
123

Grid Site Monitoring tools developed and used at
SCL

V. Slavnić, B. Acković, D. Vudragović, A. Balaž,

A. Belić
Scientific Computing Laboratory

Institute of Physics Belgrade
Pregrevica 118, 11080 Belgrade, Serbia

http://www.scl.rs/

M. Savić

Faculty of Electrical Engineering
University of Banja Luka

Patre 5, 78000 Banja Luka, Republika Srpska
Bosnia and Herzegovina

Abstract — In today's deployment of Grid services, continuous
monitoring of computing and storage resources and core services
is crucial for achieving high level of service reliability. A number
of system parameters have to be under constant observation and
control: from hardware conditions (temperature of the
motherboard and of the CPU, fan speed, disk state) through state
of operating system, to Grid-related events and daemons. In the
Scientific Computing Laboratory of the Institute of Physics
Belgrade we are using several such monitoring tools, with a
number of them partially or fully developed and publicly
available. Here we present the most used Grid monitoring tools
at SCL.

Keywords- Grid; SCL; SAM; Linux; Ganglia; Pakiti; CGMT;
WatG; WMSMON;

I. INTRODUCTION

Grid site is a complex system, which consists of number of
different subsystems. A basic hardware layer is only a
foundation for other layers stacked above. The operating
system (OS) layer provides the interface between computer
hardware and installed software. On top of it, in the Grid
computing environment there is an additional layer of
middleware software stack that provides Grid services to end
users, as well as integration of all Grid services and
interoperation of Grid sites comprising a given Grid e-
Infrastructure. However, working environment of a Grid site is
even more complex: it relies also on the network and cooling
subsystems, which are essential for the successful operation of
a resource center. Each of these subsystems has a set of
attributes that define its state. For the hardware layer there are
parameters such as temperature, voltage, fan speed and many
others. For operating system examples of such attributes are
CPU load, disk and memory usage, while for middleware layer
relevant attributes are e.g. number of jobs (running and
queued), number of available CPU and storage resources, test
results etc.

To achieve and maintain high availability and reliability of
computing and storage resources, Grid site administrators have
to monitor and supervise each of the important attributes
measuring the health of the system and quality of the offered
services to end users.

In the Scientific Computing Laboratory (SCL) [1] of the
Institute of Physics Belgrade we use several monitoring tools.
Some of these tools are developed by SCL for its specific
needs, and we have made them publicly available to all other
interested parties from our SVN and RPM repository. In this
paper we describe such tools, as well as Grid site monitoring
tools developed elsewhere, but deployed at SCL and regarded
as highly useful not only in everyday operations but also from
user's point of view.

II. GRID SITE MONITORING TOOLS

We will first describe Cumulative Grid Monitoring Tool
(CGMT) [2] in Section A, used to present the status of all
monitored services in an integrated way. Section B presents
WMSMON [3] tool, which monitors the status of WMS core
services deployed at SCL, while in Section C we present
WatG browser [4], a web-based Grid Information System
(GIS) visualization application. We also present security-
related tool Pakiti [5] which is slightly modified and deployed
at SCL in Section D. Highly-customizable general-purpose
monitoring tool Ganglia [6] is described in Section E. Purely
Grid-specific testing framework SAM [7] together with the
BBmSAM [8] is presented in Section F. Section G describes
another Grid-specific information system monitoring tool,
GStat [9].

A. CGMT

Cumulative Grid Monitoring Script (CGMT) is set of
scripts accompanied by the simple web interfaces developed
for Grid site monitoring and integrated presentation of the
results provided by various monitoring tools. Some of these
scripts can be deployed on any general-purpose computing
cluster, without the involvement of gLite middleware [10].
CGMT gives fast overview of the state of a Grid site and easy
access to more detailed monitoring tools. It combines other
tools developed in SCL and tools developed by other
developers, but deployed locally, such as Ganglia, GStat,
SAM, etc. Block diagram of the structure of CGMT tool is
given in Figure 1.

Grid Site Monitoring tools developed and used at
SCL

SEE-GRID-SCI
e-INFRASTRUCTURE
for regional eScience

User Forum 2009

124

Figure 1: CGMT structure block diagram.

First source of information for CGMT are local nodes and
the other source are web based monitoring tools stated above.
CGMT gets the data directly from nodes about environment
conditions, such as CPU and motherboard temperature, CPU
load, memory and swap information, and hard disk usage. This
is done through the scl-sensors script [11], which should be
installed on all nodes. This script is getting some of the data
from IPMI [12] card installed on the motherboard, as well as
from OS-implemented sensors. The collected data are stored on
the shared home directory. Another source of important
information is the Computing Element job management
system, which provides the data about number of scheduled
and running jobs per Virtual Organization, using the scl-jobs
[13] script.

CGMT collects further data about a given Grid site from
several different web services, such as Ganglia, SAM and
GStat, as shown in Figure 2.

Figure 2: Main web page of CGMT tool.

CGMT can be configured to monitor multiple Grid sites or
multiple clusters. Each monitored site/cluster defined in CGMT
has its own page (Figure 3), with information about relevant

SAM tests, GStat status, number of running and waiting jobs
per VO, which can be customized according to the local needs.
On the right side of the individual cluster page, a detailed info
about node names, CPU loads, RAM and swap usage, and CPU
temperatures is shown in a table, as can be seen in Figure 3.

Figure 3: Cluster page of CGMT.

More details about each node can be found on individual
node pages (Figure 4). These pages display information
collected from IPMI sensors such as: measured temperatures,
voltages, fan speeds, as well as OS information such as CPU
load, detailed memory info, hard disk status and others. The
scl-sensors scripts running on all the monitored nodes provide
data presented on individual node pages. In addition to this, for
each monitored node a separate page with node temperatures
graphs is generated using the MRTG tool, as can be seen in
Figure 5. For each monitored property a threshold can be set,
and if the threshold value is exceeded, this information is
shown in a visually different way, so that identified warnings
or errors can be easily detected by site administrators.

 Figure 4: Node info page. Figure 5: Node temperature page.

SEE-GRID-SCI
e-INFRASTRUCTURE
for regional eScience

User Forum 2009

125

B. WMSMON

WMSMON is a tool developed by SCL which provides a
site independent, centralized, uniform monitoring of gLite
WMS services.

The Workload Management System (WMS) is one of the
key Grid services of the gLite middleware software stack. It
performs a complex task of distributed scheduling and
management of users’ jobs on dynamically determined set of
available resources. Properties of WMS that can be used to
monitor the health and availability of this service can be
classified as load averages, job queues properties, properties of
the file system, log file properties, and availability
/responsiveness of gLite services/daemons on WMS.

• Job queues properties: If the number of jobs in some
of WMS queues becomes very high, it can affect or
even block the proper work of WMS service and
cause loss of jobs.

• File system properties: Since thread-safe, file-system
based queues are used between WMS modules, the
size of these files can indicate possible problems in
the operation of key WMS services.

• Log file properties: Log files are used by different
applications for data analysis and statistic information
and large log file sizes can cause significant
slowdown of such services, or even block their normal
operation. Also, this can cause overload of the file
system.

• Availability/responsiveness of gLite services/daemons:
Since each of WMS services is implemented as a
Linux daemon, due to stability issues it is necessary to
check periodically if each of them is active and
responsive and take appropriate actions if some of
them are not properly running.

 The WMSMON tool monitors all properties stated above.
It is based on collector agent architecture, and offers
aggregated status view of all monitored WMS services, as well
as detailed status page for each service, with links to
appropriate troubleshooting guides when problems are
identified. This tool triggers the alarms when certain monitored
parameter values exceed predefined limits.

The architecture of WMSMON tool is shown in Figure 6.

Figure 6: Architecture overview of WMSMON.

WMSMON consists of two parts of software. First one is
called WMSMON Agent and it should be installed on all
monitored WMS services. It locally aggregates the values of all
monitored parameters. The other component of WMSMON is
WMSMON Collector and it is installed on specific machine
equipped with the web server and gridFTP [14] client, with
purpose to collect the data from all WMSMON agents and to
provide web interface to the graphical presentation of the
collected data.

WMSMON Agent is implemented as a Linux daemon and
it is composed of data parser and data publisher. The data
parser is a bash script implemented as a cron job that searches
for predefined WMS properties and parses their values. All
gathered data is transferred to data cache which main role is to
store and keep the data for the transfer to the WMS Collector
assuring that will be no loss of information in case of broken
network between WMSMON Agent and WMSMON Collector.

For transfer of data gridFTP service, already deployed by
the gLite middleware is used. Each WMSMON Agent has only
one configuration file containing distinguished name (DN) of
the WMSMON Collector host digital certificate that will be
authorized for connection through gridFTP server and mapped
to a local user in order to retrieve the information from the data
cache. During its startup Agent configures gridFTP server on a
monitored WMS to allow the connection by a specific
WMSMON Collector (one or more), initializes data cache and
creates appropriate data parser cron job.

WMSMON Collector consists of the following
components: data collector, collector cache, database, graph
generator, and the frontend of the tool implemented as a web
portal. The role of data collector is the retrieve data from each
monitored WMS services, and to publish it to database and
local cache. Using the data from the database, the graph
generator component produces graphs, which are, together with
the information from the data cache, displayed through the
WMSMON web portal.

WMSMON tool uses the Round Robin Database (RRD)
[15] as a backend database. Using this lightweight solution
which does not require another running service storage
requirements can be easily limited by design of database. RRD
was written as a system to store and display time-series data in
compact manner in the form suitable for producing time
graphs. The data cache, like the cache on the Agent side
provides latest values of monitored WMS properties for the
WMSMON portal. WMSMON graph generator uses the data
from RRD to produce daily, weekly, monthly and yearly
graphs.

WMSMON web portal presents information from different
WMS sources in a unified way. Main page provides the
aggregated status view of all monitored WMS services from
the target Grid infrastructure. Data is shown in simplified way
in this part of the portal with the emphasis on WMS services
identified not to work properly. Portal also provides links to
pages with detailed information and graphs for each monitored
WMS service. WMSMON web portal is shown in Figure 7.

SEE-GRID-SCI
e-INFRASTRUCTURE
for regional eScience

User Forum 2009

126

Figure 7: Screenshot of WMSMON web portal.

The WMSMON Collector is implemented as a Linux
daemon and during its startup it creates appropriate cron jobs,
initializes RRD database and local cache, and provides Apache
server with the path information to WMSMON PHP scripts.
The WMSMON web portal is realized as a set of PHP scripts.

C. WATG

The WatG Browser (What is at the Grid Browser) is a web-
based Grid Information System (GIS) visualization application
providing detailed overview of the status and availability of
various Grid resources in a given gLite-based e-Infrastructure.
It is able to query and present data obtained from Grid
information systems at different layers: from local resource
information system for a particular Grid service (GRIS), to the
Grid site information system (site BDII), and to the top-level
information system for the whole Grid infrastructure (top-level
BDII).

The efficient implementation of WatG Browser allows
quick and easy navigation through entries and objects of the
LDAP tree retrieved by the specified query, even if the size of
the output is huge and hierarchically very complex. Highly
responsibility is achieved with implementation of partial
refreshes and asynchonization of a web page. A partial refresh
of WatG application can be observed when an interaction event
is triggered, for example click on the plus icon of the LDAP
tree. The server processes the information and returns a limited
response specific to the data it receives, for example LDAP's
subtree that requires given condition. One may notice that
WatG server does not send back an entire page, like the
conventional "click, wait and refresh" web applications.
Instead, WatG client updates the page based on the response.
This means that only part of the page is updated. In other
words, WatG's initial page is treated like a template: WatG
server and client exchange the data and the client updates parts
of the template based on the data it receives from the server.
Another way to think about it is to consider WatG application
as driven by events and data, whereas conventional web
applications are driven by pages.

Figure 8: WatG architecture.

Asynchronization of the WatG application is reflected in
the fact that after sending data to the server, the client can
continue processing while the server does its processing in the
background. During all this, a user can continue interacting
with the client without noticing interruption or a lag in the
response. For example, a user can click on any plus or minus
icon even during the loading, and in that way a new request
will be created and executed afterwards. The client does not
have to wait for a response from the server before continuing,
as is the case in the traditional, synchronous approach.
Architecture of the WatG Browser is given in Figure 8.

The above main features of WatG application introduce
also many secondary ones. For example, a partial refresh hides
huge complexity and amount of data stored in a Grid
Information System, which have to be transferred from the
server to the client. Therefore, WatG is able to browse large
LDAP directories keeping out of sight its nontrivial structure
and size.

Figure 9: WatG front-end.

Current WatG front-end performs a search using the filter.
Search filters enable defining search criteria and provide more
efficient and effective searches. The filter should conform to
the string representation for LDAP filters. The WaiG front-end
also contains attribute field, which returns only selected entries
and values (if specified).

SEE-GRID-SCI
e-INFRASTRUCTURE
for regional eScience

User Forum 2009

127

WatG application is written in the Java programming
language. GWT [16] (Google Web Toolkit) is used to cross-
compile it into the optimized JavaScript that automatically
works on all major browsers. WatG user front-end is shown in
Figure 9.

D. Pakiti

Pakiti tool provides a monitoring and notification
mechanism for checking the patching status of installed
packages on an RPM-based Linux system. Pakiti is using a
client/server model, in which clients and servers are
exchanging information using HTTP(S).

Once installed on a client host, through a cron job, Pakiti
will check each night if new patches are available and report
them to the relevant Pakiti Server(s).

As a result, there will be no change on clients (i.e. no
packages will be updated/installed on clients unless configured
by the administrator), but Pakiti will maintain a web page
providing a list of all registered systems and the list of the
pending patches for each of them. This helps the system
administrator keeping multiples machines up-to-date and
prevents unpatched machines to be kept silently on the
network.

While Pakiti clients are sending data to Pakiti servers, the
Pakiti servers can also send each other general statistics or
detailed reports. The list of trusted Pakiti servers is
configurable in the server configuration file. The SCL Pakiti
main web page is shown in Figure 10.

Figure 10: View of the SCL Pakiti main web page.

E. Ganglia

Ganglia is a scalable distributed monitoring system for
high-performance computing systems, such as clusters and
Grids. It is based on a hierarchical design targeted at
federations of clusters. It leverages widely used technologies
such as XML for data representation, XDR [17] for compact,

portable data transport, and RRDtool for data storage and
visualization. It uses carefully engineered data structures and
algorithms to achieve very low per-node overheads and high
concurrency. The implementation is robust, has been ported to
an extensive set of operating systems and processor
architectures, and is currently in use on thousands of clusters
around the world. It has been used to link clusters across
university campuses and around the world and can scale to
handle clusters with 2000 nodes.

In everyday system monitoring Ganglia gives fast and
reliable overview of the status of site nodes. It is easy to group
nodes into groups that will be shown on Ganglia web interface.

Ganglia is a client-server based system. Gmond daemon is
working on each monitored node collecting various data about
OS conditions, and on server side gmetad daemon collects
gmond outputs and publishes them on the web interface. It is
easy to add new custom monitored parameters data into
gmond daemon on ganglia clients by adding a cron daemon.
It is possible to add parameters such as temperatures, number
of running jobs on worker nodes or number of submitted jobs
on Computing Element or WMS. Ganglia main page is
presented in Figure 11.

Figure 11: SCL Ganglia main page.

F. SAM

SAM (Service Availability Monitoring) is a framework
used in EGEE [18] for the monitoring of production Grid sites.
It provides a set of probes which are submitted at regular
intervals, and a database that stores test results. In effect, SAM
provides monitoring of grid services from a user perspective.

SAM uses an Oracle database to store the test definitions,
node and site information, and the test results.

SAM web portal is a python-based web application to
display and query the test results. Only users with valid
certificates can view the pages. In addition, access is granted
based on IP-address. Several configuration and customization
options are available and instead of cookies, the portal will
remember the user's settings from their certificate subject DN.

SEE-GRID-SCI
e-INFRASTRUCTURE
for regional eScience

User Forum 2009

128

On the main page users can choose a service from a service
list and Grid region where service is running (Figure 12). On
the next page all nodes that match chosen service and region
are displayed. After selection of a particular node, SAM test
results are shown (Figure 13).

Figure 12: SAM Web Portal main page.

Figure 13: SAM test results page.

BBmSAM

For the needs of the SEE-GRID [19] series of projects, an
alternative to the EGEE SAM framework is developed by the
Faculty of Electrical Engineering of the University of Banja
Luka and is currently deployed at the BA-01-ETFBL Grid site.
It is completely based on non-commercial solutions (while the
original SAM uses Oracle database) and is adjusted to the
requirements of the SEE-GRID community. The architecture of
BBmSAM is shown in Figure 14.

 BBmSam is a web application implemented in PHP and
relying on a MySQL database for data storage. This tool has
been tested under different web servers (Apache, Microsoft

IIS), and can be used with any web server supporting PHP (at
list through CGI).

Figure 14: BBmSAM Architecture overview.

Main features of BBmSAM are:

• Use of unaltered client and sensor components of
EGEE SAM system;

• Synchronization with central HGSM (Hierarchical
Grid Site Management) [20] service - this service
completely replaces EGEE GOCDB and eliminates
the need of importing additional information from
BDIIs and other sources;

• Use of free and open source technologies;
• Use of as few as possible different technologies to

ease maintenance and development;
• Enabling more efficient access by mobile and small-

screen devices.
Main components of BBmSAM are: database server,

synchronization service, BBmSam web services, BBmSAM
portal, BBmobileSAM.

Database server is based on MySQL, providing as much
transparency as possible and enabling easy migration to a
different database server. The database schema was kept as
close as possible to the original SAM DB, with only few
necessary changes. Two new tables were introduced: one for
site downtime data and the other for uptime calculations.

BBmSAM web services are implemented in PHP with the
use of NuSOAP [21] library. It mimics the original SAM WS
component to enable use of standardized clients. The two
implemented web services are query and publish, where the
first one is used for querying and filtering the data needed to
run tests and second for publishing the test results to the central
database.

BBmSAM synchronization service was implemented to
synchronize SAM database with the remote HGSM server.
Synchronization is done directly from HGSM export to the
SAM DB. It is possible to use different data sources
(GOCDB/others) [22] as long as there is a way to generate
proper export. Synchronization process has three steps:

SEE-GRID-SCI
e-INFRASTRUCTURE
for regional eScience

User Forum 2009

129

Generating XML export on HGSM server; Importing and
transforming XML data according to the SAM DB
specifications; Generating HGSM "snapshot history" on the
local server (optional).

BBmobileSAM is a specialized portal for devices with
small screens and no support for full HTML. It consists of
only the basic information (with three different levels of
details and color-coding the results) and uses very small subset
of HTML that enables it to be used on almost any mobile
device.

BBmSAM portal component enables simple and efficient
access to all data stored in BBmSAM database, including
current and historical data. Front page of the portal is shown
in Figure 15.

Main part of the front page is a table with summary results
(overview table) that contains site name, country, tier,
certification status and production type of each listed site.
"SERVICE STATUS" column contains list of services, node
name for respective service, latest critical test status and time
since last critical test status change (uptime).

Figure 15: Front page of BBmSAM portal.

Services page displays the latest results for all instances of
a specified service. The results table contains node name, site
name, critical test status and statuses of individual tests. Tests
are ordered by criticality so that critical test come first and they
are marked by being bold the subject is mapped. Service page
is shown in Figure 16.

BBmSAM system performs following operations:
• Periodical synchronization of local HGSM database

with central HGSM database performed each 10
minutes.

• Regular SAM test submission performed each 3
hours for interactive tests (job based) and each hour
for non-interactive tests.

• Publishing of interactive test data each 20 minutes.

• Calculating hourly uptime/availability each hour (for
SEE-GRID-2 compatible SLA).

• Calculating service instance uptime (for continuous
time SLA calculations in SEE-GRID-SCI).

• Generating information for end-users of portal on on-
demand basis.

Figure 16: BBmSAM service page.

SAM client and sensors are the officially published client
and sensors used in the standard EGEE SAM distribution and
they operate in the same way.

Each monitored service is tested by a sensor, which
consists of individual tests. Each performed test returns a
status identification, which in turn defines the outcome of the
test (e.g. ok/warning/error). The importance of all tests is not
equal: some are require to be passed in order for the service
provided by tested node to be seen as operationally functional.
Such tests are designated as critical. Their outcome is logically
combined using AND operation, and the status of a complete
suite of SAM tests is the conjunction of all critical tests.
However, the highest priority overriding any other is the
MAINT status, which designates a site or service that is in the
declared downtime (maintenance). For such services, results
of SAM tests are published, but ignored in all SLA
calculations. They also do not raise alarms on the front page of
BBmSAM portal, nor on individual service pages.

G. GStat

GStat is an application designed to monitor EGEE/LCG
compatible Information Systems. Its purpose is to detect faults,
verify the validity and display useful data from the Information
System.

GStat tests the Information System approximately each 30
minutes. The test relies on queries to site GIISes/BDIIs and not
to any submitted job. This is done to gather information and
perform the so-called BDII sanity checks to point out any
potential problems with individual sites. The test covers the
following areas:

SEE-GRID-SCI
e-INFRASTRUCTURE
for regional eScience

User Forum 2009

130

Site and service information: Provide information about
the site, services, software and VOs supported at that site;

Usage information: Provides the statistics on job slots,
jobs, and storage space;

Information integrity: Checks if the Information system is
publishing data that is meets specific syntax and value rules.

GStat runs on a single server and from this server, GStat
executes queries, process the results and generates static
HTML reports. Execution of queries and result processing are
accomplished by agents and filters respectively

GStat agents are responsible for making queries and
collecting raw data for further analysis by filter components.
Filters execute test logic and generate processed data which is
in turn used to create a web based test reports.

The configuration of GStat heavily depends on the data
found in the GOCDB. GStat queries the GOCDB for the site's
GIIS contact string, nodes information and other basic site
information.

Gstat currently stores numeric data in RRD databases with
data reduction. SEE-GRID GStat main page is shown in Figure
17.

Figure 17: SEE-GRID GStat main page.

On the main page summary table view shows site names
and their most severe status of all tests associated with.
Clicking on the site name will display the detailed GStat report
for the site. Each site also has a small table cell to the right.
This cell indicates and links to the results of the SAM Tests
page. Multiple cells indicate that this site hosts multiple CEs.

Below the summary table is the table view which shows
individual test results for each site. This table can be
reorganized into different perspectives by with the sort by links
at the top of the table.

At the bottom of the main page, one can find a total
statistics table for entire instance. The 'Total' link will display
graphs associated with these statistics.

Finally there is a detailed report generated for each site
(Figure 18). At the top of the report, you will find links to the
site's homepage, SAM results, GOCDB and graphs for all test
result data associated with the site. The body of the report will
consist of individual sections for each test performed and their
detailed results. Each test section will display the name of the
test, the results status, link to alert status history graph and help
documentation for the test. The bottom of the report shows test
data results in both tables and graphs. Long term graphs can be
located by following the link for each graph.

Figure 18: GStat site page.

All of GStat tests respect the scheduled downtimes booked

in GOCDB to alert level of the result status. If the whole site is
in downtime, the site alert level is changed to the maintenance
status. In addition, the test alert level of section 'GOC DB Info'
in site report will be marked as maintenance, but all tests
associated with the site will still work normally to present the
real status and details of test result even though the site is in
downtime. If some specific nodes of the site are in downtime,
the test alert levels of the tests associated with such nodes will
be marked as in maintenance, but the site alert level will not be
affected. Particularly, the test section 'Service Check' in the site
report will ignore the nodes in maintenance status in this
section and retrieve the most severe status as the test alert level.

IV. CONLUSIONS

We have presented a set of operational and monitoring tools
used at the Scientific Computing Laboratory of the Institute of
Physics Belgrade for overseeing two large Grid sites. Some of
the tools are developed locally, and are provided to all
interested site administrators through our SVN and RPM
repository. All described monitoring tools are deployed at SCL,
and are seen as vital for Grid operations. They provide essential
information about Grid sites' and services' health not only to
site administrators, but also to end-users.

ACKNOWLEDGMENT
This work is supported in part by the Ministry of Science

and Technological Development of the Republic of Serbia
through research grant No. OI141035, and by the European
Commission through projects CX-CMCS (FP6), SEE-GRID-
SCI (FP7) and EGEE-III (FP7).

SEE-GRID-SCI
e-INFRASTRUCTURE
for regional eScience

User Forum 2009

131

REFERENCES

[1] SCL, http://scl.rs/
[2] CGMT, http://cgmt.scl.rs/
[3] WMSMON, http://wmsmon.scl.rs
[4] WatG, http://watgbrowser.scl.rs:8080/
[5] Pakiti ,http://pakiti.sourceforge.net/
[6] Ganglia, http://ganglia.sourceforge.net/
[7] SAM, https://lcg-sam.cern.ch:8443/sam/sam.py
[8] BBmSAM, http://c01.grid.etfbl.net/bbmsam/
[9] GStat, http://goc.grid.sinica.edu.tw/gstat/
[10] gLite, http://glite.web.cern.ch/glite/

[11] scl-sensors, https://http.ipb.ac.rs/tools/scl-sensors
[12] IPMI, http://www.intel.com/design/servers/ipmi/
[13] scl-jobs, http://http.ipb.ac.rs/tools/scl-jobs/
[14] grid-FTP, http://www.globus.org/grid_software/data/gridftp.php
[15] RRD, http://oss.oetiker.ch/rrdtool/
[16] GWT, http://code.google.com/webtoolkit/
[17] XDR, http://www.rfc-editor.org/rfc/rfc4506.txt
[18] EGEE, http://www.eu-egee.org/
[19] SEE-GRID-SCI, http://www.see-grid-sci.eu/
[20] HGSM, https://hgsm.grid.org.tr/
[21] NuSOAP, http://sourceforge.net/projects/nusoap/
[22] GOCDB, https://goc.gridops.org/

SEE-GRID-SCI
e-INFRASTRUCTURE
for regional eScience

User Forum 2009

