi
2N

p
. Hence, the W state is an

example of a state that is not even a MQS according to
the anomalous fluctuation criterion, but is nevertheless
amenable to our present analysis.
Finally, our results can be naturally related to quantum

marginal problem [53,54]. There, the main task is to check
whether or not a given set of marginal states ρ̂ ¼
ðρ̂s1 ; ρ̂s2 ;…Þ can be extended to some N-particle quantum
state ϱ̂½N�, i.e., ρ̂sk ¼ Trs̄k ϱ̂

½N�, where sk denotes a subset of
N particles. The set of all representable marginals ρ̂ is
convex and completely characterized by its extremal points
(for finite-dimensional systems); therefore, their identifi-
cation is of great importance. On the other hand, the set of
extremal points is in unique correspondence to the set
of N-particle nondegenerate ground states of the local
Hamiltonians [54]. Namely, for a given Hamiltonian
Ĥ ¼ P

kĤsk , where Ĥsk denotes local Hamiltonian acting
on the subset of particles sk, we have E ¼ Trðϱ̂½N�ĤÞ ¼P

kTrskðρ̂skĤskÞ ¼ Trðρ̂ ĤÞ, where Ĥ ¼ ðĤs1 ; Ĥs2 ;…Þ.
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Thus, the energy E is a linear functional on the set of all
representable marginals ρ̂ and it reaches its extreme values
on the set of nondegenerate ground states. Our criterion (6)
implies that a large class of degenerate ground states (in the
thermodynamic limit) has the set of marginals that cannot
be extremal.
Summary and outlook.—In this Letter we provided a

powerful generic method to analyze the possibility for
ground states of gapped many-body quantum systems to be
superpositions of macroscopically distinct quantum states.
We have ruled out a large class of quantum states that
cannot be prepared by simply cooling macroscopic quan-
tum systems that exhibit interactions involving some finite
number of their constituents. For such a state, we require
that the separation probability, related to the small segment
around the separation point between its two semiclassical
components, vanishes sufficiently fast in the thermody-
namic limit. We expect our results to be valuable for future
experiments aiming at preparing quantum states that exhibit
macroscopic quantum properties. Furthermore, we have
shown that our study is relevant for quantum marginal
problem.
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