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b tract - We pre ent some computational aspects of a new 
I. tical method tbat systematicall ' improves convergence 

path integrals of a generic theory. The method leads to tbe 
!tDificant	 speedup of onte Carlo algorithms for the 

culation of path integra . We discuss the implementation 
the developed code on a cluster as well as the prospects for 
Grid-enabling. 

1.] TR DU no 

[n this paper we present computational aspects of a series 
" investig tions that have recently been undertaken at the 
ientific Computing Laboratory (SCL) [1] at the Institute 

. Physics in Belgrade. The research deals with the 
timizati n of Monte Carlo algorithms and codes for the 

_alc~lation of path integrals of a generic quantum theory. 
IS well kn n, the path integral tormalism [2, 3] 

epre ents the most concise and flexible formulation of 
antum theori at different levels (quantum mechanics, 
lativi tic and 11 n-relativistic quantum field theory. string 
eory), as well as of many other complex systems 

nden.ed matter physics, materiaJs science, chemistry, 
- nom). [n all of these di erse fields the quantities of 
nterest can e expressed as path integrals. i.e. as infinite 
Imits of multiple integral expressions of the following fonn 

.... !!...
I 2 

All' = -2- fdq"" dqj _I -s" (I)
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[he above expression represents the evolution of the 
.:onsidered sy tern described by variables q from time 0 to 
T. This evoluti n is determined by a quantity which, 
following standard physics nomenclature is called the 
:letion. Time of evolution is subdivided into N equal st ps 
of length EN =T 1 with fixed boundary conditions. The 

boundary conditi ns depend on the sp cific object one is 
~ Iculating, however. th action i most often of the form 

T 

S =	 Jdt((/ 12+ V(q»), (2) 
o 

i.e. it is solely determined by a potential V. Of course, the 
Interpretation of the quantity A = lim -c A, is quite 
different in quantum field theo ,in the des ription of 
polymers. or the calculation f stock options. 

The very definition of the functional integral makes it 
nccess ry to make the transition from the continuum to the 
discretized theory. Discretization is far from unique. ]n 
fact as we shall see, the details of the discretization 
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procedure are extremely important both for analytical and 
numerical calculations of path integrals. The 
discretized action is simply 

N-I [ 52 .... 
SN = L ~+&yV(qn)' 

n=O & / 

where5 =q I-q , and -q =(q +q )/2. To 
n n+ nil" I I " 

can add arbitrary additional terms like
".-1 
LeN5,~g(qJ ' 
n-O 

naively 

(3) 

this we 

(4) 

where g is regular when B --; O. This does not change thetV	 ~ 

continuum theory (N -~ 00 limit) since 

into£,~ 
TJdt l/g(q)' i.e. it vanishes as&.~. 
o 

additional terms do not change the final 

it goes over 

Although such 

result they do 
affect the speed of convergence to that result. Thi paper 
reports on some computational aspects of a systematic 
analysis of what constitutes the best solution in the class of 
all equivalent discretized actions. 

There exist several typical groups of complex problems 
requiring high perfonnance computing resource focused 
on speed rather than data analysis. The classical examples 
are ab initio simulations of many body system . Path 
integrals represent the preferred fonnalism for treating 
such systems, or for systems that can b mapped 
mathematically onto these. Therefore, numerical treatment 
o path integrals is relevant to the solution of many 
canonical computing problems. Returning to ph ics, the 
most complex quantum tield theory calculations ( .g. 
quantum chromodynamics, QCD) have for decades 
r presented the de facto performance benchmarks for the 
fastest supercomputers, as well as one of the principle 
reasons for building them. There exist two general 
approaches to the numerical treatment of path integrals: 
molecular dynamics and Monte Carlo methods. The second 
approach [4-7] is applicable in a much wider setting and is 
the one discussed in this paper. 

All the numerical calculations discussed were done on 
SCL's Linux cluster Paradox. The cluster consist· of 64+2 
Xeon 2.8 GHz processors (32 double processor nodes and 
server with two processor) with a total of 33 GB RAM, 
with 1.S TB of disk space in the nodes and a RA ill-I array 
of SCSI disks in the server. Communication between nodes 
is based on a Gigagbit over capper technology established 
via a 3eom superstackable layer III 4924 switch, while the 
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connection to the academic network is over a dedicated 
duplex 1 Gbps optical link. The operating system is Red 
Hat 9.01 cientific Linux 3.0.4. Paradox has an aggregate 
speed of Rmax=0.21 Ttlops on the l.inpack benchmark. 
The machine was assembled in April 2004 and upgraded 
to the current configuration in March 2005. 

Although one of the fastest machines in the region 
Paradox certainly can't compare in brute force with the 
world's top supercomputers. The current top five machines 
are: 
1.	 BlueGene (integrated by IBM for the U.S. Department 

of En rg , 32768 PowerPC processors, aggregate 
speed of 70.72 Tflops) 

2.	 Columbia (integrated by SOl for NASA/Ames, 10160 
Altix processors, aggregate speed of51.87 Ttlops) 

3.	 EarthSimulator (integrated by NEC for the Earth 
Simulator Center, Japan, 5120 processors, aggregate 
speed of35.86 Tflop,) 

4.	 MareNostrum (Barcelona Supercomputing Center, 
Spain, 3564 PowerPC processors, aggregate speed of 
20.53 Tflops) 

5.	 Thunder (Lawrence Livermore National Laboratory, 
4096 Hanium2 processors, aggregate speed of 19.94 
Tflops) 

Therefore, th current onfiguratjon of Paradox i 337 
times slower than BlueGene the current world lead r, and 
about 100 times slower than the fourth and fifth machin s 
on the list. 

However the Paradox cluster is dedicated to a small 
number of res archers affiliated with SeL and is so 
directly competitive with the above machines hen one 
considers available computing power per user. For 
example, th p th integral simulations reported here 
utilized more than 50% of the machine's reSOlU'ces. while 
for all of the above supercomputers resources are shared 
by	 hundreds of users a1 a given time. Paradox was 
designed so as to comply with SCl's principle research 
vi ion of scientific computing asa heuristic tool rather 
than brute force number cruncher. In this respect the 
re earch concerning path integrals has allowed us to fulfill 
thi	 goal. Through numerical experiments made possible 
by	 our cluster we tirst uncovered crucial properties of 
generic path integrals that brougbt about a significant 
peedup of numerical algoritluns. We were then able to 

use that intuition to analytically derive these properties. 

Th following ections deal with the implementation of 
our code on an MPI cluster as well as with various aspects 
related to the pOlting of that into a Grid environment. 

II. PATH INTEGRAL MONTE CARLO 0 CLUSTERS 

Monte Carlo represents a powerful numerical tool tor 
solving mathematical problems using (pseudo)random 
numbers. Various aspects of tbe M nte Carlo method are 
applicable for solving wide range of different problems. 
However, its greatest advantage is in the calculation of 
multiple integrals - the greater the number of integrals the 

bigger the advantage over other numerical methods. 
easily shown. In standard quadrature formulas for inte 
relative errors /5 are proportional to£n, where E. • 

coarseness of discretization and n depends on th 
quadrature formula. 

Fig. 1 The Paradox cluster at the Scientific Computing ~~-~ 

ry in Belgrade. 

The number of points in which we sample the int 
inversely proportional to E, so that the CPU tilT 
calculating d-dimensional integrals satisfies :f:Tcpt 

As a result quadrature formulas satisfY 
s: ._Il/

ILl ,u 'X Tcpu 
and we can see, for large d, the ratio n/d becomo 
small irrespective uf the value of n. As a resu 
decrease of relative error requires very large tim 
calculation. n the other hand, Monte arlo calcul 
show the superior behavior 

s: -~ u 'X T 2.cpu 

Notwithstanding the fact that Monte Carl IS 

suited to path integral calculations, the problems \ 
often faced with are exceptionally demanding in con 
resources. For example, in QeD the question \\ 
quar's are confined in mesons and nuclei can n 
treated numerically as it is far outside the scope of 
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'lIpercomputing power even if one considers the coarsest 
jiscretizations. 

For this reason we have embarked on a set of analytical 
vestigations coupled to numerical experiments geared at 

"l(:tter Wlderstanding the configurations that dominantly 
•ontribute to path ·ntegrals. The central idea was the study 
f the relation between different discretizations of the 

-.arne theory. following this guiding idea we arrived at a 
ath integral generalization of the famous uler 

rummation fonnula for ordinary integrals. This formula 
'Tlade it possible to decrease the error of the N-fold 

jiscretization of a generic path integral from ffl to N-2 
. 

The derivation was analytical, however a crucial aspect of 

he proof of N-2 
dependence escaped us, i.e. we only saw 

t numerically. Building on this we set up a series of 
numerical inv stigations which ultimately gave us the hint 
how t [8,9J: 

a)	 Analytically prove the new N-2 dependence, and 
Generalize the behavior (through an asymptotic 

expansion) to N-P for arbitrary level p. So far we 
have done explicit calculations up to p = 9, i.e. this 
has led to an eight order of magnitude improvement in 
the convergence of the algorithm for a general path 
integral. 

:\5 we have seen in Fig. 2, by using larger levels p we 
drasticall improved convergence to the continuum limit. 
. n important cons quence of this is that we can obtain the 
_mne precision using much smaller values of N i.e. much 
coarser discretizations. This is at the root of the speedup 
that we find. However, there is a price to be paid. The 
algebraic complexity of the discretiz d actions that need to 
be used at higher p levels grows exponentially, putting an 
upper bound to p Ie els that are feasible to use. From Fig. 
3 we see that p = 9 is till far f)'om that upper bound - the 
gain of eight ord rs of magnitude in the sp ed of 
convergence far outweighs what is roughly a ten fold 
increase in computation time due to comple. 'ty. 

The displayed numerical data shows explicitly what we 
have derived analytically - that the p level results differ 
rom the continuwn amplitudes as polynomials starting 

with. /VP. Because of this, the deviations from the 

continuum limit IAV') - Al become exceedingly small for 

larger values of p making it necessary to use ever larger 
alues of NMe so that the Monte Carlo statistical error 

does not mask these extremely small deviations. For 
p = 6 we see that although we used an extremely large 

number of Mont Carlo samples (N
MC 

= 3.68 . 1011) the 

tatistical errors become of the same order as the 
deviations alread at N ~ 8. For p =9 this is the case 

even for N =2, i.e. we already get the continuum limit 

within a Monte Carlo error of around 10-8 
. The simulation 

that led to this graph took about a week on the Paradox 
cluster, a consequence of the fact that we needed to 
investigate exceedingly small relative errors (eight decimal 
precision). Without the speedup in the algorithm these 
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kinds of calculations would be impossible on any machine. 
Standard calculations, however, require only several 
decimal places accuracy, and the required computation 
time for a generic ld theory at level p = 9 i on the order 

of several minutes on Paradox. The new algorithm makes 
it even practical to do such path integrals on a single PC. 

0.1	 ;--------~--~----,----, 

1e-06 

le-O? 
,,=1 + 

Ie-OB 1'=2 llIi 
,,-4 • 

le-09 p=6 • 
1 10 

Fig.	 2 The deviations from the continuum limit IA,~P) - Al as a 

function of N for p = 1,2,4 and 6 (top to bottom). 'his particular 
plot is for the case of an anharmonic oscillator with quartic 
coupl ing in a non-perturbative regime. The number of Monte 

arlo samples used was NMC = 9.2 109 for p = 1.2, NAlc = 9.2 1010 

for p = 4, and HI1 = 3.68 lOll for p = 6. Dashed lines correspond 
to appropriate liN polynomial fits to the data. The solid lines give 
the leading liN behavior. The level p curve has a lIN Pleading 
behavior. 

10 

1 

6 ? 81 2 3 4 5 

fig. 3 Relative increase in computation time that comes about 
from the increased complexity of expression for higher p level 
effective actions. 

This work is currently in the process of being extended 
to higher dimensional theories with more complex field 
content. Indications are that the speedup that will be 
achieved will make tractable calculations of even the most 
demanding theories. 

At the end of this section we briefly comment on the two 
Monte Carlo algorithms deve'loped for simulations in this 
investigation. In the first algorithm configurations were 
generated by a Gaussian distribution function obtained 
using a semi-classical expansion. The computing time of 

9 
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this aJg rithm scales as N 2 
N\1C since it is necessary to 

diagonalize the quadratic form in the exponential of the 
distribution function. In the second algorithm we 
implemented the bisection method [6], which scales as 
N· NMe . Th refore, the bisection algorithm is dle method 

of choice for large values of N. On the other hand, as we 
have iJlustrated above, our improved method allows us to 
obtain very precise results using even small values ofN. In 
that region we have fou d the two algorithms to be 
comparable both in precision and running time. Both 
algorithms were used as a double check of all results. In 
both cases we needed to use random number generators 
which give a large number of uncorrelated random 
numbers in a fashion suitable for parallel prob'Tamming. 
Our primary random number generator was the Scalable 
Parallel Random Number Generator library [10, 11] 
(SPRNG). Following the good practice suggested by 
Ferrenberg et al. [12] we ha e checked all Oill results using 
a different random nwnber generator. Checks were made 
with the Numerical Recipes' RAN3 generator [13] with a 
different seed for each MPI process. Agreement was in all 
cases well within a one (J interval implying that there were 
no hidden systematic errors present in either the 
algorithms or the random number generators. 

Ill. FUTURE PROSPECTS: PATH INTEGRAL MONTE 
C RLOONGRID 

As we have nentioned in the previous section, the new 
analytical input tbat has been obtained has led to an 
immense speedup in Monte Carlo algorithms for path 
integrals. For t e fir t time it may b possible to do even 
Ihe most complicated simulations (e.g. contin ment in 
QCD) on existing machines. Hower, in' pective of the 
above speedup, the resources that ill b needed will 
ertainly exceed the capaci i s of machin s like Paradox. 

On the other hand, the new Grid paradigm of computing 
on demand makes it possible to sol e these long standing 
problems using shared high perfonnance r urces at the 
level of Europ . It is po ible that even teres urce at the 
level ofa region like SEE would suffice for this task. 

Having this in mind CL has joined the SEE-GRID 
project and dedicated the foU wing resources to the SEE
GRID YO: three servers (VI + CE, S", RB) as well as nine 
WN with 17 proc ssors with LCG-2.3.1 middleware. 
The e resources are put at the disposal of EE-GRID VO 
(55% ofresoillc s rt4]) as well as to Serbia's National VO 
AEGIS (Academic and Educational Grid Initiative of 
Serbia) (45% of resources). 

Our key near tenn goaJ is to build a Grid-enabled 
version of our Path Int gral Mo t Carlo code, and to 
measure the relative perfonnance of the same sev nte 
pr ces ors working as a local clu ter and as a part of the 
Grid. The trivial parall lization structure of Monte Carlo 
algorithms makes thi a fairly straight forward task. On th 
other hand our experience 0 far leads to believe that 
there will be only modest verheads to pay in going 0 er 
to the Grid. As a result, we believe that demanding Grid-

enabled path integral calculations wi II soon 
withrn the SEE-GRID framework. 

The investigations presented in this paper \\ 
the cientific Computing Laboratory at the w:o:tS:::::': 
Physics in Belgrade. The research was supported 
the Ministrv of Science and Environmental Pru..~....~ 

the Republic of Serbia through projects 1486 
This publication is based on work perfomle 
framework of the FP6 project SEE-GRID, which 
by the European Community. The SEE-GRID 
consists of eleven contractors: ten represen 
incubators of National Grid Initiatives (NGls) 
European countries and CERN. The 
contractors that represent NGls are: GRNET (G 
SZTAKI (Hungary), lei (Romania), CLPP (But 
TVBTTAK (Turkey), ASA (Albania), Bl 
(Bosnia-Herzegovina), UKIM (FYRoM), UOS ( 
Montenegro), RBI (Croatia). 
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