
117

Operational Grid tools developed at SCL 
 

V. Slavnić, B. Acković, D. Vudragović, A. Balaž, A.  Belić 
Scientific Computing Laboratory 

Institute of Physics Belgrade 
Pregrevica 118, 11080 Belgrade, Serbia 

http://www.scl.rs/ 
 
 

Abstract — A number of tools are used in everyday Grid 
operations and operational support by site administrators in 
order to allow efficient and reliable management of Grid services 
and their full availability to end users. Such tools perform 
various functions, from monitoring and problem diagnostics to 
site installation, configuration and management. In the Scientific 
Computing Laboratory (SCL) of the Institute of Physics Belgrade 
we have developed several tools useful for maintenance and 
management of gLite-based Grid sites. Some of these tools can be 
also used on general purpose Linux-type clusters. Here we report 
on the SCL tools and scripts most used in everyday Grid 
operations. 

Keywords- Grid; Operations; Scripting; SCL; gLite; Linux; 
DWARF; gFinger; 

I.  INTRODUCTION  
 

 The EGEE [1] project and many of the regional Grid 
projects and communities use the gLite [2] middleware as a 
basis for distributed research e-Infrastructures maintained and 
used by the corresponding projects. Thus, gLite represents one 
of the major middleware stacks used today. In particular it is 
used by the SEE-GRID-SCI [3] project. Although widely used, 
installation, maintenance and everyday Grid operations of a 
successful gLite resource center (Grid site) are not an easy task 
due to the complexity of its structure, interdependencies of 
many of its components and services, as well as the fact that 
still some components are not ready for large-scale production 
use, requiring continuous overseeing and occasional manual 
interventions. 

Site administrators are responsible to maintain the 
committed Grid resources available to supported user 
communities, to resolve all operational problems identified by 
the deployed monitoring tools, or diagnosed by the users. In 
fact, site administrators managing large clusters are usually 
deploying customized or home-made tools for monitoring their 
resources, and write custom scripts or use other specific 
mechanisms to automatize the tasks that have to be performed 
regularly on many nodes, or during some operational tasks (e.g. 
installation of updates on all nodes, execution of a specific 
command on all nodes). The good collaborative practice is to 
make such custom tolls available to other interested site 
administrators. 

The Scientific Computing Laboratory (SCL) [4] of the 
Institute of Physics Belgrade has developed several very useful 
tools and scripts for managing a gLite-based Grid site. All of 
them are used locally at SCL for managing two large Grid sites 

(AEGIS01-IPB-SCL and AEGIS07-IPB-ATLAS) and all core 
Grid services deployed. In this paper we present all such tools 
and scripts, which are available for download from our SVN 
and RPM repositories. 

II. SCL TOOLS 
 

Section A presents scl-scripts [5], developed and used for 
simplifying large Linux cluster management. In Section B we 
present gFinger [6], tool for extracting information about the 
local mapping to Unix pool accounts of Virtual Organization 
Management Service (VOMS) users on various Grid services. 
The package repository manager DWARF [7] is described in 
the Section C, while in Sections D through L give short 
descriptions of the custom scripts used in everyday operations: 
scl-bdii-conf [8], scl-wms [9], scl-clean-scratch [10], scl-
generate-pool-accounts [11], scl-generate-users [12], scl-
network-sleep [13], scl-sensors [14], scl-jobs [15], and scl-
tests-status [16]. 

 

A. scl-scripts 
 

The script set of scl-scripts [5] is developed in the BASH 
[17] scripting language. It is intended to simplify the 
management of medium or large computer clusters. Using 
these scripts it is possible to execute the same command on all 
nodes or to distribute the files on many nodes in an automated 
way. The set scl-scripts consists of five scripts and one 
configuration file per group of nodes or servers. 

The configuration file scl-nodes is a list of fully qualified 
domain names (FQDN) of nodes that will be used for scl-
scripts, i.e. it represents the set of nodes where the scripts will 
perform their operations, one by one. 

The first script, scl-ssh, can be used to generate public and 
private RSA [18] and DSA [19] keys, and to exchange public 
keys among the nodes specified in the configuration file. These 
keys are used for Secure Shell [20] (SSH) communication on 
all nodes listed in scl-nodes configuration file. Administrators 
are supposed to start this script only once, when the scl-scripts 
are installed. After that, all other scripts can work without 
prompting for password each time one tries to access each node 
in a cluster. It is possible to use scl-scripts even without 
running scl-ssh, but in that case a user will be asked for a 
password each time any of scripts is executed. Not only that – 
without properly configured key-based authentication, 
password is required for each node separately, which would 

Operational Grid tools developed at SCL

SEE-GRID-SCI
e-INFRASTRUCTURE
for regional eScience

User Forum 2009



118

make practical use of scripts exceedingly slow for larger 
number of nodes. 

Second script, scl-exec, is able to execute a specified 
command using SSH on all nodes listed in scl-nodes files. The 
syntax is the following: 

[root@ce-atlas ~]# scl-exec date  

wn01.ipb.ac.rs:  
Tue Nov 10 13:23:15 CET 2009 
 
wn02.ipb.ac.rs:  
Tue Nov 10 13:23:15 CET 2009  
  
wn03.ipb.ac.rs:  
Tue Nov 10 13:23:15 CET 2009 
 

It is possible to run more than one command in the line using 
the quotes (“”), like in this example: 

scl-exec “cat /var/log/messages | grep error” 

This command will show all lines that contain word “error” 
from /var/log/messages on all nodes listed in scl-nodes. Note 
that the use of quotes is essential here, since in this way the 
specified command will be executed on each node separately, 
and we will see the output sorted by the node, like in the 
example with the "date" command. Without the use of quotes, 
the command "cat /var/log/messages" would be executed on all 
nodes, this huge output would be transferred to the node where 
the scl-exec command is initiated, and only then the grep 
would be performed. On one hand, this would result in a huge 
network traffic, and on the other hand one would not get the 
formatted output as expected, i.e. the information on the node 
where the specific error is found would be lost. 

The other three scl-scripts perform operations with files. 
The basic one, scl-scp, copies a specified file to all nodes listed 
in the scl-nodes configuration file using secure copy (secure 
transfer of files using the SSH protocol).  The command: 

[root@ce-atlas ~]# scl-scp site-info.def  /root/  

site-info.def 100% 21KB 20.8KB/s 00:00 
site-info.def 100% 21KB 20.8KB/s 00:00 
site-info.def 100% 21KB 20.8KB/s 00:00 
 

would copy local siteinfo.def file from the current directory to 
/root directory on all nodes listed in scl-nodes. With scl-scp 
command it is not possible to copy folders, just individual files. 

Two remaining scripts, scl-pull and scl-push, are designed 
to copy different files to or from nodes listed in scl-nodes 
configuration file. In the example 

scl-push /root/nodes-network/ /etc/sysconfig/network 

the specified command will copy the file from the stated folder 
/root/nodes-network/ matching the node name listed in scl-
nodes file to each node. If the file scl-nodes contains entry 
wn01.ipb.ac.rs, and the corresponding file named wn01 (with 
the domain stripped) exists in the directory /root/nodes-
network, it will be copied to wn01.ipb.ac.rs node and saved 
there as /etc/sysconfig/network, and so on for each node 
present in the configuration file. The pull command, 

scl-pull /etc/sysconfig/network /root/node-network/ 

will collect files /etc/sysconfig/network from all nodes listed in 
the scl-nodes file and store them into the specified directory 
/root/node-network/, and name each file according to the node 
name, with the domain name stripped. 

For larger and more complex computer systems, set of scl-
scripts could be easily modified to handle more than one group 
of nodes. Administrators can simply copy the configuration file  
and scripts scl-nodes, scl-exec, scl-scp, scl-push and scl-pull 
into new instances with different names, and modify the new 
scripts for use with the new configuration files. For example, 
one can have two clusters, one with 32bit nodes and one with 
64bit nodes (which is our use case). One set of scl-scripts can 
be used for all nodes (32bit, 64bit, as well as all servers and 
core services), a second set could contain only 32bit nodes, 
third set only 64bit nodes, and fourth set only core service 
nodes.  

All scl-scripts are provided as an RPM [21] package which 
will install scripts in /opt/scl/. Configuration files are located in 
/opt/scl/etc, while scripts are located in /opt/scl/bin, which has 
to be added to the $PATH in order to be easily used. 

B. gFinger 
 

gFinger [6] is a command-line tool developed at SCL, 
providing information on local VOMS mapping of users 
authenticated by digital certificates on various Grid services, 
such as Computing Element (CE), Workload Management 
System (WMS), Storage Element (SE), etc. 

When a request from a client for access to some Grid 
service is received, the Globus gatekeeper (or another Grid-
aware daemon) attempts to map the user to the corresponding 
local Unix pool account in /etc/grid-security/grid-mapfile file. 
This file is combination of /etc/grid-security/dn-grid-mapfile 
and /etc/grid-security/voms-grid-mapfile files. The first one is 
regularly updated by edg-mkgridmap cron job and contains 
pairs of certificate subjects. e.g. 

/C=RS/O=AEGIS/OU=Institute of Physics Belgrade/CN=Dusan Vudragovic 

and pool account entries (e.g. aegis) allocated for user's Virtual 
Organization (VO). The second file is static and contains pairs 
of VO groups/roles (e.g. "/aegis/Role=VO-Admin") and pool 
account entries. Since VDT Globus [22] distribution used by 
the EGEE and SEE-GRID-SCI projects incorporates Pool 
Accounts patch [23] for Globus [24], in both cases the pool 
account entries are followed by a dot (".") that requires the 
function gridmapdir_userid to be invoked, either to allocate a 
Unix username from the pool of currently non-allocated 
accounts; or to return the username already allocated to this 
certificate subject. 

Information on account mapping is stored in /etc/grid-
security/gridmapdir directory. For each Unix username in the 
pool allocated for the user's VO, an empty file exists in this 
directory, with the same name as Unix pool username. When 
one of Unix accounts is allocated to a Grid user, a hard link 
with the same name as the certificate subject is created in 
/etc/grid-security/gridmapdir directory. The link points to the 
appropriate file according to the Unix username to which the 
subject is mapped. Certificate subject names are stored using 

SEE-GRID-SCI
e-INFRASTRUCTURE
for regional eScience

User Forum 2009



119

the "URL encoding" method - numbers are unchanged; letters 
are transformed to lowercase, while other characters are 
replaced by %HH where HH is their hexadecimal code. This is 
necessary since subjects can include slashes and other 
characters, "unfriendly" for naming files. 

To find which username corresponds to which subject and 
vice versa, gFinger searches directory for links pointing to the 
same inode. 

Example of usage on the gLite WMS service: 
[root@wms ~]# gfinger seevo002 
DN: /c=rs/o=aegis/ou=institute of physics belgrade/cn=aleksandar 

bogojevic:seevo 
Login: seevo002 Name: mapped user for group ID seevo 
Directory: /home/seevo002        Shell: /bin/bash 
User ID: 23002                          Group ID: 2300 
or 
[root@wms ~]# gfinger vudragovic 

DN: /c=rs/o=aegis/ou=institute of physics belgrade/cn=dusan 
vudragovic:atlas:atlas 

Login: atlas001                    Name: mapped user for group ID atlas 
Directory: /home/atlas001          Shell: /bin/bash 
User ID: 20001                                    Group ID: 2000 
 
DN: /c=rs/o=aegis/ou=institute of physics belgrade/cn=dusan 

vudragovic:aegis:aegis 
Login: aegis002                  Name: mapped user for group ID aegis 
Directory: /home/aegis002          Shell: /bin/bash 
User ID: 26002                                   Group ID: 2600 

 
This script is very useful in diagnosing the problems related to 
the use of Grid services, when site administrator has to track 
the individual user through log files on different hosts. 
  

C. DWARF 
 

DWARF [7] is a framework used for authorized Advanced 
Packaging Tool [25] (APT) and Yellow dog Updater Modified 
[26] (YUM) repositories management. It is developed at the 
Scientific Computing Laboratory of the Institute of Physics 
Belgrade. 

In user/development communities where large number of 
partners/collaborators from different institutions jointly 
contribute to applications and RPMs built from applications’ 
sources, it is useful to create a unique software repository that 
collects all such RPM. However, for security, scalability and 
reliability reasons, authentication and authorization of 
submitters should be established and closely checked. 

DWARF allows uploading of RPM packages and creation 
of APT and YUM repositories, with the authentication and 
authorization based on digital certificates using Public Key 
Infrastructure [27] (PKI). This framework is implemented as a 
web application and it is composed of the DWARF web portal, 
DWARF modules and DWARF database. Architecture of the 
DWARF framework is shown in Figure 1.  

DWARF web portal, the frontend of the DWARF 
framework is implemented as a PHP script under Apache 
HTTP server [28] on top of Secure Sockets Layer. Integration 

at the server level allows the server to retrieve the 
authentication parameters negotiated by SSL, and SSL 
achieves authentication via public-key cryptography in digital 
certificates. 

 
Figure 1: Overview of the DWARF architecture. 

 

From the DWARF web portal, an authenticated and 
authorized user can perform following operations on the 
repository: 

• Create and change repository structure – Users are 
free to create paths to new distributions and 
components, by specifying chosen names. In the 
current implementation of the DWARF 
framework, the users are able to create APT and 
YUM repositories, as well as to create a mirror to 
an existing remote repository. 

• Package uploading – Users can upload different 
software packages, but only to sections of the 
repository to which they are authorized as 
contributors. 

• Build repository – After each RPM upload, a user 
should build the repository structure. If not, a 
system will do it automatically, through a cron 
job. 

DWARF modules are implemented as bash scripts that 
handle build action on repositories.  

After an appropriate repository structure is created from the 
DWARF portal, all RPMs must be indexed in order to create 
the corresponding APT or YUM database. This is done by the 
APT DWARF and YUM DWARF modules, which analyze the 
RPM packages in a directory tree and build information files so 
that that directory tree can be used as an APT or YUM 
repository. 

The MIRROR DWARF module is responsible for 
mirroring some existing software repository locally. Through 
the DWARF web portal, a user can specify a set of command-
line switches that should be used to control the repository 
synchronization process. For example, files in the local 
repository that are not present in the remote directory can be 
deleted, or DWARF can download only newer files than the 
existing ones. Also, files and directories that should be skipped 
during the synchronization can be specified. By default, each 

SEE-GRID-SCI
e-INFRASTRUCTURE
for regional eScience

User Forum 2009



120

mirror repository will be synchronized six times a day (each 4 
hours) via a cron job. 

The DWARF database is realized using MySQL database 
technology, and contains information on security, repositories 
type, repositories metadata, mirror repositories, and logging 
information. All information about users and user’s 
permissions for different repository sections are also stored 
here. In addition to that, the DWARF database contains 
metadata repository information on build’s timestamps, 
contexts, and descriptions of the repositories, as well as 
repository types. 

The DWARF framework provides configurations that must 
be included in the local HTTP and FTP servers’ configuration 
files in order to provide the context of repositories once they 
are constructed. 

SCL is using DWARF framework for managing self-
produced RPMs and mirroring repositories of different 
versions of Scientific Linux, gLite software and some 
frequently used community repositories (e.g. dag). DWARF is 
currently deployed by the SEE-GRID-SCI Grid e-
Infrastructure. Repositories can be accessed through the 
location given in Ref. [29]. 

 

 
Figure 2: Screen shot of the DWARF web portal. 

 

D. scl-bdii-conf 
 

Top level BDII [30] (Berkeley Database Information Index) 
server republishes information from site BDIIs. In order to do 
this, top level BDII server uses a list of LDAP [31] 
(Lightweight Directory Access Protocol) URIs (Uniform 
Resource Identifiers) pointing to site BDIIs. Top level BDII 
downloads this list periodically from an HTTP location. The 
scl-bdii-conf script prepares lists of LDAP URIs relevant for 
SEE (South Eastern Europe) Grid BDII instances. 

Current implementation of the scl-bdii-conf [8] script 
prepares lists of LDAP URIs using the information from 

GOCDB [32], HGSM [33], and static files. The script itself is 
executed by the cron job each hour on the regional top-level 
BDII bdii.ipb.ac.rs. 

E. scl-wms 
 

WMS/LB processes are controlled by the gLite OS-level 
system daemons. However, we have observed that sometimes 
gLite service cannot be properly restarted, nor can be cleanly 
shut down when an administrator issues the standard 
"/etc/init.d/gLite stop" command. In order to resolve this until 
the corresponding issues are dealt with by the appropriate 
developers, we have developed scl-wms [9] script that is able 
to cleanly stop, start and restart all WMS-related daemons. For 
example, in order to stop all gLite services, the script first uses 
the OS-level daemon stop command, waits for some 
(configurable) amount of time, then checks if there are some 
remaining processes owned by the glite user, and kills them. 
The script accepts one of three possible options: 

• start 

• stop 

• restart 

F. scl-clean-scratch 
 

A cluster worker nodes usually use shared home directory 
on a storage server in order to support MPI jobs. In the gLite 
middleware it is possible to define the start folder for jobs other 
than user's home, and this folder is designated as a scratch 
directory. In the case of MPI job, start directory is always 
user's shared home, but for other types of jobs it is usual to use 
local disk space on each Worker Node (WN) in order to avoid 
slow-down due to load of the storage server whenever possible. 

When a job is finished, the jobmanager (PBS [34] in our 
case) is supposed to remove all job data from the scratch 
directory. However, this fails to be done from time to time due 
to a variety of reasons. Although it does not happen very 
frequently, the job data are unavoidably piling up in the scratch 
directory, which has to be cleaned regularly by a cron job setup 
by the site administrator. 

In order to clean scratch folder, we have developed a scl-
clean-scratch [10] script. This script is executed from the 
Computing Element on each WN. It first checks which Unix 
users have currently running jobs on each node, by querying 
the jobmanager. Then, script deletes all files and folders in 
each WN scratch directory owned by users other than those 
having currently running jobs on a given WN. The script uses 
the node list from the installed scl-scripts set of scripts (scl-
nodes), described in section A. 

G. scl-generate-pool-accounts 
 

To generate configuration files for pools of Unix accounts 
necessary for the installation of gLite services, we have 
developed a script scl-generate-pool-accounts [11]. gLite 
installer YAIM [35] uses a file users.conf to create pool of 

SEE-GRID-SCI
e-INFRASTRUCTURE
for regional eScience

User Forum 2009



121

accounts for each Virtual Organization specified in the site-
info.def configuration file. The script scl-generate-pool-
accounts allows easy generation of the users.conf file, and 
simplifies their maintenance for site administrators. Apart from 
the initial installation of each Grid service, this script can be 
used whenever support for a new VO has to be added to a 
given Grid service. The definitions of users for users.conf wil 
be generated by this script using the command line options, 
specifying VO name, base user ID (UID), group name, group 
ID (GUID), group size (number of pool accounts to be 
created), prd size (number of special Grid production users for 
a given VO to be created in a pool) and sgm size (number of 
special software Grid manager pool accounts to be created). 
The default value for group size is 200, and default prd and 
sgm sizes are 10. 

 

H. scl-generate-users 
 

On the occasion of organizing a Grid training event or in 
some similar case, administrators have to create a pool of 
accounts for participants of such an event on User Interface 
(UI). It can be easily done using the scl-generate-users [12] 
script. The script generates users on Linux system and sets 
random passwords for each user. Administrator can choose 
name for the pool and length of the initial set random 
password. 

 

I. scl-network-sleep 
 

We have observed that in some cases network service is not 
operational immediately after the network daemon starts it. It 
could be up to the network adapter, or due to a switch behavior, 
which could take some time to recognize new NIC and 
configure a routing table for it. If this happens, some system 
services that need network to operate properly cannot be 
started. This is specifically the case with mounting of file 
system over network (e.g. NFS), which might fail if the 
network is not operational when the corresponding daemon is 
invoked. To ensure that network is running, we have created a 
small script scl-network-sleep [13] that is executed just after 
the network daemon, which sleeps enough (configurable) to 
allow network adapter to establish network connectivity 
through the switch. 

 

J. scl-sensors 
 

A carefully developed set of scl-sensors [14] is intended to 
be executed on each worker node in a given cluster and 
provide the data about the node status. It obtains the CPU and 
motherboard temperature from the IPMI interface [36], as well 
as various other information from the operating system 
interface to the underlying hardware devices. The data are 
saved on a shared disk rather than sent through the network 
service. The data are later accessed and published by the http 
server that has access to the shared disk. We are using scl-
sensors for Cumulative Grid Monitoring Tool [37] (CGMT) 
described in our contributed paper on “Grid Site Monitoring 

tools developed and used at SCL”, presented at this 
conference. 

 

K. scl-jobs 
 

The script scl-jobs [15] is used to extract information about 
the running and waiting jobs from the jobmanager on specific 
Computing Element. This information is provided per 
supported Virtual Organisation. The script uses the PBS 
command qstat to get information about running and waiting 
jobs on CE. The script is easily extended to print not only 
numbers of running and waiting jobs, but also numbers of 
running and waiting processes, taking into account multiple 
processes initiated for parallel (MPI) jobs. 

L. scl-tests-status 
The set of scripts scl-tests-status [16] is designed to access 

SAM [38], BBSAM [39] and GStat [40] tools to get 
information about the Grid site services status. In general, in 
order to access SAM database, one has to present a valid user 
certificate in a browser, and it is not possible to access SAM 
web portal directly via the script. For this reason we are using 
SAM Programmatic Interface (SAM PI), which allows access 
to SAM DB, provided that site administrator requests SAM 
firewall to be opened for the IP number of the host(s) that will 
execute the scl-tests-status script. BBmSAM and GStat 
monitoring tools can be accessed without certificates so script 
has only to find information on particular pages of these 
monitoring tools. 

Scripts scl-sensors, scl-jobs and scl-tests-status are all 
integrated and developed for the use with the CGMT tool. 

III. CONLUSIONS 
 

 We have presented a set of operational tools and scripts 
developed by the Scientific Computing Laboratory of the 
Institute of Physics Belgrade. The presented tools and scripts 
are used for various Grid operations of the two gLite-based 
sites at SCL. All of them are developed in order to ease and 
simplify Grid operations and manual tasks that have to be 
performed on many nodes, as well as for easier monitoring of 
the status of medium and large clusters. All presented tools and 
scripts are available for download from our SVN and WPM 
repository. 

ACKNOWLEDGMENT  
This work is supported in part by the Ministry of Science 

and Technological Development of the Republic of Serbia 
through research grant No. OI141035, and by the European 
Commission through projects CX-CMCS (FP6), SEE-GRID-
SCI (FP7) and EGEE-III (FP7). 

 

REFERENCES 
 

[1] EGEE, http://www.eu-egee.org/  

SEE-GRID-SCI
e-INFRASTRUCTURE
for regional eScience

User Forum 2009



122

[2] gLite, http://glite.web.cern.ch/glite/ 
[3] SEE-GRID-SCI, http://www.see-grid-sci.eu/ 
[4] Scientific Computing Laboratory, Institute of Physics Belgrade, 

http://www.scl.rs 
[5] scl-scripts, http://http.ipb.ac.rs/tools/scl-scripts/ 
[6] gFinger, http://gfinger.scl.rs/ 
[7] DWARF web portal, https://dwarf.scl.rs/ 
[8] scl-bdii-conf, https://http.ipb.ac.rs/tools/scl-bdii-conf/ 
[9] scl-wms, http://http.ipb.ac.rs/tools/scl-wms/ 
[10] scl-clean-scratch, http://http.ipb.ac.rs/tools/scl-clean-scratch/ 
[11] scl-generate-pool-accounts, http://http.ipb.ac.rs/tools/scl-generate-pool-

accounts/ 
[12] scl-generate-users, http://http.ipb.ac.rs/tools/scl-generate-users/ 
[13] scl-network-sleep, http://http.ipb.ac.rs/tools/scl-network-sleep/ 
[14] scl-sensors, http://http.ipb.ac.rs/tools/scl-sensors/ 
[15] scl-jobs, https://http.ipb.ac.rs/tools/scl-jobs/ 
[16] scl-tests-status, https://http.ipb.ac.rs/tools/scl-tests-status/ 
[17] BASH, http://www.gnu.org/software/bash/ 
[18] RSA, http://www.rsa.com/rsalabs/node.asp?id=2125 
[19] DSA, http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf 
[20] SSH, http://tools.ietf.org/html/rfc4252 
[21] Red Hat RPM Guide, http://docs.fedoraproject.org/drafts/rpm-guide-

en/index.html 

[22] VDT Globus, http://vdt.cs.wisc.edu/edg_lcg.html 
[23] Pool Accounts patch for Globus, http://www.gridsite.org/gridmapdir/ 
[24] Globus toolkit, http://www.globus.org/toolkit/ 
[25] Wikipedia:Advanced Packaging Tool, 

http://en.wikipedia.org/wiki/Advanced_Packaging_Tool 
[26] Yum website, http://yum.baseurl.org/ 
[27] CA, PGP and SKIP, The Black Hat Briefings '99, 

http://www.securitytechnet.com/resource/rsc-
center/presentation/black/vegas99/certover.pdf 

[28] The Apache HTTP Server Project, http://httpd.apache.org/ 
[29] SCL Repository Service, http://rpm.scl.rs 
[30] BDII, https://twiki.cern.ch/twiki//bin/view/EGEE/BDII 
[31] LDAP, http://www.openldap.org/ 
[32] GOCDB, https://goc.gridops.org/ 
[33] HGSM, https://hgsm.grid.org.tr/ 
[34] PBS Torque, http://www.clusterresources.com/products/torque-resource-

manager.php 
[35] YAIM, http://yaim.info/ 
[36] IPMI, http://www.intel.com/design/servers/ipmi/ 
[37] CGMT, http://cgmt.scl.rs/ 
[38] SAM, https://lcg-sam.cern.ch:8443/sam/sam.py 
[39] BBmSAM, https://c01.grid.etfbl.net/bbmsam/ 
[40] GStat, http://goc.grid.sinica.edu.tw/gstat/. 

 
 
 

SEE-GRID-SCI
e-INFRASTRUCTURE
for regional eScience

User Forum 2009


