
133

Optimization and Porting of the Path Integral Monte
Carlo SPEEDUP Code to New Computing

Architectures

V. Slavnić, A. Balaž, D. Stojiljković, A. Belić, A. Bogojević
Scientific Computing Laboratory

Institute of Physics Belgrade
Pregrevica 118, 11080 Belgrade, Serbia

http://www.scl.rs/

Abstract— Many complex quantum physical systems can be most
effectively described by the path integral formalism. The
SPEEDUP code implements recently introduced analytical
approach that systematically improves convergence of
numerically calculated transition amplitudes of a generic
quantum non-relativistic theory that leads to significant speedup
of Path Integral Monte Carlo algorithms. In this paper we report
on the optimization, porting and testing of the SPEEDUP code,
done on several new computing architectures: IBM POWER6,
PowerXCell and the latest Intel CPUs. We give overview of
optimization techniques used and present results on the use of
advanced features of new CPU types, which can be efficiently
applied for the optimization of the SPEEDUP code.

Keywords- Monte Carlo; SCL; SPEEDUP; Path Integral;
Optimization; Porting;

I. INTRODUCTION
Path integral Monte Carlo code SPEEDUP [1] is used for

various calculations, mainly for studies of Quantum
Mechanical systems and investigation of global and local
properties of Bose-Einstein condensates. Porting of this code to
new computing architectures will enable its use on a broader
set of clusters and supercomputer facilities. The purpose of the
code optimization is to fully utilize available computing
resources, eliminating bottlenecks that may be located in
different parts of the code, depending on the details of
hardware implementation and architecture of the CPU. In some
situations even compiling, linking or choosing more
appropriate (optimized) libraries can lead to significant
reduction in program execution times. However, the
optimization must be performed carefully and the new code has
to be verified after each change by comparison of its numerical
results with the correct reference values.

In addition to obtaining highly optimized code, the above
procedure can be also used to benchmark different hardware
platforms and to compare their performance on a specific
application/code. Such application-specific benchmarking,
based on the assessment of hardware performance for the
chosen set of applications, can be also used for the proper
planning of hardware upgrades of computing centers
supporting several user communities.

II. SPEEDUP CODE
Functional formalism in quantum theories naturally

introduces Monte Carlo simulations as a method of choice for
numerical studies of relevant physical systems. The
discretization of the phase space (necessary in any numerical
calculation) is already built in to the functional formalism
through the definition of continuous (path) integrals, and can
be directly translated into the Monte Carlo algorithm. A
detailed study of the relationship between discretization of
different coarseness in the case of a general quantum theory
leads to substantial increase in convergence of path integral to
its continuum limit [2-4]. This study resulted in an analytic
procedure for deriving a hierarchy of effective actions up to an
arbitrary level p. We will illustrate the use of higher-level
effective actions for calculation of the transition amplitude A
for a quantum system that evolves from the initial state i to the
final state f in time T. In the path integral formalism, this
amplitude is given as N→∞ limit of the (N-1)-fold integral
expression:

where SN is the discretized action of the theory and εN=T/N is
the discrete time step. Using naively discretized action, the
transition amplitude would converge to its continuum limit as
slow as 1/N. Numerical simulations based on the use of
effective action of the level p have much faster convergence,
approaching the continuous limit as 1/Np. The effective
discretized actions up to level p=18 are implemented in the
Path Integral Monte Carlo SPEEDUP code [1] in C
programming language. It is used for efficient calculation of
transition amplitudes, partition functions, expectation values, as
well as low lying energy spectra.

The algorithm of a serial SPEEDUP code can be divided to
the following steps:

1. Initialize variables; allocate memory; set input
parameters of the model, number of time and MC
steps, and random number generator (RNG) seed.

Optimization and Porting of the Path Integral
MonteCarlo SPEEDUP Code to New Computing

Architectures

SEE-GRID-SCI
e-INFRASTRUCTURE
for regional eScience

User Forum 2009

134

2. Main Monte Carlo loop, which accumulates
contributions of sampled trajectories to intermediate
variables; each loop step consists of the following
steps:

a. Generate trajectory using the bisection
method [5]. The number of time steps is
N=2s, where s is the discretization level
(input parameter).

b. Calculate effective action for a generated
trajectory and each sub-trajectory with
smaller discretization level (s-1, ..., 1).

c. Accumulate variables used to calculate
observables and their error estimates at each
discretization level.

3. Calculate observables and associated errors by
averaging variables accumulated in the previous step
at each discretization level.

4. Print the results, deallocate memory and exit the
program.

Parallelization of the above Monte Carlo algorithm is very
simple, since each loop step 2 is independent. Therefore, the
total number of Monte Carlo steps can be easily and evenly
divided to a desired number of CPU threads or parallel
processes (in MPI or in other available parallelization
environment).

The SPEEDUP code generates large numbers of random
trajectories and relies on the MC theory to achieve no
correlations between the generated trajectories. This
necessitates high-quality RNG, able to produce large numbers
of uncorrelated random numbers from the uniform probability
density distribution, in a form suitable for parallel simulation.
For the SPEEDUP code we have used SPRNG - Scalable
Parallel Random Number Generator [6], which is verified to
satisfy all of the above criteria. SPRNG can generate large
numbers of separate uncorrelated streams of random numbers,
making it ideal for parallel applications.

III. TESTED HARDWARE ARCHITECTURES

The hardware platform used for the testing reported in this
paper was IBM BladeCenter with 3 kinds of servers within the
H-type chassis commonly used in high performance computing
and a separate 1U server based on latest Intel Nehalem Xeon
processors:

• HX21XM blade Server based on Intel Xeon
technology. It features two Intel Xeon E5405 processors that
run on 2.0 GHz with front side bus of 1333MHz and level two
cache (L2) of 12MB with support for Intel SSE2, SSE3,
SSE4.1 extensions. Along with standard GCC (GNU Compiler
Collection) compiler (gcc version 4.1.2), Intel C++ Compiler
Professional Edition 11.1 by Intel Corporation (ICC) [7] that
includes advanced optimization, multithreading, and processor
support, as well as automatic processor dispatch, vectorization,
and loop unrolling was used for testing in this paper.

• The BladeCenter JS22 server is a single-wide, 4-core,
2-socket with two cores per socket, 4.0 GHz POWER6 [8]
SCM processors. Each processor includes 64 KB I-cache and
32 KB D-cache L1 cache per core with 4 MB L2 cache per
core. Processors in this blade server are based on POWER
RISC instruction set architecture (ISA) with AltiVec, a single-
instruction, multiple-data (SIMD) extensions. IBM provides
XL C/C++ compiler solution (XLC) [9] that offers automated
SIMD capabilities for application code that can be quite help
for programmers. Beside GCC compiler IBM XLC/C++ is
used for benchmark purposes in this paper.

• The IBM BladeCenter QS22 is based on 2 multi-core
IBM PowerXCell 8i processors, based on Cell Broadband
Engine Architecture (Cell/B.E.) [10]. The Cell Broadband
Engine is a single-chip multiprocessor with 1+8 processors,
specialized into two types:

1. The PowerPC Processor Element (PPE) is a general-
purpose, dual-threaded, 64-bit RISC processor fully
compliant with the 64-bit PowerPC Architecture, with
the Vector/SIMD Multimedia Extension operating at
3.2 GHz. It is intended primarily for control
processing, running operating systems, managing
system resources, and managing SPE threads.

2. The SPE (Synergetic Processing Element) is core
optimized for running compute-intensive applications.
SPEs are single-instruction, multiple-data (SIMD)
processor elements that are meant to be used for data-
rich operations allocated to them by the PPE. Each
SPE contains a RISC core, 256 KB software-
controlled locale storage (LS) for instructions and
data, and a 128-bit, 128-entry unified register file. The
SPEs provide a deterministic operating environment.
An SPE accesses both main memory and the local
storage of other SPE’s exclusively with DMA
commands. They do not have caches, so cache misses
are not a factor in their performance and programmer
should to avoid branch intensive code.

Such a heterogeneous multi-core architecture of the Cell CPU
requires that a developer adopts several new programming
paradigms in order to fully utilize the full potential of Cell B/E
processor. In addition to the GNU tools (including C and C++
compilers) which are provided with the Software Developer's
Kit for Multicore Acceleration [11], one can also use IBM XL
C/C++ Compiler [9] for Multicore Acceleration, specialized for
Cell Broadband Engine solution.

• Intel Server System SR1625UR based on latest Intel
Xeon processors with Nehalem micro-architecture. Two quad-
core Xeon X5570 processors are present within the system.
These CPUs run on 2.93GHz with triple channel DDR3
memory subsystem with support of latest SSE4.2 extensions.
They are equipped with 256 Kb of Mid-Level cache per core
and 8MB of cache shared between cores (L3). With this micro-
architecture Intel reintroduced its Hyper-Threading technology
that supposed to enhance parallelization of computational
tasks. Beside GCC, Intel ICC compiler, as for the other Intel
system, was used for obtaining results of testing described in
this paper.

SEE-GRID-SCI
e-INFRASTRUCTURE
for regional eScience

User Forum 2009

135

IV. RESULTS
Here we describe the performed optimization and the

obtained benchmarking results. In all benchmarks in this paper
we have executed the code with Nmc=5120000 MC samples
for the quantum-mechanical amplitude of the quartic
anharmonic oscillator with the boundary conditions q(t=0)=0,
q(t=T=1)=1, with zero anharmonicity and with level p=9
effective action. We always used the same seed for SPRNG
generator so that the results can be easily compared. Section A
gives results for a serial SPEEDUP code on each platform
with different compilers. These results are later used as a
reference in benchmarking and in verification of the optimized
code. Section B gives results for SPEEDUP MPI code tested
on Intel platform, while Section C presents the threaded
SPEEDUP code and results obtained with Intel and POWER
architectures. In Section D we give results for the Cell
SPEEDUP code, and in Section E we compare all results.

A. Serial SPEEDUP code

For Intel Xeon 5405 Blade server we compiled the serial
code with GCC C compiler using optimization flag -O1, which
turns to give the best performance. Along with GCC, we also
used ICC compiler with optimization flag –fast, equivalent to
the combination -O3 -xHOST -ipo -no-prec-div -static.

Intel Nehalem platform shows best results with GCC flags -
O1 –funroll-loops (loop unrolling), and with the -fast flag for
Intel's ICC.

On POWER6 and Cell Blades the code was compiled with
both GCC and IBM XLC compiler. On Cell Blade we used the
flags -O1 -funroll-loops with GCC, and with XLC flags -O5
-qaltivec -qenablevmx. Appropriate versions of GCC and XLC
binaries were used (ppu-gcc and ppuxlc). On POWER6 Blade -
q64 -O5 –qaltivec -qenablevmx flags were used with XLC and
-O3 -funroll-loops with GCC. Results for the serial program
benchmarking are presented in Table 1.

Platform/Compiler GCC ICC XLC

Intel Xeon 5405 (6280±20) s (1600±20) s -

Intel Nehalem (3520±10) s (920±10) s -

POWER6 (8980±10) s - (1830±10) s

Cell (25350±50) s - (12550±50) s

Table 1: Average times of execution of a serial SPEEDUP code on all
tested platforms with different compilers. The flags used are given in the text.

Table 1 demonstrates the significant increase in the speed
of the execution of the code when platform-specific compiler is
used. New Nehalem platform in conjunction with ICC
compiler gives the best performance compared to all other
platforms. On the other hand, it is clear that Cell version,
running only on the PPE is no match for other two platforms.
Real utilization of the Cell platform can be achieved only when
additional available SPEs are used.

B. MPI SPEEDUP code

On the Intel Blade Xeon 5405 and Intel Nehalem platform,
we tested the performance of the SPEEDUP code with MPI
implementation, compiled by the ICC compiler with -fast flag.
Also we tested the behavior of Nehalem CPUs with Hyper-
Threading feature enabled and disabled. The results are shown
in Figure 1.

Figure 1: Average times of execution of the MPI SPEEDUP code on Intel

Xeon 5405 and Intel Nehalem platforms compiled with ICC (-fast flag). The
curves give fits to the expected dependence A + B / (Number of MPI
processes).

As we can see, the MPI version of the code shows excellent
scalability with the number of MPI processes. When the
number of MPI processes exceeds the number of physical cores
in the system (eight), the operating system is trying to
distribute the load among already fully loaded cores, which
creates additional overhead. This is less pronounced at the
Nehalem platform, with the Hyper-Threading enabled. In that
case, as shown in Figure 2, slightly better results are achieved
when the numbers of MPI instances exceeds the number of
physical cores. Below this threshold the results are identical.

Figure 2: Average times of execution of the MPI SPEEDUP code on Intel

Nehalem platform compiled with ICC (fast flag) with Hyper-Threading
technology enabled (HT on) and disabled (HT off).

SEE-GRID-SCI
e-INFRASTRUCTURE
for regional eScience

User Forum 2009

136

MPI implementation gives minimal execution time of
around 100s for Nehalem platform and around 200s for Intel
Xeon 5405.

C. Modified SPEEDUP code

To fully optimize the parallel SPEEDUP code, instead of
using MPI API, we implemented its threaded version using the
POSIX threads (pthreads). Each thread calculates Nmc/Nth of
Monte Carlo samples, where Nth represents the number of
initiated threads. Also, some minor additional modifications of
the code were performed, focusing on specific improvements
for p=9 effective action. The Intel version of the code was
compiled with ICC, while the POWER version was compiled
with XLC. The obtained numerical results are summarized in
Figure 3.

Figure 3: Average times of execution of the threaded SPEEDUP code on
Intel and POWER6 platforms.

Figure 4: Average times of execution of the threaded SPEEDUP code on
Intel Nehalem platform with Hyper-Threading enabled (HT on) and disabled
(HT off).

With the threaded code we obtained non-negligible

increase in the speed of the code compared to previous

implementations. Again, Intel Nehalem with the ICC compiler
was much faster than all other platforms. If we compare the
increase in the speed gained by implementing the threaded
code, the POWER6 platform shows a 12% performance gain
(threaded vs. the serial code), while we get around 6% gain for
Intel platforms (threaded vs. MPI code).

The minimal execution time with the threaded code was
190s on Intel Xeon 5405 Blade, 95s on Intel Nehalem and
235s on the POWER Blade. Again, we can see a small impact
on the execution speed when Hyper-Threading technology is
enabled on the Intel Nehalem CPUs (Figure 4.).

Figure 5: Times of execution of the threaded SPEEDUP code on Intel
Nehalem platform with ICC and GCC compiler.

We have also observed an interesting behavior on Intel
platforms, which is presented in Figure 5. Although the
threaded code gives better performance when compiled with
ICC compared to the code compiled with GCC, the times of
execution of the ICC-complied code for the same parameters
and the same number of threads differ significantly for several
consecutive runs. Such relatively large scattering of execution
times around the average might be accredited to the low-level
hardware implementation details of Intel CPUs, as well as to
the aggressive optimization techniques used by the –fast flag.
On the other hand, the execution of the same code compiled
with GCC did not exhibit such behavior. This might point to
the load-balancing issues when aggressive optimization is
used with ICC, while GCC is not able to achieve such level of
optimization and thus is not affected. The similar behavior
was also observed on Intel Xeon 5405 platform.

D. Cell SPEEDUP code

The heterogeneity of the Cell architecture required the
slight rearrangement of the SPEEDUP code. We used MPI
version of the code as a basis, and modified it so as to separate
serial sections to be executed on the PPE from the parallel
sections that can be executed on as many SPEs as available in
the system. Our main implementation idea was to create a
number of pthreads on the PPE that will pass control and start

SEE-GRID-SCI
e-INFRASTRUCTURE
for regional eScience

User Forum 2009

137

execution of the code on the dedicated SPE for each pthread.
Each SPE performs Nmc/Number_of_SPEs Monte Carlo steps,
running the same code, only with different parameters passed
by the PPE. After all SPEs finish their work, the final
processing of gathered data is done on the PPE.

The main problem in a proper porting of the SPEEDUP
code to the Cell architecture was missing Cell SPRNG library
code that can be compiled and executed on each SPU. For this
reason, we have compiled SPRNG for the PPE and performed
all random number generation operations only on PPEs. This
was done in parallel through several pthreads, distributed
between both PPE processors of a QS22 Blade. Each pthread
was associated with one of SPEs and synchronized with it
using the mailbox technique. It is one of the simplest hardware
based ways of communication within Cell CPU. The PPE
mailbox checking is implemented through the interrupt,
without active waiting (such as polling through the loop).
Access to the main memory by all SPEs is realized through the
Direct Memory Access (DMA) transfers. We have one initial
transfer where control data from the PPE are received, one final
transfer where computation results are sent back to the main
memory and intermediate transfers of generated random
numbers for each MC step. The XLC-compiled code was
superior in the performance compared to the GCC-compiled
code. The results for the XLC-compiled code are shown in
Figure 6.

Figure 6: Average times of execution of the Cell SPEEDUP code. For

comparison, we also give execution times for the code without generation of
random numbers.

As we can see, the fact that only PPEs are used for
generation of random trajectories leads to a saturation of the
performance when we increase the number of used SPEs to
around 4. After that, PPEs are not able to generate random
numbers sufficiently enough, and further increase in the
number of SPEs used does not lead to any improvement in the
performance. In the ideal case, if PPEs would be able to
produce enough random trajectories for all SPEs, the
simulation execution time would be around 260s, as can be
seen in Figure 6 for the code without random number
generation. We also tested the code with the communication
part disabled (no DMA memory transfers). From Table 2 we
see that the communication does not have significant impact on
the execution time and does not represent a bottleneck. To

confirm this, we tested also the code that only generates
random trajectories on PPEs, and observed the saturation in its
performance at about 770s for the given number of Monte
Carlo samples Nmc. This clearly corresponds to the minimal
execution time for the full version of the Cell code in Figure 6.

Number of SPEs
No random
trajectories
generation

No
communication

1 (4220±5) s (4200±5) s

2 (2110±5) s (2100±5) s

4 (1055±5) s (1050±5) s

8 (530±5) s (525±5) s

16 (265±5) s (260±5) s

Table 2: Average times of execution of the Cell SPEEDUP code without

random trajectories generation and without PPE-SPE communication.

Therefore, as we can see, the missing implementation of the
SPRNG library was a limiting factor in fully utilizing the
capabilities of all SPEs of the Cell Blade. However, this
problem would not be even seen in the case when individual
MC steps take more time to finish their calculation, since then
PPEs would be able to generate random trajectories at a
sufficient rate. Such situation can be easily achieved e.g. if one
uses higher effective action level p code [1-4]. We have
demonstrated similar situation in Figure 7, where we have used
unoptimized Cell SPEEDUP code, and where we observe
perfect scaling of the code with the number of SPEs. Disabling
the optimization leads to a much slower execution of the code,
and each MC step takes much more time to be completed, thus
giving enough time to PPEs to generate needed random
trajectories according to the bisection algorithm. This also
demonstrates the fact that specific details of the optimal porting
of an application to the Cell architecture can significantly
depend on the execution run-time parameters. Such situation is
not frequently encountered on other computing platforms, and
is here due to the current limitations of the Cell SPUs, as well
as limitations in their communication model.

Figure 7: Average times of execution of the Cell SPEEDUP code compiled

without optimization. The number of Monte Carlo steps is decreased to
Nmc=5120, since the code without optimization is executed much slower.

SEE-GRID-SCI
e-INFRASTRUCTURE
for regional eScience

User Forum 2009

138

E. Comparison of hardware performance results

The overview of the obtained performance results for all
tested hardware platforms is presented in Table 3. For Intel and
POWER6 platform we give the results for the fully optimized
threaded SPEEDUP code. For the Cell platform we give the
minimal obtained execution time, as well as the execution time
obtained with random trajectories generation disabled, which
corresponds to the full utilization of all SPEs.

Intel Xeon

5405 Intel Nehalem POWER6 Cell Cell ideal

190s 95s 235s 770s 260s

Table 3: Minimal average execution time for each tested platform for the
fully optimized SPEEDUP code. For each platform we have selected the
optimal implementation.

The difference in performance of two tested Intel platforms
can be partially explained by the higher clock frequency of
2.93 GHz for the Nehalem CPU, compared to only 2.0GHz
frequency for the Intel Xeon 5405. However, even if we rescale
the performances of both platforms to the same frequency, we
still see a 30% better performance of the Nehalem platform.
Such significantly better performance is due to the improved
architecture of the newer CPU.

V. CONCLUSIONS

We have ported and optimized Path Integral Monte Carlo
SPEEDUP code to four different computing architectures
(Intel Xeon 5405, Intel Nehalem X5570, IBM POWER6 and
Cell) and used the obtained code for benchmarking of these
hardware platforms. For Intel and POWER6 platforms full
optimization was obtained with the straightforward threaded
version of the code, while the Cell platform required more
complex changes of the code (implementation of separate PPE
and SPE sections of the code). For benchmarking purposes we
have also used different available compilers for each of
architectures, and our results clearly show that platform-
specific compilers always give much better performance.

The SPEEDUP code was most easily optimized on the
both Intel platforms, especially on Intel Nehalem where it
achieves superior performance compared to all other hardware
platforms. Contrary to our expectations based on previous
experiences with the Hyper-Threading technology, it did not
improve the performance of the code significantly.

The Cell platform is demonstrated to be able to achieve
respectable level of performance in the case when individual
MC steps take more time to complete. In the current
implementation, due to the missing Cell SPRNG library,
SPEEDUP code can fully utilize all Cell SPEs only for higher
effective action levels p. However, the tested Cell CPU is no
match for POWER6 or latest Intel CPUs. The Nehalem

platform also significantly outperforms POWER6 CPU,
despite its much higher frequency of 4.0 GHz.

The plans for further development and testing include
porting of SPRNG library to SPEs and implementation of
platform-specific instructions (vectorization) for each tested
platform.

ACKNOWLEDGMENTS
This work was supported in part by the Serbian Ministry of

Science, under project No. OI141035, and the European
Commission under EU Centre of Excellence grant CX-CMCS.
Numerical simulations were run on the AEGIS e-Infrastructure,
supported in part by FP7 projects EGEE-III and SEE-GRID-
SCI. The authors also acknowledge support by IBM Serbia and
Intel Corporation (UK) Ltd.

REFERENCES

[1] SPEEDUP, https://viewvc.scl.rs/viewvc/speedup/
[2] A. Bogojevic, A. Balaz, A. Belic, Phys. Rev. Lett. 94 (2005) 180403
[3] A. Bogojevic, I. Vidanovic, A. Balaz and A. Belic, Phys. Lett. A 372

(2008) 3341-3349
[4] A. Balaz, A. Bogojevic, I. Vidanovic and A. Pelster, Phys. Rev. E 79

(2009) 036701
[5] D. M. Ceperley, Rev. Mod. Phys. 67 (1995) 279
[6] http://sprng.cs.fsu.edu/
[7] ICC, http://software.intel.com/en-us/intel-compilers/
[8] POWER, http://www-03.ibm.com/technology/power/
[9] POWER, http://www-03.ibm.com/technology/power/
[10] Cell B/E, http://www-03.ibm.com/technology/cell/
[11] IBM SDK for Multicore Acceleration,
http://www.ibm.com/developerworks/power/cell/

SEE-GRID-SCI
e-INFRASTRUCTURE
for regional eScience

User Forum 2009

