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\bstract — We present some computational aspects of a new
snalytical method that systematically improves convergence
1 path integrals of a generic theory. The method leads to the
<gnificant speedup of Monte Carlo algorithms for the
calculation of path integrals. We discuss the implementation
o[ the developed code on a cluster as well as the prospects for
ts Grid-enabling.

1. INTRODUCTION

In this paper we present computational aspects of a series
" investigations that have recently been undertaken at the
~cientific Computing Laboratory (SCL) [1] at the Institute
- Physics in Belgrade. The research deals with the
ntimization of Monte Carlo algorithms and codes for the
calculation of path integrals of a generic quantum theory.
‘s is well known, the path integral formalism [2, 3]
cpresents the most concise and flexible formulation of
quantum theories at different leveis (quantum mechanics,
~elativistic and non-relativistic quantum field theory, string
aeory), as well as of many other complex systems
condensed matter physics, materials science, chemistry,
cconomy). In all of these diverse fields the quantities of
nterest can be expressed as path integrals, i.e. as infinite
'mits of multiple integral expressions of the following form
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l'he above expression represents the evolution of the
considered system described by variables g from time 0 to
7. This evolution is determined by a quantity S which,
‘ollowing standard physics nomenclature is called the
iction. Time of evolution is subdivided into N equal steps
oflength ¢ —7/N, with fixed boundary conditions. The

boundary conditions depend on the specific object one is
calculating, however. the action is most often of the form

S = Tjdz (¢272+v (). )
0

l.e. it is solely determined by a potential V. Of course, the
interpretation of the quantity 4 = lim y _, . 4y is quite
different in quantum field theory, in the description of
polymers, or the calculation of stock options.

The very definition of the functional integral makes it
necessary to make the transition from the continuum to the
discretized theory. Discretization is far from unique. In
fact, as we shall see, the details of the discretization
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procedure are extremely important both for analytical and
numerical calculations of path integrals. The naively
discretized action is simply

Nt (52 . X
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Where5n = qn+l i qn 2 and an = (qn.l +qn)/2 To this W
can add arbitrary additional terms like

N-l =4
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n=0
where g is regular when ¢ — 0. This does not change the

continuum theory (N -»w limit) since it goes over

;
into 2 Id, ig(g)- e It vanishes asg’ . Although such
0

additional terms do not change the final result they do
affect the speed of convergence to that result. This paper
reports on some computational aspects of a systematic
analysis of what constitutes the best solution in the class of
all equivalent discretized actions.

There exist several typical groups of complex problems
requiring high performance computing resources focused
on speed rather than data analysis. The classical examples
are ab initio simulations of many body systems. Path
integrals represent the preferred formalism for treating
such systems, or for systems that can be mapped
mathematically onto these. Therefore, numerical treatment
of path integrals is relevant to the solution of many
canonical computing problems. Returning to physics, the
most complex quantum field theory calculations (e.g.
quantum chromodynamics, QCD) have for decades
represented the de facto performance benchmarks for the
fastest supercomputers, as well as one of the principle
reasons for building them. There exist two general
approaches to the numerical treatment of path integrals:
molecular dynamics and Monte Carlo methods. The second
approach [4-7] is applicable in a much wider setting and 1s
the one discussed in this paper.

All the numerical calculations discussed were done on
SCL's Linux cluster Paradox. The cluster consists of 64+2
Xeon 2.8 GHz processors (32 double processor nodes and
server with two processor) with a total of 33 GB RAM,
with 1.5 TB of disk space in the nodes and a RAID-1 array
of SCSI disks in the server. Communication between nodes
is based on a Gigagbit over copper technology established
via a 3Com superstackable Tayer II1 4924 switch, while the
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connection to the academic network is over a dedicated
duplex 1 Gbps optical link. The operating system is Red
Hat 9.0/Scientific Linux 3.0.4. Paradox has an aggregate
speed of Rmax=0.21 Tflops on the Linpack benchmark.
The machine was assembled in April 2004 and upgraded
to the current configuration in March 2005.

Although one of the fastest machines in the region
Paradox certainly can't compare in brute force with the
world's top supercomputers. The current top five machines
are:

1. BlueGene (integrated by IBM for the U.S. Department
of Energy, 32768 PowerPC processors, aggregate
speed of 70.72 Tflops)

2. Columbia (integrated by SGI for NASA/Ames, 10160

Altix processors, aggregate speed of 51.87 Tflops)

EarthSimulator (integrated by NEC for the Earth

Simulator Center, Japan, 5120 processors, aggregate

speed of 35.86 Tflops)

4. MareNostrum (Barcelona Supercomputing Center,
Spain, 3564 PowerPC processors, aggregate speed of
20.53 Tflops)

S.  Thunder (Lawrence Livermore National Laboratory,
4096 Itanium2 processors, aggregate speed of 19.94
Tflops)

(98]

Therefore. the current configuration of Paradox is 337
times slower than BlueGene the current world leader, and
about 100 times silower than the fourth and fifth machines
on the list.

However, the Paradox cluster is dedicated to a small
number of researchers affiliated with SCL and is so
directly competitive with the above machines when one
considers available computing power per user. For
example, the path integral simulations reported here
utilized more than 50% of the machine's resources, while
for all of the above supercomputers resources are shared
by hundreds of users at a given time. Paradox was
designed so as to comply with SCL's principle research
vision of scientific computing as a heuristic tool rather
than brute force number cruncher. In this respect the
research concerning path integrals has allowed us to fulfill
this goal. Through numerical experiments made possible
by our cluster we first uncovered crucial properties of
generic path integrals that brought about a significant
speedup of numerical algorithms. We were then able to
use that intuition to analytically derive these properties.

The following sections deal with the implementation of
our code on an MPI cluster as well as with various aspects
related to the porting of that into a Grid environment.

II. PATH INTEGRAL MONTE CARLO ON CLUSTERS

Monte Carlo represents a powerful numerical tool for
solving mathematical problems using (pseudo)random
numbers. Various aspects of the Monte Carlo method are
applicable for solving a wide range of different problems.
However, its greatest advantage is in the calculation of
multiple integrals — the greater the number of integrals the
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bigger the advantage over other numerical methods. This &
easily shown. In standard quadrature formulas for integrat
relative errors & are proportional tog", where & is S
coarseness of discretization and 7 depends on the spec
quadrature formula. ’

4

Fig. 1 The Paradox cluster at the Scientific Computing Labes
ry in Belgrade.

The number of points in which we sample the integras.
inversely proportional to &, so that the CPU time
calculating d-dimensional integrals satisfies 7;,, =&

As a result quadrature formulas satisfy

—n/
5 x TCPU /d ,

and we can see, for large d, the ratio n/d becomes &
small irrespective of the value of n. As a resull
decrease of relative error requires very large times
calculation. On the other hand, Monte Carlo calculat:
show the superior behavior

O x Tcpun%'

Notwithstanding the fact that Monte Carlo is ide
suited to path integral calculations, the problems we
often faced with are exceptionally demanding in comp
resources. For example, in QCD the question wheses
quarks are confined in mesons and nuclei can net
treated numerically as it is far outside the scope of cume
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supercomputing power even if one considers the coarsest
discretizations.

For this reason we have embarked on a set of analytical
nvestigations coupled to numerical experiments geared at
setter understanding the configurations that dominantly
contribute to path integrals. The central idea was the study
it the relation between different discretizations of the
same theory. Following this guiding idea we arrived at a
nath integral generalization of the famous Euler
summation formula for ordinary integrals. This formula
made it possible to decrease the error of the N-fold

liscretization of a generic path integral from N~ to N °.
I'he derivation was analytical, however a crucial aspect of

the proof of N = dependence escaped us, i.e. we only saw
 numerically. Building on this we set up a series of
numerical investigations which ultimately gave us the hint
how to [8, 9]:

) Analytically prove the new N dependence, and

) Generalize the behavior (through an asymptotic

o

J

expansion) to N7 for arbitrary level p. So far we
have done explicit calculations up to p = 9, i.e. this
has led to an eight order of magnitude improvement in
the convergence of the algorithm for a general path
integral.

As we have seen in Fig. 2, by using larger levels p we
drastically improved convergence to the continuum limit.
An important consequence of this is that we can obtain the
same precision using much smaller values of V, i.e. much
coarser discretizations. This is at the root of the speedup
that we find. However, there is a price to be paid. The
algebraic complexity of the discretized actions that need to
be used at higher p levels grows exponentially, putting an
upper bound to p levels that are feasible to use. From Fig.
3 we see that p = 9 is still far from that upper bound — the
cain of eight orders of magnitude in the speed of
convergence far outweighs what is roughly a ten fold
increase in computation time due to complexity.

The displayed numerical data shows explicitly what we
have derived analytically — that the p level results differ
from the continuum amplitudes as polynomials starting

with. N 7. Because of this, the deviations from the
continuum limit : AL;‘” — Al become exceedingly small for

larger values of p making it necessary to use ever larger

values of N, . so that the Monte Carlo statistical error

does not mask these extremely small deviations. For
p = 6we see that although we used an extremely large

number of Monte Carlo samples (NMC =3.68 410”) the
statistical errors become of the same order as the
deviations already at N >8. For p=9 this is the case
even for N =2, i.e. we already get the continuum limit
within a Monte Carlo error of around 107, The simulation
that led to this graph took about a week on the Paradox
cluster, a consequence of the fact that we needed to

investigate exceedingly small reiative errors (eight decimal
precision). Without the speedup in the algorithm these
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kinds of calculations would be impossible on any machine.
Standard calculations, however, require only several
decimal places accuracy, and the required computation
time for a generic 1d theory at level p =9 is on the order

of several minutes on Paradox. The new algorithm makes
it even practical to do such path integrals on a single PC.

Fig. 2 The deviations from the continuum limit lf‘l,(\m ~ 4l as a
!

function of N for p = 1,2,4 and 6 (top to bottom). This particular
plot is for the case of an anharmonic oscillator with quartic
coupling in a non-perturbative regime. The number of Monte
Carlo samples used was Ny =9.2 10° for p = 1.2, Nyc = 9.2 10"
for p =4, and Ny = 3.68 10" for p = 6. Dashed lines correspond
to appropriate 1/N polynomial fits to the data. The solid lines give
the leading 1/N behavior. The level p curve has a I/N 7 leading
behavior.

10 |

Fig. 3 Relative increase in computation time that comes about
from the increased complexity of expression for higher p level
effective actions.

This work is currently in the process of being extended
to higher dimensional theories with more complex field
content. Indications are that the speedup that will be
achieved will make tractable calculations of even the most
demanding theories.

At the end of this section we briefly comment on the two
Monte Carlo algorithms developed for simulations in this
investigation. In the first algorithm configurations were
generated by a Gaussian distribution function obtained
using a semi-classical expansion. The computing time of
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this algorithm scales as N? N

MC
diagonalize the quadratic form in the exponential of the
distribution function. In the second algorithm we
implemented the bisection method [6]. which scales as

N N, - Therefore, the bisection algorithm is the method

of choice for large values of N. On the other hand, as we
have illustrated above, our improved method allows us to
obtain very precise results using even small values of N, In
that region we have found the two algorithms to be
comparable both in precision and running time. Both
algorithms were used as a double check of all results. In
both cases we needed to use random number generators
which give a large number of uncorrelated random
numbers in a fashion suitable for parallel programming.
Our primary random number generator was the Scalable
Parallel Random Number Generator library [10, 11]
(SPRNG). Following the good practice suggested by
Ferrenberg et al. [12] we have checked all our results using
a different random number generator. Checks were made
with the Numerical Recipes' RAN3 generator [13] with a
different seed for each MPI process. Agreement was in all
cases well within a one o interval implying that there were
no hidden systematic errors present in either the
algorithms or the random number generators.

since it is necessary to

[1I. FUTURE PROSPECTS: PATH INTEGRAL MONTE
CARLO ON GRIDS

As we have mentioned in the previous section, the new
analytical input that has been obtained has led to an
immense speedup in Monte Carlo algorithms for path
integrals. For the first time it may be possible to do even
the most complicated simulations (e.g. confinement in
QCD) on existing machines. However, irrespective of the
above speedup, the resources that will be needed will
certainly exceed the capacities of machines like Paradox.
On the other hand, the new Grid paradigm of computing
on demand makes it possible to solve these long standing
problems using shared high performance resources at the
level of Europe. It is possible that even the resources at the
level of a region like SEE would suffice for this task.

Having this in mind SCL has joined the SEE-GRID
project and dedicated the following resources to the SEE-
GRID VO: three servers (Ul + CE, SE, RB) as well as nine
WNs with 17 processors with LCG-2.3.1 middleware.
These resources are put at the disposal of SEE-GRID VO
(55% of resources [14]) as well as to Serbia's National VO
AEGIS (Academic and Educational Grid Initiative of
Serbia) (45% of resources).

Our key near term goal is to build a Grid-enabled
version of our Path Integral Monte Carlo code, and to
measure the relative performance of the same seventeen
processors working as a local cluster and as a part of the
Grid. The trivial parallelization structure of Monte Carlo
algorithins makes this a fairly straight forward task. On the
other hand our experience so far leads us to believe that
there will be only modest overheads to pay in going over
to the Grid. As a result, we believe that'demanding Grid-
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enabled path integral calculations will soon be
within the SEE-GRID framework.
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