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Abstract— Many complex quantum physical systems can be most 
effectively described by the path integral formalism. The 
SPEEDUP code implements recently introduced analytical 
approach that systematically improves convergence of 
numerically calculated transition amplitudes of a generic 
quantum non-relativistic theory that leads to significant speedup 
of Path Integral Monte Carlo algorithms. In this paper we report 
on the optimization, porting and testing of the SPEEDUP code, 
done on several new computing architectures: IBM POWER6, 
PowerXCell and the latest Intel CPUs. We give overview of 
optimization techniques used and present results on the use of 
advanced features of new CPU types, which can be efficiently 
applied for the optimization of the SPEEDUP code.  
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I.  INTRODUCTION  
Path integral Monte Carlo code SPEEDUP [1] is used for 

various calculations, mainly for studies of Quantum 
Mechanical systems and investigation of global and local 
properties of Bose-Einstein condensates. Porting of this code to 
new computing architectures will enable its use on a broader 
set of clusters and supercomputer facilities. The purpose of the 
code optimization is to fully utilize available computing 
resources, eliminating bottlenecks that may be located in 
different parts of the code, depending on the details of 
hardware implementation and architecture of the CPU. In some 
situations even compiling, linking or choosing more 
appropriate (optimized) libraries can lead to significant 
reduction in program execution times. However, the 
optimization must be performed carefully and the new code has 
to be verified after each change by comparison of its numerical 
results with the correct reference values. 

In addition to obtaining highly optimized code, the above 
procedure can be also used to benchmark different hardware 
platforms and to compare their performance on a specific 
application/code. Such application-specific benchmarking, 
based on the assessment of hardware performance for the 
chosen set of applications, can be also used for the proper 
planning of hardware upgrades of computing centers 
supporting several user communities. 

II. SPEEDUP CODE 
Functional formalism in quantum theories naturally 

introduces Monte Carlo simulations as a method of choice for 
numerical studies of relevant physical systems. The 
discretization of the phase space (necessary in any numerical 
calculation) is already built in to the functional formalism 
through the definition of continuous (path) integrals, and can 
be directly translated into the Monte Carlo algorithm. A 
detailed study of the relationship between discretization of 
different coarseness in the case of a general quantum theory 
leads to substantial increase in convergence of path integral to 
its continuum limit [2-4]. This study resulted in an analytic 
procedure for deriving a hierarchy of effective actions up to an 
arbitrary level p. We will illustrate the use of higher-level 
effective actions for calculation of the transition amplitude A 
for a quantum system that evolves from the initial state i to the 
final state f in time T. In the path integral formalism, this 
amplitude is given as N→∞  limit of the (N-1)-fold integral 
expression: 

 

where SN is the discretized action of the theory and εN=T/N is 
the discrete time step. Using naively discretized action, the 
transition amplitude would converge to its continuum limit as 
slow as 1/N. Numerical simulations based on the use of 
effective action of the level p have much faster convergence, 
approaching the continuous limit as 1/Np. The effective 
discretized actions up to level p=18 are implemented in the 
Path Integral Monte Carlo SPEEDUP code [1] in C 
programming language. It is used for efficient calculation of 
transition amplitudes, partition functions, expectation values, as 
well as low lying energy spectra. 

The algorithm of a serial SPEEDUP code can be divided to 
the following steps: 

1. Initialize variables; allocate memory; set input 
parameters of the model, number of time and MC 
steps, and random number generator (RNG) seed. 

Optimization and Porting of the Path Integral 
MonteCarlo SPEEDUP Code to New Computing

Architectures

SEE-GRID-SCI
e-INFRASTRUCTURE
for regional eScience

User Forum 2009



134

2. Main Monte Carlo loop, which accumulates 
contributions of sampled trajectories to intermediate 
variables; each loop step consists of the following 
steps: 

a. Generate trajectory using the bisection 
method [5]. The number of time steps is 
N=2s, where s is the discretization level 
(input parameter). 

b. Calculate effective action for a generated 
trajectory and each sub-trajectory with 
smaller discretization level (s-1, ..., 1). 

c. Accumulate variables used to calculate 
observables and their error estimates at each 
discretization level. 
 

3. Calculate observables and associated errors by 
averaging variables accumulated in the previous step 
at each discretization level. 
 

4. Print the results, deallocate memory and exit the 
program. 
 

Parallelization of the above Monte Carlo algorithm is very 
simple, since each loop step 2 is independent. Therefore, the 
total number of Monte Carlo steps can be easily and evenly 
divided to a desired number of CPU threads or parallel 
processes (in MPI or in other available parallelization 
environment). 

The SPEEDUP code generates large numbers of random 
trajectories and relies on the MC theory to achieve no 
correlations between the generated trajectories. This 
necessitates high-quality RNG, able to produce large numbers 
of uncorrelated random numbers from the uniform probability 
density distribution, in a form suitable for parallel simulation. 
For the SPEEDUP code we have used SPRNG - Scalable 
Parallel Random Number Generator [6], which is verified to 
satisfy all of the above criteria. SPRNG can generate large 
numbers of separate uncorrelated streams of random numbers, 
making it ideal for parallel applications. 

III. TESTED HARDWARE ARCHITECTURES 
 

The hardware platform used for the testing reported in this 
paper was IBM BladeCenter with 3 kinds of servers within the 
H-type chassis commonly used in high performance computing 
and a separate 1U server based on latest Intel Nehalem Xeon 
processors: 

• HX21XM blade Server based on Intel Xeon 
technology. It features two Intel Xeon E5405 processors that 
run on 2.0 GHz with front side bus of 1333MHz and level two 
cache (L2) of 12MB with support for Intel SSE2, SSE3, 
SSE4.1 extensions. Along with standard GCC (GNU Compiler 
Collection) compiler (gcc version 4.1.2), Intel C++ Compiler 
Professional Edition 11.1 by Intel Corporation (ICC) [7] that 
includes advanced optimization, multithreading, and processor 
support, as well as automatic processor dispatch, vectorization, 
and loop unrolling was used for testing in this paper. 

• The BladeCenter JS22 server is a single-wide, 4-core, 
2-socket with two cores per socket, 4.0 GHz POWER6 [8] 
SCM processors. Each processor includes 64 KB I-cache and 
32 KB D-cache L1 cache per core with 4 MB L2 cache per 
core. Processors in this blade server are based on POWER 
RISC instruction set architecture (ISA) with AltiVec, a single-
instruction, multiple-data (SIMD) extensions. IBM provides 
XL C/C++ compiler solution (XLC) [9] that offers automated 
SIMD capabilities for application code that can be quite help 
for programmers. Beside GCC compiler IBM XLC/C++ is 
used for benchmark purposes in this paper. 

• The IBM BladeCenter QS22 is based on 2 multi-core 
IBM PowerXCell 8i processors, based on Cell Broadband 
Engine Architecture (Cell/B.E.) [10]. The Cell Broadband 
Engine is a single-chip multiprocessor with 1+8 processors, 
specialized into two types: 

1. The PowerPC Processor Element (PPE) is a general-
purpose, dual-threaded, 64-bit RISC processor fully 
compliant with the 64-bit PowerPC Architecture, with 
the Vector/SIMD Multimedia Extension operating at 
3.2 GHz. It is intended primarily for control 
processing, running operating systems, managing 
system resources, and managing SPE threads. 

2. The SPE (Synergetic Processing Element) is core 
optimized for running compute-intensive applications. 
SPEs are single-instruction, multiple-data (SIMD) 
processor elements that are meant to be used for data-
rich operations allocated to them by the PPE. Each 
SPE contains a RISC core, 256 KB software-
controlled locale storage (LS) for instructions and 
data, and a 128-bit, 128-entry unified register file. The 
SPEs provide a deterministic operating environment. 
An SPE accesses both main memory and the local 
storage of other SPE’s exclusively with DMA 
commands. They do not have caches, so cache misses 
are not a factor in their performance and programmer 
should to avoid branch intensive code. 

Such a heterogeneous multi-core architecture of the Cell CPU 
requires that a developer adopts several new programming 
paradigms in order to fully utilize the full potential of Cell B/E 
processor. In addition to the GNU tools (including C and C++ 
compilers) which are provided with the Software Developer's 
Kit for Multicore Acceleration [11], one can also use IBM XL 
C/C++ Compiler [9] for Multicore Acceleration, specialized for 
Cell Broadband Engine solution. 

• Intel Server System SR1625UR based on latest Intel 
Xeon processors with Nehalem micro-architecture. Two quad-
core Xeon X5570 processors are present within the system. 
These CPUs run on 2.93GHz with triple channel DDR3 
memory subsystem with support of latest SSE4.2 extensions. 
They are equipped with 256 Kb of Mid-Level cache per core 
and 8MB of cache shared between cores (L3). With this micro-
architecture Intel reintroduced its Hyper-Threading technology 
that supposed to enhance parallelization of computational 
tasks. Beside GCC, Intel ICC compiler, as for the other Intel 
system, was used for obtaining results of testing described in 
this paper. 
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IV. RESULTS 
Here we describe the performed optimization and the 

obtained benchmarking results. In all benchmarks in this paper 
we have executed the code with Nmc=5120000 MC samples 
for the quantum-mechanical amplitude of the quartic 
anharmonic oscillator with the boundary conditions q(t=0)=0, 
q(t=T=1)=1, with zero anharmonicity and with level p=9 
effective action. We always used the same seed for SPRNG 
generator so that the results can be easily compared. Section A 
gives results for a serial SPEEDUP code on each platform 
with different compilers. These results are later used as a 
reference in benchmarking and in verification of the optimized 
code. Section B gives results for SPEEDUP MPI code tested 
on Intel platform, while Section C presents the threaded 
SPEEDUP code and results obtained with Intel and POWER 
architectures. In Section D we give results for the Cell 
SPEEDUP code, and in Section E we compare all results. 

 

A. Serial SPEEDUP code 
 

For Intel Xeon 5405 Blade server we compiled the serial 
code with GCC C compiler using optimization flag -O1, which 
turns to give the best performance. Along with GCC, we also 
used ICC compiler with optimization flag –fast, equivalent to 
the combination -O3 -xHOST -ipo -no-prec-div -static. 

Intel Nehalem platform shows best results with GCC flags -
O1 –funroll-loops (loop unrolling), and with the -fast flag for 
Intel's ICC. 

On POWER6 and Cell Blades the code was compiled with 
both GCC and IBM XLC compiler. On Cell Blade we used the 
flags -O1 -funroll-loops with GCC, and with XLC flags -O5 
-qaltivec -qenablevmx. Appropriate versions of GCC and XLC 
binaries were used (ppu-gcc and ppuxlc). On POWER6 Blade -
q64 -O5 –qaltivec -qenablevmx flags were used with XLC and 
-O3 -funroll-loops with GCC. Results for the serial program 
benchmarking are presented in Table 1. 

 

Platform/Compiler GCC ICC XLC 

Intel Xeon 5405 (6280±20) s (1600±20) s - 

Intel Nehalem (3520±10) s (920±10) s - 

POWER6 (8980±10) s - (1830±10) s 

Cell (25350±50) s - (12550±50) s 
 

Table 1: Average times of execution of a serial SPEEDUP code on all 
tested platforms with different compilers. The flags used are given in the text. 

Table 1 demonstrates the significant increase in the speed 
of the execution of the code when platform-specific compiler is 
used. New Nehalem platform in conjunction with ICC 
compiler gives the best performance compared to all other 
platforms. On the other hand, it is clear that Cell version, 
running only on the PPE is no match for other two platforms. 
Real utilization of the Cell platform can be achieved only when 
additional available SPEs are used. 

B. MPI SPEEDUP code 
 

On the Intel Blade Xeon 5405 and Intel Nehalem platform, 
we tested the performance of the SPEEDUP code with MPI 
implementation, compiled by the ICC compiler with -fast flag. 
Also we tested the behavior of Nehalem CPUs with Hyper-
Threading feature enabled and disabled. The results are shown 
in Figure 1.  

 
Figure 1: Average times of execution of the MPI SPEEDUP code on Intel 

Xeon 5405 and Intel Nehalem platforms compiled with ICC (-fast flag). The 
curves give fits to the expected dependence A + B / (Number of MPI 
processes). 

As we can see, the MPI version of the code shows excellent 
scalability with the number of MPI processes. When the 
number of MPI processes exceeds the number of physical cores 
in the system (eight), the operating system is trying to 
distribute the load among already fully loaded cores, which 
creates additional overhead. This is less pronounced at the 
Nehalem platform, with the Hyper-Threading enabled. In that 
case, as shown in Figure 2, slightly better results are achieved 
when the numbers of MPI instances exceeds the number of 
physical cores. Below this threshold the results are identical.  

 
Figure 2: Average times of execution of the MPI SPEEDUP code on Intel 

Nehalem platform compiled with ICC (fast flag) with Hyper-Threading 
technology enabled (HT on) and disabled (HT off). 
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MPI implementation gives minimal execution time of 
around 100s for Nehalem platform and around 200s for Intel 
Xeon 5405. 

C. Modified  SPEEDUP code 
 

To fully optimize the parallel SPEEDUP code, instead of 
using MPI API, we implemented its threaded version using the 
POSIX threads (pthreads). Each thread calculates Nmc/Nth of 
Monte Carlo samples, where Nth represents the number of 
initiated threads. Also, some minor additional modifications of 
the code were performed, focusing on specific improvements 
for p=9 effective action. The Intel version of the code was 
compiled with ICC, while the POWER version was compiled 
with XLC. The obtained numerical results are summarized in 
Figure 3. 

 

 
 

Figure 3: Average times of execution of the threaded SPEEDUP code on 
Intel and POWER6 platforms.  

 

 
 

Figure 4: Average times of execution of the threaded SPEEDUP code on 
Intel Nehalem platform with Hyper-Threading enabled (HT on) and disabled 
(HT off).  

 
With the threaded code we obtained non-negligible 

increase in the speed of the code compared to previous 

implementations. Again, Intel Nehalem with the ICC compiler 
was much faster than all other platforms. If we compare the 
increase in the speed gained by implementing the threaded 
code, the POWER6 platform shows a 12% performance gain 
(threaded vs. the serial code), while we get around 6% gain for 
Intel platforms (threaded vs. MPI code). 

The minimal execution time with the threaded code was 
190s on Intel Xeon 5405 Blade, 95s on Intel Nehalem and 
235s on the POWER Blade.  Again, we can see a small impact 
on the execution speed when Hyper-Threading technology is 
enabled on the Intel Nehalem CPUs (Figure 4.). 

 

 
 

Figure 5: Times of execution of the threaded SPEEDUP code on Intel 
Nehalem platform with ICC and GCC compiler.  
 

We have also observed an interesting behavior on Intel 
platforms, which is presented in Figure 5. Although the 
threaded code gives better performance when compiled with 
ICC compared to the code compiled with GCC, the times of 
execution of the ICC-complied code for the same parameters 
and the same number of threads differ significantly for several 
consecutive runs. Such relatively large scattering of execution 
times around the average might be accredited to the low-level 
hardware implementation details of Intel CPUs, as well as to 
the aggressive optimization techniques used by the –fast flag. 
On the other hand, the execution of the same code compiled 
with GCC did not exhibit such behavior. This might point to 
the load-balancing issues when aggressive optimization is 
used with ICC, while GCC is not able to achieve such level of 
optimization and thus is not affected. The similar behavior 
was also observed on Intel Xeon 5405 platform. 
 

D. Cell  SPEEDUP code 
 

The heterogeneity of the Cell architecture required the 
slight rearrangement of the SPEEDUP code. We used MPI 
version of the code as a basis, and modified it so as to separate 
serial sections to be executed on the PPE from the parallel 
sections that can be executed on as many SPEs as available in 
the system. Our main implementation idea was to create a 
number of pthreads on the PPE that will pass control and start 
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execution of the code on the dedicated SPE for each pthread. 
Each SPE performs Nmc/Number_of_SPEs Monte Carlo steps, 
running the same code, only with different parameters passed 
by the PPE.  After all SPEs finish their work, the final 
processing of gathered data is done on the PPE. 

The main problem in a proper porting of the SPEEDUP 
code to the Cell architecture was missing Cell SPRNG library 
code that can be compiled and executed on each SPU. For this 
reason, we have compiled SPRNG for the PPE and performed 
all random number generation operations only on PPEs. This 
was done in parallel through several pthreads, distributed 
between both PPE processors of a QS22 Blade. Each pthread 
was associated with one of SPEs and synchronized with it 
using the mailbox technique. It is one of the simplest hardware 
based ways of communication within Cell CPU. The PPE 
mailbox checking is implemented through the interrupt, 
without active waiting (such as polling through the loop). 
Access to the main memory by all SPEs is realized through the 
Direct Memory Access (DMA) transfers. We have one initial 
transfer where control data from the PPE are received, one final 
transfer where computation results are sent back to the main 
memory and intermediate transfers of generated random 
numbers for each MC step. The XLC-compiled code was 
superior in the performance compared to the GCC-compiled 
code. The results for the XLC-compiled code are shown in 
Figure 6.  

 
Figure 6: Average times of execution of the Cell SPEEDUP code. For 

comparison, we also give execution times for the code without generation of 
random numbers. 

As we can see, the fact that only PPEs are used for 
generation of random trajectories leads to a saturation of the 
performance when we increase the number of used SPEs to 
around 4. After that, PPEs are not able to generate random 
numbers sufficiently enough, and further increase in the 
number of SPEs used does not lead to any improvement in the 
performance. In the ideal case, if PPEs would be able to 
produce enough random trajectories for all SPEs, the 
simulation execution time would be around 260s, as can be 
seen in Figure 6 for the code without random number 
generation. We also tested the code with the communication 
part disabled (no DMA memory transfers). From Table 2 we 
see that the communication does not have significant impact on 
the execution time and does not represent a bottleneck. To 

confirm this, we tested also the code that only generates 
random trajectories on PPEs, and observed the saturation in its 
performance at about 770s for the given number of Monte 
Carlo samples Nmc. This clearly corresponds to the minimal 
execution time for the full version of the Cell code in Figure 6. 

Number of SPEs 
No random 
trajectories 
generation 

No 
communication 

1 (4220±5) s (4200±5) s 

2 (2110±5) s (2100±5) s 

4 (1055±5) s (1050±5) s 

8 (530±5) s (525±5) s 

16 (265±5) s (260±5) s 

 
Table 2: Average times of execution of the Cell SPEEDUP code without 

random trajectories generation and without PPE-SPE communication. 

Therefore, as we can see, the missing implementation of the 
SPRNG library was a limiting factor in fully utilizing the 
capabilities of all SPEs of the Cell Blade. However, this 
problem would not be even seen in the case when individual 
MC steps take more time to finish their calculation, since then 
PPEs would be able to generate random trajectories at a 
sufficient rate. Such situation can be easily achieved e.g. if one 
uses higher effective action level p code [1-4]. We have 
demonstrated similar situation in Figure 7, where we have used 
unoptimized Cell SPEEDUP code, and where we observe 
perfect scaling of the code with the number of SPEs. Disabling 
the optimization leads to a much slower execution of the code, 
and each MC step takes much more time to be completed, thus 
giving enough time to PPEs to generate needed random 
trajectories according to the bisection algorithm. This also 
demonstrates the fact that specific details of the optimal porting 
of an application to the Cell architecture can significantly 
depend on the execution run-time parameters. Such situation is 
not frequently encountered on other computing platforms, and 
is here due to the current limitations of the Cell SPUs, as well 
as limitations in their communication model. 

 
Figure 7: Average times of execution of the Cell SPEEDUP code compiled 

without optimization. The number of Monte Carlo steps is decreased to 
Nmc=5120, since the code without optimization is executed much slower. 
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E. Comparison of hardware performance results 
 

The overview of the obtained performance results for all 
tested hardware platforms is presented in Table 3. For Intel and 
POWER6 platform we give the results for the fully optimized 
threaded SPEEDUP code. For the Cell platform we give the 
minimal obtained execution time, as well as the execution time 
obtained with random trajectories generation disabled, which 
corresponds to the full utilization of all SPEs. 

 
Intel Xeon 

5405 Intel Nehalem POWER6 Cell Cell ideal 

190s 95s 235s 770s 260s 
 

Table 3: Minimal average execution time for each tested platform for the 
fully optimized SPEEDUP code. For each platform we have selected the 
optimal implementation. 

The difference in performance of two tested Intel platforms 
can be partially explained by the higher clock frequency of 
2.93 GHz for the Nehalem CPU, compared to only 2.0GHz 
frequency for the Intel Xeon 5405. However, even if we rescale 
the performances of both platforms to the same frequency, we 
still see a 30% better performance of the Nehalem platform. 
Such significantly better performance is due to the improved 
architecture of the newer CPU. 

 

V. CONCLUSIONS 
 

We have ported and optimized Path Integral Monte Carlo 
SPEEDUP code to four different computing architectures 
(Intel Xeon 5405, Intel Nehalem X5570, IBM POWER6 and 
Cell) and used the obtained code for benchmarking of these 
hardware platforms. For Intel and POWER6 platforms full 
optimization was obtained with the straightforward threaded 
version of the code, while the Cell platform required more 
complex changes of the code (implementation of separate PPE 
and SPE sections of the code). For benchmarking purposes we 
have also used different available compilers for each of 
architectures, and our results clearly show that platform-
specific compilers always give much better performance. 

The SPEEDUP code was most easily optimized on the 
both Intel platforms, especially on Intel Nehalem where it 
achieves superior performance compared to all other hardware 
platforms. Contrary to our expectations based on previous 
experiences with the Hyper-Threading technology, it did not 
improve the performance of the code significantly. 

The Cell platform is demonstrated to be able to achieve 
respectable level of performance in the case when individual 
MC steps take more time to complete. In the current 
implementation, due to the missing Cell SPRNG library, 
SPEEDUP code can fully utilize all Cell SPEs only for higher 
effective action levels p. However, the tested Cell CPU is no 
match for POWER6 or latest Intel CPUs. The Nehalem 

platform also significantly outperforms POWER6 CPU, 
despite its much higher frequency of 4.0 GHz. 

The plans for further development and testing include 
porting of SPRNG library to SPEs and implementation of 
platform-specific instructions (vectorization) for each tested 
platform. 
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