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1. Introduction

In the last few years considerable attention was focused on the 
iron-based superconductors in an effort to gain deeper insight 
into their physical properties and to determine the origin of 
high-Tc superconductivity [1–4]. Discovery of superconduc-
tivity in alkali-doped iron chalcogenides, together with its 

uniqueness among the iron based superconductors, challenged 
the physical picture of the superconducting mechanism in iron 
pnictides [5]. The absence of hole pockets even suggested the 
possibility for the different type of pairing mechanism [6]. 
Another striking feature in KxFe2−ySe2 was the presence of 
the intrinsic nano to mesoscale phase separation between an 
insulating phase and a metallic/superconducting phase [7–10]. 
The insulating phase hosts antiferromagnetically, ×5 5  
ordered iron vacancies, whereas the superconducting stripe-
like phase is free of vacancies [7]. The theoretical study of 
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Abstract
Polarized Raman scattering spectra of the KxCo2−ySe2 single crystals reveal the presence of 
two phonon modes, assigned as of the A1g and B1g symmetry. The absence of additional modes 
excludes the possibility of vacancy ordering, unlike in KxFe2−ySe2. The ferromagnetic (FM) 
phase transition at ≈T 74c  K leaves a clear fingerprint on the temperature dependence of the 
Raman mode energy and linewidth. For >T Tc the temperature dependence looks conventional, 
driven by the thermal expansion and anharmonicity. The Raman modes are rather broad due to 
the electron–phonon coupling increased by the disorder and spin fluctuation effects. In the FM 
phase the phonon frequency of both modes increases, while an opposite trend is seen in their 
linewidth: the A1g mode narrows in the FM phase, whereas the B1g mode broadens. We argue 
that the large asymmetry and anomalous frequency shift of the B1g mode is due to the coupling 
of spin fluctuations and vibration. Our density functional theory (DFT) calculations for the 
phonon frequencies agree rather well with the Raman measurements, with some discrepancy 
being expected since the DFT calculations neglect the spin fluctuations.
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Huang et  al [11] revealed that proximity effects of the two 
phases result in the Fermi surface deformation due to inter-
layer hopping and, consequently, suppression of supercon-
ductivity. On the other hand, a large antiferromagnetic order 
protects the superconductivity against interlayer hopping, thus 
explaining relatively high Tc in KxFe2−ySe2 [11]. However, the 
correlation between the two phases and its impact on super-
conductivity are still not fully understood.

Although the absolute values of resistivity are much 
smaller for the Ni-member of the KxM2−ySe2 (M  =  transition 
metal) series than for the iron member, this material does not 
exhibit superconductivity down to 0.3 K [12]. As opposed to 
KxFe2−ySe2, vacancy ordering has not been observed in the 
KxNi2−ySe2 single crystal [13]. These materials, together with 
the Co- and Ni-doped KxFe2−ySe2 single crystals, have very 
rich structural, magnetic and transport phase diagrams. This 
opens a possibility for fine tuning of their physical proper-
ties by varying the sample composition [14, 15]. First results 
obtained on KxCo2−ySe2 single crystal revealed the ferromagn-
etic ordering below ∼Tc 74 K, as well as the absence of the 
superconducting phase [16].

Raman spectroscopy is a valuable tool not only for meas-
uring vibrational spectra, but it also helps in the analysis of 
structural, electronic and magnetic properties, and phase 
trans itions. There are several recent studies of the influence of 
the antiferromagnetic order, [17, 18] ferromagnetism, [19, 20] 
and magnetic fluctuations [21] on the Raman spectra.

In this paper the Raman scattering study of the KxCo2−ySe2 
single crystal (x  =  0.3, y  =  0.1), together with the lattice 
dynamics calculations of KCo2Se2, is presented. The polar-
ized Raman scattering measurements were performed in the 
temperature range from 20 K up to 300 K. The observation 
of only two Raman active modes when measuring from the 
(0 0 1)-oriented samples suggests that the KxCo2−ySe2 single 
crystal has no ordered vacancies. The temperature depend-
ence of the energy and linewidth of the observed Raman 
modes reveals a clear fingerprint of the phase transition. A 
large linewidth of the B1g mode and its Fano line shape indi-
cate the importance of spin fluctuations.

The rest of the manuscript is organized as follows. Section 2 
contains a brief description of the experimental and numerical 
methods, section  3 are the results, and section  4 contains a 
discussion of the phonon frequencies and linewidths and their 
temperature dependencies. Section 5 summarizes the results.

2. Experiment and numerical method

Single crystals of KxCo2−ySe2 were grown by the self-flux 
method, as described in [12]. The elemental analysis was per-
formed using energy-dispersive x-ray spectroscopy (EDX) 
in a JEOL JSM-6500 scanning electron microscope. Raman 
scattering measurements were performed on freshly cleaved 
(0 0 1)-oriented samples with size up to × ×3 3 1 mm3, using 
a TriVista 557 Raman system equipped with a nitrogen-
cooled CCD detector, in a backscattering micro-Raman con-
figuration. The 514.5 nm line of an Ar+/Kr+ ion gas laser was 
used as an excitation source. A microscope objective with 
×50  magnification was used for focusing the laser beam. All 

measurements were carried out at low laser power, in order to 
minimize local heating of the sample. Low temperature mea-
surements were performed using KONTI CryoVac continuous 
flow cryostat with 0.5 mm thick window. Spectra were cor-
rected for the Bose factor.

The electronic structure of the ferromagnetic (FM) and 
paramagnetic (PM) phases is calculated within the density 
functional theory (DFT), and the phonon frequencies at the 
Γ-point are obtained within the density functional perturba-
tion theory (DFPT) [22]. All calculations are performed using 
the QUANTUM ESPRESSO package [23]. We have used 
projector augmented-wave (PAW) pseudo-potentials with 
Perdew–Burke–Ernzerhof (PBE) exchange-correlation func-
tional with nonlinear core correction and Gaussian smearing of 
0.005 Ry. The electron wave-function and the density energy 
cutoffs are 40 Ry and 500 Ry, respectively. The Brillouin zone 
is sampled with a × ×16 16 8 Monkhorst–Pack k-space mesh. 
The phonon frequencies were calculated with relaxed unit cell 
parameters and, for comparison, with the unit cell size taken 
from the experiments and the relaxed positions of only Se 
atoms. The forces acting on individual atoms in the relaxed 
configuration were smaller than 10−4 Ry/a.u. and the pressure 
smaller than 0.5 kbar.

3. Results

KCo2Se2 crystallizes in the tetragonal crystal structure of 
ThCr2Si2-type, I4/mmm space group, which is shown in 
figure 1. The experimental values of the unit cell parameters 
are a  =  3.864(2) Å and c  =  13.698(2)  Å [24]. The potas-

sium atoms are at a2 : 0, 0, 0( ), Co atoms at d4 : 0, ,1

2

1

4
( ), and  

Se atoms at e z4 : 0, 0,( ) Wyckoff positions, with the exper-
imental value z  =  0.347.

The KCo2Se2 single crystal consists of alternatively 
stacked K ions and CoSe layers, isostructural to the KFe2Se2 
[25]. Factor group analysis for the I4/mmm space group yields 
a normal mode distribution at the Brillouin-zone center, which 
is shown in table  1. According to the selection rules, when 
measuring from the (0 0 1)-plane of the sample, only two 

B1g A1gK

Co

Se

x

y
z

Figure 1. Unit cell of KCo2Se2 single crystal, together with the 
displacement patterns of the A1g and B1g Raman modes.
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modes (A1g and B1g) are expected to be observed in the Raman 
scattering experiment. Displacement patterns of the exper-
imentally observable Raman modes are illustrated in figure 1. 
The A1g (B1g) mode represents the vibrations of the Se (Co) 
ions along the c-axis, whereas the Eg modes (which are not 
observable for our scattering configuration) involve the vibra-
tion of both Co and Se ions within the (0 0 1)-plane.

Figure 2 shows polarized Raman scattering spectra of the 
KxCo2−ySe2 single crystal, measured from the (0 0 1)-plane 
of the sample at room temperature, in different sample ori-
entations. Only two modes, at about 187 and 198 cm−1, are 
observed, which is in agreement with the selection rules for 
(0 0 1)-oriented samples. In some iron-chalcogenide com-
pounds, the appearance of additional Raman active modes 
due to the iron vacancy ordering and, consequently, symmetry 
lowering, has been observed [8, 26]. The absence of additional 
phonon modes in figure 2 suggests that in KxCo2−ySe2 single 
crystals vacancy ordering does not occur in our samples.

Selection rules imply that the A1g mode may be observed for 
any sample orientation, provided that the polarization vector 
of the incident light ei is parallel to the scattered light polariza-
tion vector es, whereas it vanishes if these vectors are perpend-
icular. On the other hand, the intensity of the B1g mode strongly 
depends on the sample orientation ( ( )θ β∼ | | +I c cos 2B

2 2
g1 , 

where ( )θ = ∠ e e,i s  and ( )β = ∠ e x,i ) [8]. This implies that, 
in parallel polarization configuration (θ = �0 ), the intensity 
of the B1g mode is maximal when the sample is oriented so 
that ∥e xi , gradually decreases with increasing β and finally 
vanishes for β = �45 . In crossed polarization configuration 
(θ = �90 ), B1g mode intensity decreases from its maximal 
value for β = �45  to zero, which reaches when β = �0 . From 
figure 2 it can be seen that the intensity of the Raman mode 
at about 187 cm−1 coincides with theoretically predicted 
behavior for the B1g mode; thereby, this phonon mode is 
assigned accordingly. The phonon mode at  ∼198 cm−1, which 
is present in Raman spectra only for the parallel polarization 
configuration (θ = �0 ) and whose intensity is independent on 

the sample orientation, can be assigned as the A1g mode. The 
intensity ratio of the two Raman modes can be obtained from 
the spectrum measured in (θ β= =� �0 , 0 ) scattering geom-
etry as / ≈I I 1.38B Ag g1 1 . Having in mind that the A1g mode inten-
sity is given by [8] θ∼ | |I a cosA

2 2
g1 , the ratio of the appropriate 

Raman tensor components can be estimated as /| | | | ≈c a 1.17.

Table 1. Atomic types with their Wyckoff positions and the contribution of the each site to the Γ-point phonons, the Raman tensors and the 
selection rules for the KxCo2−ySe2 single crystal (I4/mmm space group).

Atoms Wyckoff positions Irreducible representations

K 2a +A Eu u2

Co 4d + + +A B E Eu g g u2 1

Se 4e + + +A A E Eg u g u1 2
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Figure 2. Upper panel: integrated intensity of the observed Raman 
modes as a function of the crystal orientation with respect to the 
laboratory axes x0 and y0. In order to estimate the intensity of the 
modes, phonon at 198 cm−1 was fitted with Lorentzian, whereas 
an asymmetric Raman mode appearing at 187 cm−1 was fitted 
with Fano line shape. Lower panel: Raman scattering spectra of 
KxCo2−ySe2 single crystal measured at room temperature, in various 
sample orientations ( ( ) ( )= =x y1 0 0 , 0 1 0 ).

J. Phys.: Condens. Matter 28 (2016) 485401



M Opačić et al

4

The experimentally determined frequencies are com-
pared with those obtained with DFT numerical calculations. 
The experimental lattice constants [24] are shown in table 2, 
together with their values from the DFT calculation which 
relaxes or keeps fixed the unit cell size. The DFPT phonon 
frequencies obtained using the fully relaxed atomic positions 
in both FM and PM phases are given in table 3, with the corre-
sponding values obtained with the fixed unit cell size and 
relaxed only fractional coordinate zSe given in the parenthesis. 
The equilibrium atomic positions in the FM solution are given 
by  =a 3.893 Å,  =c 13.269 Å, and =z 0.350Se . The corre-
sponding phonon frequencies are 199.5 −cm 1 for A1g mode 
and 171.2 −cm 1 for B1g mode. When we enforce the PM solu-
tion, we obtain  =a 3.766 Å,  =c 13.851 Å, and =z 0.368Se , 
and 212.6 −cm 1, 176.6 −cm 1 for the frequencies of the A1g and 
B1g mode, respectively. These values agree rather well with the 
experimental data, and agree with recently published numer-
ical results [27]7. They can be used to confirm the experimental 
assignment of the modes, but cannot resolve subtle changes of 
the phonon frequencies near the FM–PM transition. This level 
of discrepancy is expected for metallic materials with magn-
etic ordering since the DFT calculations neglect spin fluctua-
tions, as discussed in some detail in the next section (see also 
[21]). A rather large difference between the calculated fre-
quencies in the two phases is due to the relatively large change 
in the unit cell size. This difference between the unit cell sizes 
in the FM and PM phases is overestimated in the calculation 
which neglects spin fluctuations. For comparison, we also cal-
culated the frequencies keeping the experimental values of the 
unit cell size, and relaxing just the coordinate zSe of the Se 
atoms, which is often done in the case of iron based supercon-
ductors and related compounds [21]. This gives =z 0.3486Se  
in the FM solution and =z 0.3496Se  in the PM solution, while 
the change in the phonon frequencies between the two solu-
tions is much smaller, see table 3 and a discussion in section 4.

Polarized Raman scattering spectra of KxCo2−ySe2 single  
crystals, measured at various temperatures from the (0 0 1)- 
plane of the sample, are presented in figure 3. The orientation 
of the sample is chosen so that each of the observable modes 
appears in a different polarization configuration. A pro-
nounced feature in the spectra is an asymmetric Fano profile 
of the B1g mode, persisting down to low temperatures, as well 
as its large linewidth compared to isostructural KxFe2−ySe2  
[8, 28]. This feature should by mainly due to the spin 

fluctuations influencing the B1g vibrational mode which 
modulates the distances between the magnetic Co atoms. A 
detailed discussion of the frequency and linewidth temper-
ature dependence is given in the next section.

4. Discussion

There are several factors that affect the phonon frequen-
cies (energies) and linewidths, and their changes across the 
FM–PM transition. In general, the temperature dependence 
of the phonon frequency of the mode i, ( )ω Ti , is influenced 
by thermal expansion and magnetostriction, anharmonicity 
effects, electron–phonon and magnetic exchange interaction 
(spin-phonon coupling) [29, 30]

ω ω ω ω ω
ω ω

− = ∆ = ∆ + ∆
+ ∆ + ∆− −

T T T
.

i i i i i

i i

0 latt anh

el ph sp ph

( ) ( ) ( ) ( ) ( )
( ) ( ) (1)

The first term is the frequency shift due to the change of the 
unit cell size caused by the thermal effects and magnetostric-
tion. ( )ω∆ i anh is the anharmonic frequency shift. ( )ω∆ −i el ph 
appears due to the change in the electron–phonon interac-
tion primarily influenced by changes in the electronic spec-
trum near the Fermi level, and ( )ω∆ −i sp ph is the spin-phonon 
contrib ution caused by the modulation of exchange interac-
tion by lattice vibrations.

In our case of KxCo2−ySe2, for temperatures above Tc, ( )ω Ti  
decreases and ( )Γ Ti  (full width at half-maximum, FWHM) 
increases with increasing temperature for A1g and B1g modes, 
similar as in the Raman spectra of many other materials. 
However, they show anomalous behavior near Tc, see figure 4. 
In the following, we analyze ( )ω Ti  and ( )Γ Ti  more closely.

4.1. Phonon frequencies

The frequencies of the A1g and B1g modes change by less than 
2 percent in the temperature range between 20 K and 250 K. 
The red solid lines in figures 4(a)–(c) represent the fits of the 
phonon energy temperature dependence (see below), following 
the frequencies of the two modes in the high-temperature PM 
phase. The red dotted line is the extrapolation to T  =  0. For 
>T Tc, the temperature dependence of the frequency looks 

conventional for both modes: the frequency decreases with 
increasing temperature. This behavior is expected both due 
to the thermal expansion and the anharmonicity. These two 
effects can be standardly analyzed as follows.

The temperature dependent frequency of the vibrational 
mode i is given by

( ) ( )ω ω= +∆T T ,i i i0, (2)

where ω i0,  denotes the temperature independent term and 
( )∆ Ti  can be decomposed as [19, 31, 32]

( )∆ = ∆ +∆T .i i
V

i
A (3)

∆i
V describes a change of the Raman mode energy as a conse-

quence of the lattice thermal expansion and can be expressed 
with [31]

Table 2. Optimized lattice constants and internal coordinate zSe in 
the FM and PM solution.

a ( )Å c ( )Å zSe

FMrel 3.893 13.269 0.350
PMrel 3.766 13.851 0.368
FMfixed 3.864 13.698 0.3486
PMfixed 3.864 13.698 0.3496
Exper. 3.864 13.698 0.347

Note: The next two rows give the relaxed zSe when the unit cell size is taken 
from the experiment, and the last row contains the atomic positions from the 
experiment [24].

7 There is typo in table 3 of [27] in the frequency of the B1g mode.
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∫ω∆ = −γ α− ′ ′⎛
⎝
⎜

⎞
⎠
⎟e 1 ,i

V
i

T T
0,

3 di

T

0
( )

 (4)

where γi is the Grüneisen parameter of the Raman mode i 
and ( )α T  is the thermal expansion coefficient of a considered 
single crystal. ∆i

A represents the anharmonic contribution to 
the Raman mode energy. If we assume, for simplicity, that 
anharmonic effects are described by three-phonon processes, 
this term is given by [31, 33]

/

⎛
⎝
⎜

⎞
⎠
⎟

λ
∆ = − +

−ω
−

�
C 1

2

e 1
,i

A
i

p p i

k T

,

2i0, B
 (5)

where C is the anharmonic constant and λ −p p i,  is a fitting 
parameter which describes the phonon–phonon coupling, 
including the nonsymmetric phonon decay processes.

The relative importance of the thermal expansion and 
anharmonicity to frequency changes is, to the best of our 
knowledge, not yet firmly established for pnictides and 

chalcogenides. In several cases [13, 17] the anharmonic 
form ula, equation  (5), is used for the ( )ω T  fit. We follow 
here the arguments from [19, 28, 34] that ( )ω T  is dominated 
by the thermal expansion. To the best of our knowledge, the 
thermal expansion coefficient ( )α T  of the KxCo2−ySe2 single 
crystal is unknown. For estimating the lattice thermal expan-
sion contrib ution to the phonon energy change, the coefficient 

( )α T  for FeSe, given in [35], is used. The best fit shown in our 
figure 4 is obtained with ω = 201.3A0, g1  cm−1, γ = 1.23A g1

 and 
 ω = 194.2B0, g1 cm−1, γ = 1.7B g1

.
There exists a shift in phonon frequencies as the temper-

ature is lowered below Tc. This shift does not show clear dis-
continuity (as well as the corresponding shift in the linewidths) 
and no additional modes are registered in the Raman spectra, 
which suggest that the FM–PM transition is continuous, 
without structural changes. There are several causes of the 
sudden frequency change as the sample gets magnetized. It 
can change due to the magnetostriction, modulation of the 
magnetic exchange by lattice vibrations (spin-phonon cou-
pling), and due to the changes in the electron–phonon inter-
action due to spin polarization and changes in the electronic 
spectrum.

The effect of spin-phonon interactions, caused by the 
modulation of magnetic exchange interaction by lattice vibra-
tions, may be quantitatively examined within the framework 
developed in [29] for insulating magnets, and recently applied 
also to several itinerant ferromagnets [36–39]. In this model, 
the shift of the Raman mode energy due to the spin-phonon 
interaction is proportional to the spin–spin correlation func-
tion ⟨ ⟩|S Si j  between nearest magnetic ions. This term should 
have the same temperature dependence as ( ( )/ )M T M0

2, where 
M(T) is the magnetization per magnetic ion at a temperature T 
and M0 is the saturation magnetization,

( ) ( ) ( ) ( )⎛
⎝
⎜

⎞
⎠
⎟ω ω ω∆ = − ∝±T T T

M T

M
,exp fit

0

2

 (6)

where ( )ω Tfit  is the extrapolation from the high-temperature 
data. This model does not predict the sign of the phonon energy 
shift—softening or hardening. From the inset in figure 4(c) it 
can be seen that the B1g mode energy renormalization scales 
well with the ( ( )/ )M T M0

2 curve. However, the effect of the 

Table 3. The experimental phonon energies measured at 20 K in the FM phase and the extrapolated value to 0 K from the PM phase (see 
the text).

Symmetry Activity
Experiment 
FM (cm−1)

Experiment 
PM (cm−1)

Calculation 
FM (cm−1)

Calculation 
PM (cm−1) Main atomic displacements

A1g Raman 201.9 201.3 199.5 (193.2) 212.6 (193.1) Se(z)
B1g Raman 195.3 194.2 171.2 (172.7) 176.6 (168.1) Co(z)

Eg
1 Raman 93.1 (100.7) 92.7 (99.0) Co(xy), Se(xy)

Eg
2 Raman 237.9 (237.6) 257.2 (235.6) Co(xy), Se(xy)

A u2
1 IR 115.1 (99.0) 113.7 (102.9) K(z), Se(-z)

A u2
2 IR 246.7 (241.4) 250.9 (241.4) Co(z), K(-z)

Eu
1 IR 97.9 (95.0) 100.1 (95.0) K(xy)

Eu
2 IR 239.0 (229.7) 231.0 (229.9) Co(xy), Se(-xy)

Note: The phonon frequencies at the Γ point are calculated with fully relaxed atomic positions. The frequencies obtained with only relaxed internal 
coordinate are given in parenthesis.
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Figure 3. Temperature dependent Raman spectra of KxCo2−ySe2 
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2
). The 

solid lines represent fits of the experimental spectra with the 
Lorentzian (A1g mode) and the Fano profile (B1g mode).
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magnetostriction (change of the unit cell size due to the mag-
netization) cannot be excluded based just on this plot, espe-
cially since the A1g mode corresponding to the vibrations of 
nonmagnetic Se ions also shows a similar shift in frequency.

The DFT calculations can give us some guidance for 
understanding of the changes of the phonon frequencies and 
linewidths, but one has to be aware of its limitations. The DFT 
calculations (see table 2) give a rather large magnetostriction, 
i.e. rather large change in the size of the unit cell between the 
FM and PM phases (a changes by 3.2% and c by 4.3%). This 
leads to very large changes in the phonon frequencies, see 
table 3. The calculated frequencies are lower in the FM phase, 
as opposed to the experimental data. This already points to 
the limitations of the DFT calculations, which is expected 
near the phase transition. A similar conclusion is also pre-
sent in [21]. The DFT ignores spin fluctuations which often 
leads to quantitative discrepancy in various physical quanti-
ties [40] and, in some cases, even predicts wrong phases. In 
the case of KxCo2−ySe2, the DFT calculations correctly pre-
dict the FM ground state, but the calculated magnetic moment 

 µ=m 0.947 B is much larger than the experimental value 
 µ≈m 0.72 B [16]. This already shows the importance of cor-

relations and quantum fluctuations which are neglected within 
the DFT. Strong correlation effects can be captured using 
screened hybrid functional [41] or within the dynamical mean 
field theory combined with DFT (LDA+DMFT) [42], which 
is beyond our present work.

Since the magnetostriction effects are overestimated in the 
DFT calculations with relaxed unit cell size, we repeated the 
DFT (DFPT) calculations keeping the experimental value for 
the unit cell size and relaxing only the fractional coordinate 
(positions of the Se atoms). This is often done in the litera-
ture on iron based superconductors and related compounds 
[21]. Our calculated frequencies are given in the parenthesis 

in table 3. We see that the frequency changes between the two 
phases are small, in better agreement with the experiment.

4.2. Phonon linewidths

The phonon linewidths of the A1g and B1g modes are very large, 
Γ ∼ 10i A, g1  −cm 1 and Γ ∼ 20i B, g1  −cm 1, which implies the impor-
tance of disorder (impurities, nonstoichiometry, lattice imper-
fections) in measured samples. In general, the broadening of the 
phonon lines can be a consequence of the electron–phonon inter-
action, disorder, spin fluctuations and anharmonicity effects. 
The temperature dependence of the linewidth in the PM phase 
is, however, very weak, which indicates that the anharmonicity 
effects are small. The DFT calcul ation of the linewidth is usually 

based on the Allen’s formula, [43] ( )π λ ωΓ = N Ei i iq q q, F , ,
2 . Here, 

( )N EF  is the density of states (DOS) at the Fermi level, λ iq,  is 

the electron–phonon coupling constant, and ω iq,
2  is the phonon 

frequency of the mode i and wavevector q. A straightforward 
implementation of Allen’s formula in the →q 0 limit corre-
sponding to the Γ point is, however, unjustified, as explained 
for example in [44, 45]. In addition, structural disorder and 
impurities break the conservation of the momentum, which 
means that phonons with finite wave vectors also contribute to 
the Raman scattering spectra. The standard DFT calculation 
for the Brillouin zone averaged electron–phonon coupling con-
stant λ gives too small value to explain the large width of the 
Raman lines in pnictides and chalcogenides, [33] and several 
other metallic systems like MgB2 [44] and fullerides [46]. A 
correct estimate of the phonon linewidth can be obtained only 
by explicitly taking into account the disorder and electron scat-
tering which enhances the electron–phonon interaction, [44, 
46] which is beyond the standard DFT approach and scope of 
the present work.
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The Raman mode linewidth is not directly affected by the 
lattice thermal expansion. Assuming that the three-phonon 
processes represent the leading temperature dependent term 
in the paramagnetic phase, full width at half-maximum, ( )Γ Ti , 
is given by

( ) /

⎛
⎝
⎜

⎞
⎠
⎟

λ
Γ = Γ +

−
+ω

−
�

T A1
2

e 1
.i i

p p i

k T i0,
,

2i0, B
 (7)

The first term represents the anharmonicity induced effects, 
where Γ i0,  is the anharmonic constant. The second term Ai 
includes the contributions from other scattering channels, 
i.e. structural disorder and/or coupling of phonons with other 
elementary excitations, like particle-hole and spin excitations. 
These effects, typically, depend very weakly on temperature, 
but can become important near the phase transition. The best fit 
parameters are λ =− 0.2p p i,  for both modes,  =A 6.6A g1 cm−1  
and  =A 17.3B g1 cm−1. The value  Γ = 2i0, cm−1 is adopted 
from [28] for related compound KxFe2−ySe2, where the 
anharmonic effects dominate the temperature dependence. 
We see that λ −p p i,  assumes values much smaller than 1. Small 
and sometimes irregular changes in ( )Γ Ti  are also observed 
in other materials whose Raman spectra are considered to 
be dominated by spin fluctuations [21, 33]. Therefore, we 
believe that a simple separation of ( )Γ Ti  to the anharmonic 
and temper ature independent term, which works well in 
many systems, is not appropriate for itinerant magnetic sys-
tems like KxCo2−ySe2. We conclude that the spin fluctuations 
and electron–phonon coupling are likely to affect the line-
width even above Tc.

The electron–phonon interaction strength is proportional to 
the density of states at the Fermi level ( )N EF . Our DFT calcul-
ations for the DOS agree with those in [47]. The calculated 
DOS in the FM phase, ( ) =N E 3.69F  eV−1, is smaller than, 

( ) =N E 5.96F  eV−1, in the PM phase. (Though, in reality, it is 
possible that the DOS significantly differs from the one given 
by the DFT calculations due to the spin fluctuations and dis-
order effects.) Therefore, one expects that the phonon line is 
narrower in the FM phase than in the PM phase. This is indeed 
the case for the A1g mode, but the opposite is observed for the 
B1g mode.

It is also interesting to note that the B1g mode is much 
more asymmetric than the A1g mode and almost twice 
broader. These two observations are in striking similarity 
with the Raman spectra in the quasi-one-dimensional super-
conductor K2Cr3As3 [21]. In this material the vibrational 
mode that modulates the distance between the magnetic 
Cr atoms also features large asymmetry and linewidth. In 
our case, the distances between the magnetic Co ions are 
modulated by the vibrations of the B1g mode, see figure 1. 
This leads us to the conclusion that the anomalous features 
of the B1g mode are the consequence of spin fluctuations 
coupled to the electronic structure via lattice vibrations (in 
addition to the magnetostriction and spin polarization, which 
change the electronic spectrum near the Fermi level and, 
therefore, affect the electron–phonon interaction for both 
modes). It should be noted that similar anomalous properties 
of B1g phonon were exper imentally observed in the cuprate 
high-temperature superconductor YBa2Cu3O7 [48, 49], and 

explained as a consequence of the out-of-phase nature of 
this mode which couples to oxygen-oxygen in-plane charge 
fluctuations [50–52]. In the case of iron-based superconduc-
tors and related compounds, the chalcogen atoms and Fe (or 
Co) are not in the same plane and phonons of A1g symmetry 
can also directly couple with the electrons. A satisfactory 
agreement of theory and Raman experiments remains to be 
established [53].

The asymmetric B1g phonon line can be described by the 
Fano profile [21, 36, 54, 55]

( ) ( )
ω =

+
+
ε
ε

I I
q

1
,0

2

2 (8)

where ( )/ω ω= − Γε 2 0 , ω0 is the bare phonon frequency, 
Γ is the linewidth. I0 is a constant and q is the Fano asym-
metry parameter. It serves as a measure of a strength of the 
electron–phonon coupling: an increase in /| |q1  indicates an 
increase in the electron–phonon interaction, more precisely, 
an increase in the electron-mediated photon–phonon coupling 
function [51, 53]. From the inset of figure 4(d) it can be seen 
that /| |q1  increases as the temperature is lowered and reaches 
the highest values around Tc, when the spin fluctuations are 
the strongest. Spin fluctuations increase the electron–phonon 
scattering, similarly does the disorder. Technically, the elec-
tronic Green function acquires an imaginary component of the 
self energy due to the spin fluctuations, and this implies the 
increase in the damping term in the phonon self-energy, as 
explained in, e.g. [44]. This leads us to conclude that the spin 
fluctuations strongly enhance the electron–phonon interaction 
for the B1g vibrational mode affecting its frequency and line-
width near Tc.

5. Conclusion

In summary, the Raman scattering study of the KxCo2−ySe2 
(x  =  0.3,y  =  0.1) single crystals and lattice dynamics calcul-
ations of the KCo2Se2, have been presented. Two out of four 
Raman active phonons are experimentally observed and 
assigned. The lack of any additional modes indicates the 
absence of vacancy ordering. The Raman spectra show sudden 
changes in the phonon energy and linewidth near the FM–PM 
phase transition. Above Tc the energy and linewidth temper-
ature dependence of the A1g and B1g modes look conventional, 
as expected from the thermal expansion and anharmonicity 
effects. The linewidth, though, has very weak temperature 
dependence even above Tc which may be the consequence 
of the proximity of the phase transition and spin fluctuations. 
The B1g vibrational mode has particularly large linewidth and 
features a Fano profile, which is likely the consequence of 
the magnetic exchange coupled to the vibrations of the Co 
atoms. Interestingly, the A1g mode linewidth decreases below 
Tc, whereas the linewidth of the B1g mode increases. The 
DFT calculations generally agree with the measured phonon 
frequencies. However, fine frequency differences in the two 
phases cannot be correctly predicted since the DFT calcul-
ations do not account for the spin fluctuation effects.

J. Phys.: Condens. Matter 28 (2016) 485401



M Opačić et al

8

Acknowledgments

We gratefully acknowledge discussions with R Hackl. This 
work was supported by the Serbian Ministry of Education, 
Science and Technological Development under Projects 
ON171032, III45018 and ON171017, by the European 
Commission under H2020 project VI-SEEM, Grant No. 
675121, as well as by the DAAD through the bilateral Serbian-
German project (PPP Serbien, grant-no. 56267076) ‘Interplay 
of Fe-vacancy ordering and spin fluctuations in iron-based 
high temperature superconductors’. Work at Brookhaven is 
supported by the US DOE under Contract No. DE-SC0012704 
and in part by the Center for Emergent Superconductivity, an 
Energy Frontier Research Center funded by the US DOE, 
Office for Basic Energy Science (CP). Numerical simulations 
were run on the PARADOX supercomputing facility at the 
Scientific Computing Laboratory of the Institute of Physics 
Belgrade. MMR also acknowledges the support by the 
Deutsche Forschungsgemeinschaft through Transregio TRR 
80 and Research Unit FOR 1346.

References

 [1] Stewart G R 2011 Rev. Mod. Phys. 83 1589–652
 [2] Wei B, Qing-Zhen H, Gen-Fu C, Green M A, Du-Ming W, 

Jun-Bao H and Yi-Ming Q 2011 Chin. Phys. Lett. 
28 086104

 [3] Liu R H et al 2011 Europhys. Lett. 94 27008
 [4] Ma L, Ji G F, Dai J, Lu X R, Eom M J, Kim J S, Normand B 

and Yu W 2012 Phys. Rev. Lett. 109 197002
 [5] Dagotto E 2013 Rev. Mod. Phys. 85 849–67
 [6] Zhang Y M et al 2011 Nat. Mater. 10 273–7
 [7] Li W et al 2012 Nat. Phys. 8 126–30
 [8] Lazarević N, Abeykoon M, Stephens P W, Lei H, Bozin E S, 

Petrovic C and Popović Z V 2012 Phys. Rev. B  
86 054503

 [9] Ding X, Fang D, Wang Z, Yang H, Liu J, Deng Q, Ma G, 
Meng C, Hu Y and Wen H-H 2013 Nat. Commun. 4 1897

 [10] Louca D, Park K, Li B, Neuefeind J and Yan J 2013 Sci. Rep. 
3 2047

 [11] Huang S-M, Mou C-Y and Lee T-K 2013 Phys. Rev. B 
88 174510

 [12] Lei H, Abeykoon M, Wang K, Bozin E S, Ryu H, Graf D, 
Warren J B and Petrovic C 2014 J. Phys.: Condens. Matter 
26 015701

 [13] Lazarević N, Radonjić M, Šćepanović M, Lei H, 
Tanasković D, Petrovic C and Popović Z V 2013 Phys. Rev. 
B 87 144305

 [14] Ryu H, Wang K, Opacic M, Lazarevic N, Warren J B, 
Popovic Z V, Bozin E S and Petrovic C 2015 Phys. Rev. B 
92 174522

 [15] Ryu H, Abeykoon M, Wang K, Lei H, Lazarevic N, 
Warren J B, Bozin E S, Popovic Z V and Petrovic C 2015 
Phys. Rev. B 91 184503

 [16] Yang J, Chen B, Wang H, Mao Q, Imai M, Yoshimura K and 
Fang M 2013 Phys. Rev. B 88 064406

 [17] Um Y J et al 2012 Phys. Rev. B 85 064519
 [18] Popović Z V, Lazarević N, Bogdanović S, Radonjić M M, 

Tanasković D, Hu R, Lei H and Petrovic C 2014 Solid State 
Commun. 193 51–5

 [19] Eiter H-M, Jaschke P, Hackl R, Bauer A, Gangl M and 
Pfleiderer C 2014 Phys. Rev. B 90 024411

 [20] Kirillov D, Suzuki Y, Antognazza L, Char K, Bozovic I and 
Geballe T H 1995 Phys. Rev. B 51 12825–8

 [21] Zhang W-L, Li H, Xia D, Liu H W, Shi Y-G, Luo J L, Hu J, 
Richard P and Ding H 2015 Phys. Rev. B 92 060502

 [22] Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 
Rev. Mod. Phys. 73 515–62

 [23] Gianozzi P et al 2009 J. Phys.: Condens. Matter 21 395502
 [24] Huan G and Greenblatt M 1989 J. Less-Common Met. 

156 247–57
 [25] Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M and 

Chen X 2010 Phys. Rev. B 82 180520
 [26] Lazarević N, Lei H, Petrovic C and Popović Z V 2011 Phys. 

Rev. B 84 214305
 [27] Wdowik U D, Jaglo G and Piekarz P 2015 J. Phys.: Condens. 

Matter 27 415403
 [28] Opačić M, Lazarević N, Šćepanović M, Ryu H, Lei H, 

Petrovic C and Popović Z V 2015 J. Phys.: Condens. 
Matter 27 485701

 [29] Granado E, García A, Sanjurjo J A, Rettori C, Torriani I, 
Prado F, Sánchez R D, Caneiro A and Oseroff S B 1999 
Phys. Rev. B 60 11879–82

 [30] Gupta R, Sood A K, Metcalf P and Honig J M 2002 Phys. Rev. 
B 65 104430

 [31] Menéndez J and Cardona M 1984 Phys. Rev. B 29 2051–9
 [32] Haro E, Balkanski M, Wallis R F and Wanser K H 1986 Phys. 

Rev. B 34 5358–67
 [33] Rahlenbeck M, Sun G L, Sun D L, Lin C T, Keimer B and 

Ulrich C 2009 Phys. Rev. B 80 064509
 [34] Gnezdilov V, Pashkevich Y G, Lemmens P, Wulferding D, 

Shevtsova T, Gusev A, Chareev D and Vasiliev A 2013 
Phys. Rev. B 87 144508

 [35] Böhmer A E, Hardy F, Eilers F, Ernst D, Adelmann P, 
Schweiss P, Wolf T and Meingast C 2013 Phys. Rev. B 
87 180505

 [36] Kumar A, Chaudhary S, Pandya D K and Sharma S K 2014 
Phys. Rev. B 90 024302

 [37] Iliev M N, Abrashev M V, Litvinchuk A P, Hadjiev V G, 
Guo H and Gupta A 2007 Phys. Rev. B 75 104118

 [38] Laverdière J, Jandl S, Mukhin A A, Ivanov V Y, Ivanov V G 
and Iliev M N 2006 Phys. Rev. B 73 214301

 [39] Kumar D, Kumar S and Sathe V G 2014 Solid State Commun. 
194 59–64

 [40] Yin Z P, Haule K and Kotliar G 2011 Nat. Mater. 10 932–5
 [41] Yin Z P, Kutepov A and Kotliar G 2013 Phys. Rev. X 3 021011
 [42] Haule K, Shim J H and Kotliar G 2008 Phys. Rev. Lett. 

100 226402
 [43] Allen P B 1972 Phys. Rev. B 6 2577–9
 [44] Cappelluti E 2006 Phys. Rev. B 73 140505
 [45] Calandra M and Mauri F 2005 Phys. Rev. B 71 064501
 [46] Aksenov V L and Kabanov V V 1998 Phys. Rev. B 57 608–12
 [47] Bannikov V V, Shein I R and Ivanovskii A L 2012 Phys. B: 

Condens. Matter 407 271–5
 [48] Ruf T, Thomsen C, Liu R and Cardona M 1988 Phys. Rev. B 

38 11985–7
 [49] Macfarlane R M, Rosen H and Seki H 1987 Solid State 

Commun. 63 831–4
 [50] Barišić S, Kupčić I and Batistić I 1989 Int. J. Mod. Phys. B 

03 2051–63
 [51] Devereaux T P, Virosztek A and Zawadowski A 1995 Phys. 

Rev. B 51 505–14
 [52] Kupčić I and Barišić S 2007 Phys. Rev. B 75 094508
 [53] García-Martínez N A, Valenzuela B, Ciuchi S, Cappelluti E, 

Calderón M J and Bascones E 2013 Phys. Rev. B 88 165106
 [54] Iliev M N, Jandl S, Popov V N, Litvinchuk A P, Cmaidalka J, 

Meng R L and Meen J 2005 Phys. Rev. B 71 214305
 [55] Lazarević N, Popović Z V, Hu R and Petrovic C 2010 Phys. 

Rev. B 81 144302

J. Phys.: Condens. Matter 28 (2016) 485401

http://dx.doi.org/10.1103/RevModPhys.83.1589
http://dx.doi.org/10.1103/RevModPhys.83.1589
http://dx.doi.org/10.1103/RevModPhys.83.1589
http://dx.doi.org/10.1088/0256-307X/28/8/086104
http://dx.doi.org/10.1088/0256-307X/28/8/086104
http://dx.doi.org/10.1209/0295-5075/94/27008
http://dx.doi.org/10.1209/0295-5075/94/27008
http://dx.doi.org/10.1103/PhysRevLett.109.197002
http://dx.doi.org/10.1103/PhysRevLett.109.197002
http://dx.doi.org/10.1103/RevModPhys.85.849
http://dx.doi.org/10.1103/RevModPhys.85.849
http://dx.doi.org/10.1103/RevModPhys.85.849
http://dx.doi.org/10.1038/nmat2981
http://dx.doi.org/10.1038/nmat2981
http://dx.doi.org/10.1038/nmat2981
http://dx.doi.org/10.1103/PhysRevB.86.054503
http://dx.doi.org/10.1103/PhysRevB.86.054503
http://dx.doi.org/10.1038/ncomms2913
http://dx.doi.org/10.1038/ncomms2913
http://dx.doi.org/10.1038/srep02047
http://dx.doi.org/10.1038/srep02047
http://dx.doi.org/10.1103/PhysRevB.88.174510
http://dx.doi.org/10.1103/PhysRevB.88.174510
http://dx.doi.org/10.1088/0953-8984/26/1/015701
http://dx.doi.org/10.1088/0953-8984/26/1/015701
http://dx.doi.org/10.1103/PhysRevB.87.144305
http://dx.doi.org/10.1103/PhysRevB.87.144305
http://dx.doi.org/10.1103/PhysRevB.92.174522
http://dx.doi.org/10.1103/PhysRevB.92.174522
http://dx.doi.org/10.1103/PhysRevB.91.184503
http://dx.doi.org/10.1103/PhysRevB.91.184503
http://dx.doi.org/10.1103/PhysRevB.88.064406
http://dx.doi.org/10.1103/PhysRevB.88.064406
http://dx.doi.org/10.1103/PhysRevB.85.064519
http://dx.doi.org/10.1103/PhysRevB.85.064519
http://dx.doi.org/10.1016/j.ssc.2014.05.025
http://dx.doi.org/10.1016/j.ssc.2014.05.025
http://dx.doi.org/10.1016/j.ssc.2014.05.025
http://dx.doi.org/10.1103/PhysRevB.90.024411
http://dx.doi.org/10.1103/PhysRevB.90.024411
http://dx.doi.org/10.1103/PhysRevB.51.12825
http://dx.doi.org/10.1103/PhysRevB.51.12825
http://dx.doi.org/10.1103/PhysRevB.51.12825
http://dx.doi.org/10.1103/PhysRevB.92.060502
http://dx.doi.org/10.1103/PhysRevB.92.060502
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1016/0022-5088(89)90423-2
http://dx.doi.org/10.1016/0022-5088(89)90423-2
http://dx.doi.org/10.1016/0022-5088(89)90423-2
http://dx.doi.org/10.1103/PhysRevB.82.180520
http://dx.doi.org/10.1103/PhysRevB.82.180520
http://dx.doi.org/10.1103/PhysRevB.84.214305
http://dx.doi.org/10.1103/PhysRevB.84.214305
http://dx.doi.org/10.1088/0953-8984/27/41/415403
http://dx.doi.org/10.1088/0953-8984/27/41/415403
http://dx.doi.org/10.1088/0953-8984/27/48/485701
http://dx.doi.org/10.1088/0953-8984/27/48/485701
http://dx.doi.org/10.1103/PhysRevB.60.11879
http://dx.doi.org/10.1103/PhysRevB.60.11879
http://dx.doi.org/10.1103/PhysRevB.60.11879
http://dx.doi.org/10.1103/PhysRevB.65.104430
http://dx.doi.org/10.1103/PhysRevB.65.104430
http://dx.doi.org/10.1103/PhysRevB.29.2051
http://dx.doi.org/10.1103/PhysRevB.29.2051
http://dx.doi.org/10.1103/PhysRevB.29.2051
http://dx.doi.org/10.1103/PhysRevB.34.5358
http://dx.doi.org/10.1103/PhysRevB.34.5358
http://dx.doi.org/10.1103/PhysRevB.34.5358
http://dx.doi.org/10.1103/PhysRevB.80.064509
http://dx.doi.org/10.1103/PhysRevB.80.064509
http://dx.doi.org/10.1103/PhysRevB.87.144508
http://dx.doi.org/10.1103/PhysRevB.87.144508
http://dx.doi.org/10.1103/PhysRevB.87.180505
http://dx.doi.org/10.1103/PhysRevB.87.180505
http://dx.doi.org/10.1103/PhysRevB.90.024302
http://dx.doi.org/10.1103/PhysRevB.90.024302
http://dx.doi.org/10.1103/PhysRevB.75.104118
http://dx.doi.org/10.1103/PhysRevB.75.104118
http://dx.doi.org/10.1103/PhysRevB.73.214301
http://dx.doi.org/10.1103/PhysRevB.73.214301
http://dx.doi.org/10.1016/j.ssc.2014.06.017
http://dx.doi.org/10.1016/j.ssc.2014.06.017
http://dx.doi.org/10.1016/j.ssc.2014.06.017
http://dx.doi.org/10.1038/nmat3120
http://dx.doi.org/10.1038/nmat3120
http://dx.doi.org/10.1038/nmat3120
http://dx.doi.org/10.1103/PhysRevX.3.021011
http://dx.doi.org/10.1103/PhysRevX.3.021011
http://dx.doi.org/10.1103/PhysRevLett.100.226402
http://dx.doi.org/10.1103/PhysRevLett.100.226402
http://dx.doi.org/10.1103/PhysRevB.6.2577
http://dx.doi.org/10.1103/PhysRevB.6.2577
http://dx.doi.org/10.1103/PhysRevB.6.2577
http://dx.doi.org/10.1103/PhysRevB.73.140505
http://dx.doi.org/10.1103/PhysRevB.73.140505
http://dx.doi.org/10.1103/PhysRevB.71.064501
http://dx.doi.org/10.1103/PhysRevB.71.064501
http://dx.doi.org/10.1103/PhysRevB.57.608
http://dx.doi.org/10.1103/PhysRevB.57.608
http://dx.doi.org/10.1103/PhysRevB.57.608
http://dx.doi.org/10.1016/j.physb.2011.10.046
http://dx.doi.org/10.1016/j.physb.2011.10.046
http://dx.doi.org/10.1016/j.physb.2011.10.046
http://dx.doi.org/10.1103/PhysRevB.38.11985
http://dx.doi.org/10.1103/PhysRevB.38.11985
http://dx.doi.org/10.1103/PhysRevB.38.11985
http://dx.doi.org/10.1016/0038-1098(87)90895-7
http://dx.doi.org/10.1016/0038-1098(87)90895-7
http://dx.doi.org/10.1016/0038-1098(87)90895-7
http://dx.doi.org/10.1142/S0217979289001317
http://dx.doi.org/10.1142/S0217979289001317
http://dx.doi.org/10.1142/S0217979289001317
http://dx.doi.org/10.1103/PhysRevB.51.505
http://dx.doi.org/10.1103/PhysRevB.51.505
http://dx.doi.org/10.1103/PhysRevB.51.505
http://dx.doi.org/10.1103/PhysRevB.75.094508
http://dx.doi.org/10.1103/PhysRevB.75.094508
http://dx.doi.org/10.1103/PhysRevB.88.165106
http://dx.doi.org/10.1103/PhysRevB.88.165106
http://dx.doi.org/10.1103/PhysRevB.71.214305
http://dx.doi.org/10.1103/PhysRevB.71.214305
http://dx.doi.org/10.1103/PhysRevB.81.144302
http://dx.doi.org/10.1103/PhysRevB.81.144302

