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Abstract. We investigate numerically conditions for order and chaos in the dynamics of an interacting Bose-
Einstein condensate (BEC) confined by an external trap cut off by a hard-wall box potential. The BEC is
stirred by a laser to induce excitations manifesting as irregular spatial and energy oscillations of the trapped
cloud. Adding laser stirring to the external trap results in an effective time-varying trapping frequency in
connection with the dynamically changing combined external+laser potential trap. The resulting dynamics
are analyzed by plotting their trajectories in coordinate phase space and in energy space. The Lyapunov
exponents are computed to confirm the existence of chaos in the latter space. Quantum effects and trap
anharmonicity are demonstrated to generate chaos in energy space, thus confirming its presence and
implicating either quantum effects or trap anharmonicity as its generator. The presence of chaos in energy
space does not necessarily translate into chaos in coordinate space. In general, a dynamic trapping frequency
is found to promote chaos in a trapped BEC. An apparent means to suppress chaos in a trapped BEC is

achieved by increasing the characteristic scale of the external trap with respect to the condensate size.

1 Introduction

Although the literature on chaos is vast [1-24], there is
still quite a number of phenomena that need to be ex-
plored and understood that would enable full control of
chaos. Perhaps a deeper examination of the mechanisms
causing chaos is timely. This is necessary, for example,
in the construction of quantum computers [17,25-28] be-
cause chaos severely reduces the accuracy of a quantum
computational process and can even destroy it. The Bose-
Einstein condensation (BEC) community is currently in-
terested in eliminating chaos in the dynamics of a BEC
to achieve highly accurate quantum computers of the fu-
ture. There have also been investigations on the chaotic
quantum billiard [6,9,29-31], which is a dynamical system
deeply related to, and which is used to explain some of the
results of, the present study. In general, the present work
seeks ways for controlling chaos by obtaining a deeper un-
derstanding of the mechanisms that promote it. What is
also particular about the present work is that it explicitly
examines chaos in energy space. This has rarely been done
before to the best of our knowledge.

% e-mail: rogersakhel@yahoo.com

The chaotic dynamics of a BEC has drawn substan-
tial interest in the last decade or two. Theoretical studies
have included chaotic oscillations in an attractive BEC [4],
chaos in optical lattices [14,32], the depletion of a BEC
in a time-dependent trap [33], the Gross-Pitavskii equa-
tion (GPE) with a chaotic potential [34], coherence and
instabilitiy in a BEC driven by periodic d-kicks [35], finite-
temperature non-equlibrium dynamics in a BEC [36], as
well transitions to instability in a kicked BEC [30,37]. Ex-
perimentally, there have been studies of dynamical insta-
bilities of BECs in optical lattices [38,39]. In this pa-
per, we provide a comprehensive investigation of aspects
of chaotic dynamics present in a two dimensional GPE.

The goals of the present work are: (1) to obtain con-
ditions for order and chaos in the dynamics of an inter-
acting trapped BEC; and (2) to confirm the existence of
chaos in its energy space. Our major task is to understand
the origins of chaos in a trapped BEC, particularly when
the trapping potential is time-dependent. The existence
of chaos is confirmed by well-established methods, such as
the phase-space trajectories [4], the energy-space trajec-
tories, and the Lyapunov exponent [1,31].

We consider a trapped BEC excited using a red- or
blue-detuned laser potential (RDLP or BDLP, respec-
tively). The dynamic stirring causes the overall trapping
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frequency to vary with time, destroys frequency lock-
ing, and thereby causing chaos [10]. In addition, the blue
(red)-detuned laser tends to reduce (increase) the phase-
space density [40] available for excitations in the combined
laser+external potential trap. Indeed, a comparison be-
tween the latter effects of different phase-space densities
unmasks a considerable difference in the dynamics that is
strongly related to the way a laser modifies the energy-
level structure of the external trapping potential. This
difference enables the effect of phase-space density on the
occurrence of chaos to be analyzed. Moreover, the role
of quantum effects [16] and trap anharmonicity is par-
ticularly revealed in the generation of spatial and energy
chaos. Order in the spatial dynamics is then demonstrated
not to imply order in the energy dynamics. Moreover,
the conclusions reached here discourage in particular the
use of an anharmonic trap to surround an optical lattice,
e.g., when it comes to the transport of atomic qubits us-
ing an optical tweezer to implement collisional quantum
gates [27]. This is because the anharmonic trap can cause
chaotic oscillations inside the system, which can destroy
the process of quantum computation.

Although BECs excited by stirrers have been
addressed both experimentally [41-55] and theoreti-
cally [27,56-60], using blue [48,50,52,53] as well as red-
detuned lasers [40,51,54,61-69], very little attention has
been paid to energy dynamics such as the soliton en-
ergy [70-72] and the total energy [73]. In addition, a de-
tailed examination of the effects of different phase-space
densities (different laser amplitudes) is still lacking. We
therefore revisit our previous systems [74,75] with the
same excitation methods and analyze their dynamics from
a different perspective.

The organization of the paper is as follows. In Sec-
tion 2, the system of the present study is introduced along
with our motivation. Then the GPE with the stirring laser
potential is briefly discussed. Next, the physical observ-
ables are presented with the Lyapunov exponent acting as
an important measure for the degree of chaos. A mode ex-
pansion of the GPE wavefunction is also considered from
which further information about the chaos in the wave-
function is obtained. In addition, the units and numerics
are outlined. In Section 3, the results of the simulations
are displayed and discussed. The effect of the phase-space
density, trapping frequency, trapping anharmonicity, and
quantum effects on chaos are explored in a rigorous man-
ner. In Section 4, the results are analyzed. The irregular
dynamics is rigorously tested for order and chaos by well-
established methods. In Section 5, the validity of our GPE
approach is established. The paper ends with conclusions
in Section 6. In Appendix, equations are derived that ex-
plain the behavior of the effective trapping frequency of
the laser+trap as a function of position and time.

2 Method

The system is a trapped two-dimensional (2D) BEC cut
off by a hard-wall box potential (BP) boundary [74,75] and
excited by a stirring laser. The external trap varies from
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harmonic to extremely anharmonic. The split-step Crank-
Nicolson (CN) method [76,77] was invoked to solve the
2D time-dependent Gross-Pitaevskii equation (TDGPE)
in real time (see Fig. 2 of Ref. [75]). The calculations
were conducted using the computing cluster of the Max
Planck Institute for Physics of Complex Systems, Dresden,
Germany. In essence, this was a heavy computational
project where for times of order ¢ ~ 10* several days of
CPU time were required to complete simulations.

2.1 Motivation

The prime motivation in exploring this system is to study
chaos in low dimensions. The role played by the hard-
wall boundaries is noteworthy as they generate compli-
cated structures in the density patterns of a trapped BEC,
including those from the nonlinear Talbot effect [74,78].
These patterns arise from the self-interference of an ex-
panding BEC with reflections coming in from the hard
walls. Hard walls are realized experimentally by forming
sheets of light [79]. Energy is thereby contained, and can
be used to excite the BEC to very high energies. Once
excited, it remains in these states for times long enough
for chaotic behavior to be explored. Our study has been
impelled by a quite relevant investigation by Fujimoto and
Tsubota [43] who studied vortex nucleation in a harmon-
ically trapped 2D BEC via an oscillating barrier; how-
ever they did not address chaos. Another incentive has
been provided from a study of phase effects in a harmoni-
cally trapped BEC which is periodically driven to chaotic
behavior [80].

The importance of the dimple potential (RDLP) is
worth underlining and can be understood from the follow-
ing points: (1) It increases the phase-space density of the
trapped BEC by introducing a richer energy-level struc-
ture; (2) it is able to trap and split a fragment from a
BEC and to transport it away; and (3) it is experimen-
tally realizable and has been used in quite a number of
works. Experimentally, Garrett et al. [40] studied the for-
mation of a BEC in a cigar trap to which a dimple po-
tential was added. Jacob et al. [66] produced in it a BEC
of sodium atoms. Theoretically, it has been proposed [57]
and used [21,59] to model the kinetics of BEC [81] as well
as in an analysis of a BEC in an optical cavity driven by
an external beam [10]. The latter work demonstrated that
the essential features of the chaotic behavior of a BEC are
low-dimensional.

2.2 Gross-Pitaevskii equation and laser potential

The 2D TDGPE, as stated in references [74,75], is

0? 0* - 2
“o2 T oy +V(z,yt) + G le(z,ys )" — i,
x @z, y;t) =0, (1)
where

G= ‘Ui”s V21, 2)
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is the coupling constant with N the number of particles, a
the s-wave scattering length, ¢ = \/h/mwho a length scale,
and A = w,/wh, an anisotropy parameter determining the
width of the ground-state solution in the z-direction, ¢,(z)
with w, the trapping frequency perpendicular to the plane
of the BEC. As demonstrated in reference [76], the z-
dependence of the 3D TDGPE is integrated out to obtain
the 2D form equation (1). p(z,y;t) is the wavefunction of

the system, where fj;o dx fj;o dylp(x,y;t)|? = 1. As be-
fore, f/(x,y;t) = V(z,y;t)/hwn, is an external potential

including the stirring laser and is given by

- o
V(z,y;t) = 4 (|| + Kly[?)

+ Aexp{—fBlz® + (y—vt)?]}.  (3)

Here wp, is the trapping frequency, o the strength of
the external potential with exponents p; and ps, k the
anisotropy parameter, A the amplitude of the stirrer
(A > 0 for BDLP and A < 0 for RDLP), (3 the exponent
determining the width of the stirrer, and v its velocity.
In both cases, the stirrer sweeps the BEC starting from
the center of the system at time ¢ = 0 and moving to-
wards the hard wall in the +y-direction. The stirrer exits
the BP without returning. o(z, y;t) as well as its gradient
V(x,y;t) are assumed to be zero at the BP-boundary.
This is to enforce the hard-wall effect, i.e., imposing a po-
tential of infinite height.

2.3 Energy components and chaos

The total energy is given by [75,82]
0= [ d2r[|w<x,y;t>|2 Vs )l )
g
+ Slo(olt]. (@

where the limits of the integration are only over the area
of the BP. According to reference [83], equation (4) is sep-
arated into four terms

E(t) =E.p(t) + Efiow(t) + Eosc(t) + Eine(t), (5)

keeping in mind that, after the stirrer is removed from
the BP, E(t) remains constant while its various con-
tributions still vary with time Putting the wavefunc-

tion in polar form, p(z,y;t) \/p (z,y;t) explio(z, y; t)]
with p(z,y;t) = |<p(x y;t)|? the den81ty and ¢(xz,y;t) the
phase, the zero-point kinetic energy becomes

t) = /dzr {V\/p(m,y;t)r, (6)

the kinetic energy of particle flow

Erou(t) = / (V) pl, yit), (7)
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the combined trap potential energy

= /erV(x, yit)p(x, ys;t), (8)

and finally the interaction energy

g
) /dzrp(w,y;t)z- 9)
Note that the total kinetic energy is given by:

Elin (t) = Ezp (t) + Eflow (t)

Comparisons can be made between the dynamics of each of
these energy terms for two phase-space densities, obtained
by applying two stirring lasers: a barrier with A > 0 and
a well with A < 0. Chaos in energy space manifests itself
by any irregular oscillations in the energy components and
by plotting the trajectories (E, E), where E denotes the

specific component and E = dE /dt the time derivative.

EOSC(t)

Eint (t) -

(10)

2.4 Radial oscillations and chaos

In coordinate space, the root-mean-square (RMS) ra-

dius Rypms = /(r(t)2) of the trapped cloud is computed
using [75].

1/2
2) = [ [ietwore s L an

Chaos is signaled by the irregular oscillatory behavior of
R,ms and by plotting the trajectories (X X ) in phase

space, where X = \/(r(t)2) and X = dy/(r(t)2)/dt.

2.5 Lyapunov exponent

Another very reliable test for chaos is the Lyapunov ex-
ponent £ [1,31], which provides a quantitative measure. If
after a very long simulation time £ remains positive and
almost constant, then this is a strong indication of chaotic
dynamics. When L is zero or negative, then chaos is ab-
sent. To calculate £, a nonlinear time-series analysis of
the various observables is implemented using the package
of Kodba et al. [1]. £ is calculated using the expression [1]

(4)
Z In ( evol'u )
0

evolv =
where Ly is the Euclidean distance between an initial point
p(0) in the embedding space and its nearest neighbor, 7
is the embedding delay, and Ly, is the final distance
between them after an evolution for a time-step teyov-
After each teypo1, a replacement step £ is attempted in
which the code looks for a new nearest neighbor of the
evolved initial point. A number M of replacement steps is
attempted. The point p is defined by the vector sequence

(12)

P(i) = (T4, Tigr, Tivor, -+, Tip(mo1)r)s (13)
obtained from the time series, where m is the embedding
dimension and 7 the time. The variable x stands for any
observable.
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2.6 Mode expansion

Next, the solution to the TDGPE, ¢(z,y;t), is expanded
into different sets of states: the harmonic oscillator (HO)
function H,,(u), the Legendre polynomials P, (), and the
Cosine function cos(nmu) with u € (z,y) and n € {n,,n,}
an integer. For the HO case, the wavefunction becomes the
double sum

o(z,y;t) = Z Z Cnymn, (t)Bn, Hy, (2) By,

ngz=0mn,=0

X Hy, (y)e 002, (14)
ng and n, being the HO quantum numbers,
B, = (n!2"/n)"Y? the normalization constant of
H,(z)exp(—2?/2), and C,,,,(t) are time-dependent
mode amplitudes that describe the population dynamics
of the states (ng,n,). The C,, ,,(t) are obtained from
equation (14) using the orthogonality of the Hermite
polynomials such that

—+oo +oo

X By, Ho, (2) B, Hy, (y)e” T HO/2 (15)
For P, (u), one should rescale u by the length of the sys-
tem L and use B, = \/(2n + 1)/2 for the normalization
constants; similarly for cos(nmu) where B, = 1/v/L. In
particular, the evolutionary patterns of Cp ,,(t) signal
chaos or order in the population dynamics of the various
basis states after an evaluation of their Lyapunov expo-
nents. In addition, they are an important indicator of al-
lowed and forbidden transitions between the HO states.
In passing, it is noted that the expansion (14) is the same
as that of the classical field approach [84], except that the
mode amplitudes are extracted from a numerical solution
of the TDGPE at T'=0 K.

2.7 Units

The units and numerics are the same as in our previous
work [74,75]; they are reviewed here briefly for reference
purposes. G, A, v, B, and ¢, all have the same units as
before [74,75]: the lengths and energies are in units of the
trap ano = /h/(2mwn,) and hwp,, respectively. A is in
units of Awne, B in (ano) ™2, v in ano, t = Twpe is unit-
less, G is in (v/2a2,)~!, and & is unitless. The energies
equations (5)—(10) are in units of Awp,.

2.8 Numerics

Throughout, the following parameter settings are used.
For the stirrer, we set v = 2 and 3 = 4, whereas |A|
ranges from 0 to 40. For the external trap, we set k = 1
such that it is always isotropic. Initially we set p; = py = 2
for a harmonic trap, but later set p; = p2 > 2 to explore
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the effect of trap anharmonicity. The number of parti-
cles for a given G can be evaluated from equation (2)
with the following information. For 3"Rb, the scattering
length is as = 5.4 nm and a suitable trapping frequency is
Who = 27 % 25 Hz [78]. The trap length is then £ = 2.16 um
(ours is an, = £/v/2). The anisotropy A used in equa-
tion (2) is set to 10 so that the width of the ground state
®o(z) becomes extremely small along the z-direction and
the system can be considered 2D. For this A and a value
like G = 10 used here, the number of particles is N ~ 117
and the BEC is in the weakly interacting regime. The ve-
locity v by which the stirrer is moved can be converted to
standard units by v — vapewhe. Using the previous infor-
mation, v = 1 in trap units is then equal to 2.4x10~* m/s.
The BP length is L = 20 (ap,) ie., —10 < z < 10 and
—10 < y < 10; that is in SI units the density becomes
n ~ N/L? = 1.254 x 10" m~2 yielding na? ~ 1076,
The dynamics were mostly displayed for times up to ¢t =
20 corresponding to 0.127 s, which is within experimental
observation times, e.g., of Donley et al. [85]. In calculating
Lyapunov exponents, the simulations were conducted for
extended periods of t = 10000 so as to positively confirm
the presence of chaos in the observables (Egs. (6)—(11)).
The simulations are initialized using Method (a) in refer-
ences [74,75]. As before, the results presented are in the
transient stage of the simulation, i.e., after, and not in-
cluding, the initialization process.

3 Results and discussion
3.1 Effect of phase-space density (laser intensities)

Figure 1 demonstrates the dynamics of the energy com-
ponents and radial size described by equations (6)—(11)
under the effect of a BDLP (left column) and an RDLP
(right column) for various values of A but fixed interac-
tions G in a harmonic trap.

3.1.1 Reduced phase-space density (blue-detuned laser)

Stirring using a BDLP reduces the phase space density of
the trapped BEC yielding a small irregularity in the dy-
namics of its energy components and average radial size
of its cloud. Ryms, Frin, and E,s. display ordered, sinu-
soidal, oscillatory patterns!, whereas the dynamics of E,,,
Efiow, and E;y, are — from an initial shrewd guess — ap-
parently ordered, but not without some noise and irregu-
larities. The oscillations in E., arise from oscillations in
the density p(x,y;t), whereas those in Efjo, from oscil-
lations in p(z,y;t) and the phase ¢(x,y;t). In addition,
the oscillations in p(z,y;t) arise from the center-of-mass
oscillations of the trapped BEC cloud and continue with
the same pattern even after the BDLP leaves the BP. The
reason for this is explained in Section 3.2 below.

! Viewed from a spatial point of view then, the GPE is inte-
grable as its behavior is predictable in the latter space.
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Fig. 1. Spatial and energy dynamics of an interacting Bose gas confined by a two-dimensional harmonic trap cut off by a
BP [74,75] and various stirring laser amplitudes A. The side length of the BP is L = 20 such that = € [—10, 10] and y € [-10, 10].
The Bose gas is excited by a stirring blue-detuned laser (A > 0 left column) and a red-detuned laser (A < 0 right column).
The parameters of the system are [74,75]: G =10, 8 =4, v =2, p1 = p2 =2, and k = 1. A = 20 (frames (a) and (b)), 30 ((c)
and (d)), and 40 ((e) and (f)). A = —20 ((g) and (h)), —30 ((i) and (j)), and —40 ((k) and (1)). Solid line: R,.s; dashed line:
Elin; triple-dotted line: Fosc; thick solid line: E.,; dashed-dotted line: E'fj4; double-dotted line: Eipn:. A is in units of hwpe, 5

in (aho)

A change in the amplitude of the BDLP yields no qual-
itative changes in the dynamics. This is because the BDLP
introduces only a circular ‘hole’ in the BEC with no intro-
duction of additional lower energy levels, unlike the RDLP
case, which increases the phase-space density. In essence,
the effect of a blue-detuned laser is similar to a hard-disk-
like obstacle which moves through a 2D fluid.

3.1.2 Enlarged phase-space density (red-detuned laser)

RDLP stirring introduces a larger phase-space density
that leads to higher degrees of irregular behavior and
causes a strong time-dependent asymmetry of |¢(z, y; t)|?
about the z-axis. This yields irregular interference pat-
terns that translate to chaotic behavior. In compari-
son, the BDLP results in a much weaker asymmetry of
lo(z,y;t)|>. Now, although the excitations induced by the

200 aho, G is in (vV/2a31,) ", Rrms in ano, and energy is in fiwno. & and t = Twp, are unitless.

RDLP cause somewhat regular oscillations in R,p.s, Fiin,
Eosc, and By, the other quantities like E.,, and Ejoy re-
veal irregular oscillations throughout. For ., and Eiow
this can be understood based on them being connected
to gradients V|p(z,y;t)| and Ve(z,y;t), respectively, as
they strongly change with time and with a high degree of
randomness.

The BEC fragment trapped inside the RDLP under-
goes density oscillations at a frequency equivalent to the
effective trapping frequency, wy, of the combined trap that
in turn yields oscillations in p(z,y;t) as well. According
to equation (A.7), w, rises with “increasing” depth A < 0
and because E,, and Ej,,, are connected to the p(z,y;t)
via equations (6) and (7), their oscillation frequency at
t < 5 rises significantly. These oscillations are not observed
in the BDLP case because w, remains roughly equivalent
to that of the external trap and is smaller than that for the
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RDLP case. Also, the availability of energy levels and the
dynamic w, can be argued to induce irregular oscillatory
patterns because of the absence of frequency locking [10]2.
Note that the influence of these initial strong excitations
via the red-detuned laser remains even after it has left the
trap, as can be seen by the irregular dynamics of E., and
Efiow at t > 5. The conclusion is that once chaos has been
established, it is irreversible.

3.2 Effective trapping frequency

Earlier it was argued that irregularity (chaos according
to Ref. [16]) is induced by quantum effects arising from
the zero-point motion. The latter is controlled by w, and
because a time-dependent trapping potential yields a dy-
namic w, (Appendix A) examining its role in irregular
behavior as governed by different phase-space densities is
therefore important. Now, V(z,y;t) (Eq. (3)) has an ef-
fective w, defined as:

02V (z,y: t
wq<x,y;t>=¢ s,

(16)
close to the minimum of V(z,y;t) where ¢ = x,y, or z.
That is, w, can vary spatially as well. It is however ex-

pected that V(z,y;t) influences the patterns of the in-
duced irregularities only when w, changes with time.
Indeed, equation (16) is only applicable to the red-detuned
laser with A < 0 and it cannot be applied to the blue-
detuned laser with A > 0, except when the BDLP is ex-
actly centered at the origin of the external harmonic trap.
At this point only, the BDLP is surrounded by a circular
trough containing a circle of the potential minima loci.
In that sense, the BDLP is only an obstacle and it turns
out that its motion inside the BEC yields absolutely little
change in w, in contrast to the RDLP. We provide further
support for this conjecture in the following argument. In
Figure 1, the blue laser induces oscillations in the dynam-
ics which have almost the same pattern and frequency
before and after the laser leaves the BP, whereas they
are largely different for the red-detuned laser. One origin
of this difference is that the blue-detuned laser does not
trap any bosons unlike the red-detuned laser, and conse-
quently the removal of the BDLP from the trap does not
affect w,. Therefore, the frequency of oscillations remain
by and large controlled by the external harmonic trap. In
contrast, the RDLP conveys a larger effective trapping fre-
quency to the whole system. When the red-detuned laser
leaves the trap, w, changes back to that of a pure harmonic
oscillator. As a result, the dynamics display different be-
havior before and after the removal of the RDLP.

2 Indeed, in reference [10] it was argued that the appear-
ance and disappearance of chaos is due to the transition from
quasiperiodic behavior to frequency locking and vice versa.
When the RDLP leaves the box potential at ¢ > 5, the os-
cillations of E., and Efiow remain irregular since the BEC is
in a highly excited state and frequency locking is absent.
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3.3 Effect of trap anharmonicity

We now turn to anharmonic traps. From Figure 2, it is
demonstrated that such traps mainly cause irregular os-
cillations in coordinate and energy space. Both sets of
plots demonstrate an apparent increase in irregularity and
frequency of the oscillations with increasing p; = ps. A
similar irregularity was reported earlier by Mateos and
José [86] for a particle inside a rigid BP with a period-
ically oscillating square-potential barrier inside the box.
The latter behavior has been identified as chaotic purely
from observations of energy oscillations.

An increase in p1 = po yields a larger wq (see Egs. (A.2)
and (A.3)), that in turn increases the frequency at which
the BEC fragment oscillates inside the RDLP. For exam-
ple, according to equation (A.13) for p1 = py = 7, w, in-
creases with time, and with it the number of HO modes,
until the moving RDLP leaves the trap. The stronger
anharmonicity generates oscillations in the energy com-
ponents to become more irregular than in Figure 1 and
to ‘wash out’ the difference between the blue and red-
detuned laser. At this point, the BEC is in such a highly
excited state with strong irregular dynamic behavior, that
the vastly different phase-space densities can no longer be
distinguished.

3.4 Quantum effects

In this section, we follow Kapulkin and Pattanayak [16] in
an artificial modification of the relative Planck’s constant
to examine the role of quantum effects in the emergence of
chaos or irregularity in the TDGPE. The latter is rescaled
in a manner described below so as to introduce this con-
stant via a multiplicative factor I" into the kinetic energy
operator

Hyin = —I'V?, (17)
from which it follows that E,, (Eq. (6)) and Efiow
(Eq. (7)) become weighted by I'. One can justify the in-
troduction of I" in equation (17) based on the following
argument. In reference [16], a factor By = /h/(mt3wno)
was introduced that identifies a ratio between the char-
acteristic scales associated with a BEC [¢ = \/h/(mwh,)]
and the trap (¢). Let us define £y = \/h/(mwo), which
can be different from ¢. Further, let us introduce an ar-
tificial Planck’s constant hg so that £y = /h/(mwg) =

V/ho/(mwp,) and therefore

VI = h/lg = wo/wno = (£/£)>. (18)
That is, a change of the relative Planck’s constant v/I"
amounts to a change in the “relative” characteristic scale
¢/4y. For brevity, I' = (h/hg)? is referred to as the relative
constant and one can then consider rescaling the TDGPE

B2 0
— o V24 V(z,yst) + gl ¢ =ih

2m o’ (19)
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Fig. 2. Same as in Figure 1 with the same labels; but for varying anharmonicities p1 = p2. The interactions are fixed at
G = 10, the stirrer height is A = 30 in the left column and its depth is A = —30 in the right column. Frames (a), (b), (g), (h):

p1 = p2 = 2.8; (c), (d), (i), (§): 5.0; (e), (f), (k), (1): 7.0. A is in units of fiwpo, G in (v2a3,)”

t = Twhno and Kk are unitless.

by a rescaling of the coordinates x and y in units of an, =
o/\/2. That is, one considers Z = x/an, and ¥ = y/an,
and divides equation (19) by figwp, so that it becomes

.0
p=i e (20)
where o oal,/(howno), § g/ (howno), and t
Whot/ VI'. When I is small, the characteristic scale as-
sociated with the trapping potential is large with respect
to the condensate size. Consequently, as I" — 0 the BEC
wavefunction tends to become localized rather like a wave
packet representing a classical particle. When I is large,
the BEC extends over a considerable region and quantum
effects become visible.

By artificially increasing I" to values larger than 1, the
frequencies of the spatial and energy oscillations increase
and their dynamics become more irregular (Fig. 3). This is
consistent with results of Kapulkin and Pattanayak [16].

— 1~ ~In ~ln -~
~rvi+ 5 (@ + 191" + glel?)

L win ano, B in (an,) 2, and

The question then arises: will chaos vanish if we set I’
below 1?7 Figure 4 displays the dynamics for a significantly
lowered I' = 0.1 and it is obvious that the frequency of
the oscillations is largely reduced in frames (a) and (b),
as compared with that for Figure 3. A significant result
then is that the quantum effects are the sole reason for
any high-frequency oscillations in the BEC dynamics.

If we examine Figure 4c, then as a result of lower-
ing I', the oscillations are seen to reduce substantially in
Ryms, Ep and Ejy as compared with those in Figures 2e
and 2f, but they nevertheless remain active in E,sc, Fgin
and Efjo,. The persistence of oscillations in an anhar-
monic trap in the presence of reduced quantum effects
is a manifestation of the role of anharmonicity in induc-
ing this behavior in conjunction with the chaotic billiard
effect. In frames (a) and (b), chaos has vanished, demon-
strating that the reduction of I" is one way to suppress
chaos.
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Fig. 3. Quantum effects on the dynamics of a trapped Bose
gas. The system is the same as in Figure 1 for A = +30; but
with increased relative constant I". The solid line is Ryms(t) =
\/(r2(t)) and the dashed line E.,(t). Top frame: I" = 4; middle
frame: 9; and bottom frame: 16. In the bottom frame E.,(t)
is reduced by a multiplicative factor of 0.2 to make Ryms(t)
visible and not to clutter the figure. Ryms(t) is in units apo,
E.p(t) in hwno/V I (see text), A in fiwno /T, G in (v/2a3,) 7",
VAN Gho, B0 (ano) ™2, and t = Twho/v I and & are unitless.

4 Analysis of results
4.1 Physical versus numerical chaos

Brézinova et al. [8] have devised powerful tests for de-
tecting the presence of numerical chaos that could re-
sult from the nonintegrability of the TDGPE. Two of
these tests are: (1) the conservation of total energy and
(2) time-reversal propagation. So far it has already been
demonstrated [75] that the total energy of our systems is
conserved once the stirrer has left the trapping area. For
test (2), a time-reversed evolution of the system has been
performed that begins at some chosen time ¢y along the
energy dynamics after the stirrer has left the BEC and
the energy has stabilized. Let us consider a wavefunction
4 (r,t), which evolves “forward” (+)/“backward” (=) in
time. Once ¥4 (r,t) has evolved from a time ¢ to to, its
propagation is reversed from tg to ¢ (where tg > t') ac-
cording to

Y (r,t") = U_(t',to)p4(r, to), (21)
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Fig. 4. Frames (a) and (b): Dynamics of the harmonically
trapped system in Figure 1 at A = 430 for an artificially re-
duced relative constant I" = 0.1. Solid line: Ry (t); dashed
line: Eyin(t); triple-dotted line: Fosc(t); dashed-dotted line:
E.,(t); fine-dashed line: Efjow(t); double-dotted line: Eine(t).
Frame (c) is as in frames (a) and (b); but for the anharmoni-
cally trapped system in Figures 2e and 2f with A = +30. Thick
solid line: Ryms(t); dashed line: Euin(t); triple-dotted line:
Eosc(t); dashed-dotted line: E.p(t); thin solid line: Efiow(t);
and double-dotted line: E;n:(t). Lengths and energies are in
units of the trap an, and fiwn./V/ I, respectively. A is in units
of hwho/\/F, G in (\/2@%0)71, v in apo, B in (aho)%7 and
t = Twho/VI" and k are unitless.

where U_ is the propagator that reverses the evolution
of 14 (r,t). If the forward evolving %4 (r,t) equals the
backward evolved ¢_(r,t') at some common time ¢ = ¢/,
then numerical chaos is excluded. For a graphical compar-
ison between forward- and reversed-evolving properties,
the former are plotted from ¢t = 0 to ¢t = ¢y, and the lat-
ter against t = 2ty — ¢/ from t = ty to t = 2ty. That is,
t € [0,%0] corresponds to increasing time for ¢4 (r,t) and
t € [to, 2to] corresponds to decreasing times t' € [tg, 0] for
b (r,0),

Figure 5 displays this comparison where it can be seen
that the dynamics are exactly symmetric about the ¢ = ¢,
axis. From this, we conclude that any chaos demonstrated
in this work is physical and not numerical.

4.2 Chaos and order in the weights of bases states
The goal now is to search for signals of chaos in the GP

wavefunction via the mode expansion equation (14). Upon
excitation, the trapped Bose gas is energized to a number
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Energy components

Fig. 5. Checking for the presence of physical or numerical
chaos in the Crank-Nicolson code applied in this work. The
figure shows forward and backward evolving properties of a
trapped BEC excited by an RDLP. The system is the same
as in Figure 1 for A = —30; except for p1 = p2 = 4. The +
subscripts in the labels are for forward /backward evolution in
time: Thick solid line: total energy E(t); dashed line: E(t_);
double-dotted line: chemical potential (¢4 ); triple-dotted line
wu(t—); fine-dotted line: kinetic energy Eyin(t+); dotted line:
Eyin(t—); open circles: zero-point energy F.,(t4); open tri-
angles E.,(t—); diamonds: kinetic flow energy Efiow(t+); and
crosses: Efiow(t—). In this figure, the time at which time rever-
sal begins is to = 10 (see text); to the left of to, the properties
are evolving forward in time ¢, whereas to the right of ¢o, the
time axis is for t = 2tg — t/, where t' is decreasing as the prop-
erties are evolving backward in time. Lengths and energies are
in units of the trap, aho and hwpo, respectively. A is in units
of hwno, G in (\/2aho) , v in aho, B in (ano)~ 2 and t = Twho
is unitless.

of HO states. The transitions between these states tend to
be irregular and it turns out that this is one source of chaos
in the wavefunction. It must therefore be emphasized that
any chaos appearing in the total wavefunction (z,y;t) is
translated to chaos in the observables under current study
(Egs. (6)—(11)). Within this context, Figure 6 displays the
dynamics of |Cy,, n, (t)|. Four cases are considered: two for
a BEC in a harmonic trap, which evolve in the presence
and absence of a laser, and likewise two for a BEC in an
anharmonic trap. From this, the dynamics of |Cy,, », (t)]
gives a measure for the frequency of particle transitions
from one HO state to another and indicates whether one
has chaos or order. Frame (I) refers to a BEC in a har-
monic trap without a laser. The |C,, ,,(t)| with (ng,n,)
even numbers are almost constant with time and their val-
ues range from order ~1072 to order 1. This constancy in-
dicates order in p(z,y;t). The largest occupancy is, as ex-
pected, for the (0,0) state and some excitations to higher
states with even (ng,ny) are due to the initialization of the
system in CN simulations [74,75]. |C,,, », (t)| in frame (b)
with either n, or n, odd are negligible of order ~107% and
are rather noisy. These oscillations are however insignifi-
cant because their weights are vanishingly small. The dif-
ference in weights between frames (a) and (b) is attributed
to the following: In the absence of a stirrer, p(x,y;t) is
even, i.e., symmetric about the z and y axes. Therefore,
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only even HO functions [even H,, (x) and H,,(y)] con-
tribute to the dynamics; the odd functions yield almost
zero contribution such that |Cy, n, ()| — 0. Frame (II)
refers to a BEC in a harmonic trap with a laser. In this,
|Cn,.n, (t)] reveals nearly periodic oscillations for almost
all (ng,n,) and range from order 1072 up to 10~!. How-
ever, this is not enough to cause ordered oscillations in
the right column of Figure 1. Because ¢(z,y;t) is now an-
tisymmetric about the x-axis, states with odd n, or n,
display now larger weights than in frame (I,b) when they
were practically unoccupied giving only a noisy pattern.

Frame (III) refers to a BEC in an anharmonic trap
without a laser. In (a), [Co ()| is almost constant in
the absence of a laser. |C2(t)| oscillates almost regu-
larly whereas the |Cy, ,, ()| for (4,4), (6,6), and (8,8)
are now chaotic. Indeed, even if only one state (n,n,)
is chaotic, all the dynamical quantities that can be ob-
tained from ¢(x,y;¢) will be chaotic. In frame (b), (5,2),
(6,3), and (8,3) show a noisy pattern as in frame (I,b) of
negligible amplitude but are not expected to contribute
to the overall dynamic behavior of ¢(x,y;t). Frame (IV)
is for a BEC in an anharmonic trap with a laser. In this,
some ordered oscillations appear in |Cp o(t)|, |C2,2(t)|, and
|C4.4(t)] whereas |Cs2(t)| seems to be almost zero. The
remainder of |C,, », ()| are chaotic and their values are
largely of order ~1072. The latter can be related to the
chaos displayed in the right column of Figure 2. There-
fore, the anharmonic trap yields irregular oscillations in
|Cnyom, (t)| that manifest as chaotic oscillations in the
physical observables.

4.3 Lyapunov exponents in different bases

The unique signature for chaos in the expansion coeffi-
cients Cy,, n, (t) is again a positive £. Hence, we analyze
chaos in the GP wavefunction itself by expanding it in
different bases to examine whether chaos in |Cy, n, (t)]
is basis invariant. Figure 7 displays £ for the |C, n, (t)]
evaluated via a Cosine, Hermite, and Legendre basis. In
Frame (I), there is practically no difference in the qualita-
tive behavior of £ for the state (nz,n,) = (0,0) between
the different bases. £ goes to zero in all bases and there-
fore chaos is absent in all of them. For (2,2), £ is positive
and close to zero. It varies slightly with bases; but it still
gives the same qualitative result indicating order. For the
state (4,4), the values of £ vary with bases; but they are
all positive signaling chaos.

In Frame (II), £ for (5,2) in the Cosine basis is pos-
itive and almost constant in the time-range considered.
However, for the Hermite and Legendre bases, £ evolves
from a negative towards a positive value. That is, for (5,2)
|Cn., n, (t)] is eventually chaotic for all bases as ¢ — oc. For
(6,3) and (8,8), L displays positive values for all bases and
|Cny o, ()] is chaotic. In Frame (III), £ is positive in all
bases for (0,0), (6,6), and (8,8). Therefore, the result of
having chaos in the GP wavefunction that is basis inde-
pendent can be considered as a new test for the presence
of physical chaos taking into account that the three bases
we are using are vastly different functions!
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Fig. 6. Dynamics of the weights of the harmonic oscillator states, |Cn, n, (t)| of equation (15). In frame (I), the system is the same
as in Figure 1; but for A = 0, i.e., no applied laser. Subframe (a) displays log,,[|Chn., n, (t)|]: dashed-dotted line: (n.,ny) = (0,0);
solid line: (2,2); open circles: (4, 4); double-dotted line: (6, 6); dotted line: (8,8). Subframe (b) displays |Cn,, n, (t)| in units of
107?: quadro-triple dotted line: (5,2); dashed line: (6,3); and thin solid line: (8, 3). Frame (IT) is the same as (I) with the same
labels; but with a laser applied of parameters A = —30, 8 = 4, and v = 2. Frame (III) is the same as (I) with the same labels;
but for p1 = p2 = 4. The lower frame (IILb) displays |Cy, n, (t)| in units of 1077, Frame (IV) is the same as (III) with the same
labels; but with a laser of depth A = —30. A is in units of hwp,, G in (\/Qa%o)fl, v in ape, B in (aho)72, and t = Twp, is unitless.

4.4 Chaos in coordinate space

Figure 8 further confirms the presence of spatial chaos in
the coordinate space of the BEC via the evolution of £ for
R,ms. The computations ran for a time ¢ = 10000, long
enough to examine the asymptotic-time behavior of L. For
the upper and lower frames, the parameters of the time
series analysis and the resulting asymptotic Lyapunov ex-
ponents Lqsymyp are listed in Tables 1 and 2, respectively.
All L converge to stable positive values after a long simu-
lation confirming the existence of chaos. The stability of £
signals that once chaos has been initiated in a BEC, it does
not decay if one allows the BEC to evolve for a long time.
Therefore, one needs to design ways to suppress chaos,
particularly if it arises in quantum computations.

4.5 Chaos in energy space

We now confirm the existence of chaos in energy space
for most of the cases considered in this work. Figure 9
shows trajectories (E, E) for all energy components E in

addition to (Ryms, Rrms) in a harmonic trap stirred by a
blue-detuned laser. In this, order is categorically demon-
strated in Egin, Fose, and R, because their trajectories
display periodic behavior whereas chaos is prevalent in the
other components as they are aperiodic. A trend is also re-
vealed by all chaotic components in developing an attrac-
tor as, for example, the Réssler attractor [87,88] by Efow
and FEj,:. The separated-out trajectories demonstrate the
state of the system while the BDLP is inside the trap.

Figure 10 in turn demonstrates that in the same
harmonic trap but with red-detuned laser stirring, Ej;,
and F,s. are no longer ordered and the rest of the en-
ergy components remain chaotic. It is possible that R,
may be spiraling into a kind of periodic behavior at longer
times after exhibiting chaos. Indeed, all trajectories seem
to evolve towards a concentrated dense “area” because
once the RDLP leaves the BP, the number of excited states
goes down as the points on the trajectories come closer
together. Indeed, as can be deduced from frame (f), the
volume of phase-space is reduced as the BEC evolves with
time indicating a decline in the number of energy states to
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Fig. 7. Lyapunov exponents of the weights [Cy, n,(t)]
(Eq. (15)) for different bases used in the expansion of the total
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tem is in principle that of Figure 1. Frame (1) is for A = 0 and
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state (ne,ny) = (0,0); middle: (2, 2); and bottom: (4,4). Frame
(IT) is for A = —30 and p1 = p2 = 2. Legends are the same as
in (I). Top frame: (5,2); middle: (6,3); bottom: (8,8). Frame
(I11) is for A = 0 and p1 = p2 = 4. Legends are again as above.
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Fig. 8. Evolution of the Lyapunov exponent L for various
systems considered from Figures 1 and 2 after a very long sim-
ulation time ¢t = 10000. The interaction parameter is G = 10
and the velocity of the stirrer is v = 2 with width parameter
B = 4. Upper frame: £ of Ryms(t) for various values of A and
p1 = p2. Solid triangles: A = —30, p1 = p2 = 2; open squares:
+30, 2; solid squares: —30, 2.8; open circles: +30, 2.8; solid
circles: —30, 7; open triangles: +30, 7. Lower frame: £ at var-
ious values of I' (cf. Eq. (18)) for A = +30 and p1 = p2 = 2.
Open diamonds: I = 4; open squares: 6; solid squares: 10;
open circles: 16; solid circles: 28; open triangles: 40; and solid
triangles: 64. A is in units of fiwno, G in (V2a3,)" !, v in ano,
08 in (aho)%7 and t = Twp, is unitless.

Table 1. Asymptotic Lyapunov exponents Lasymp 0f Rrms for
the systems of Figures 1 and 2. Parameters are: trapping expo-
nents p1 and p2 and stirrer depth or height A (see Eq. (3)), op-
timal embedding delay 7, and minimal required dimension m.
The velocity of the stirrer is v = 2 and the parameter describ-
ing its width is 8 = 4. A is in units of hwp,, B in a;f, and v
in apo.

P1 P2 A T m Easymp
2 2 +20 16 5 0.056033
2 2 +30 16 5 0.081165
2 2 +40 15 5  0.081559
2 2 —-20 15 5  0.280095
2 2 —-30 15 5 0.076887
2 2 —40 14 5 0.015436

28 28 =30 11 7 0.188084

28 2.8 430 11 7 0.268660
5 5 +30 8 7 0.099709
5 5 -30 6 7 0.619132
7 7 -30 5 7 0.365345
7 7 +30 5 7 0.339876

which the system is excited. Comparing Figures 9 and 10,
one can see then that the RDLP generates chaos in Ey;j,,
FEyse, and R,,s because it introduces a larger phase space
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Table 2. As in Table 1; but for the systems of Figure 3 at
various values of the relative constant I". The amplitude of the
stirrer is fixed at A = +30 and p; = p2 = 2. Parameters are: I,
optimal embedding delay 7, and minimal required dimension
m. A is in units of Awpe.

I' 7 m  Lasymp
4 4 6  0.833164
6 3 6 0.676284
10 1 6 0.364494
16 1 6  0.571895
28 1 6 0.629997
40 1 6 1.186200
64 1 6 0.272363
2 10
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Fig. 9. Energy trajectories (E, E) of the system in Figure lc
and 1d for a time of ¢ = 20. Frame (a) E = FEyin; (b) FE.p;
(¢) Eosc; (d) Efiow; (€) Eint; and (f) additionally the phase-
space trajectory (ers,ers). Lengths and energies are in
units of the trap, an, and hwp,, respectively, and ¢ is unitless.

density. Consequently, the extent of the trajectories along
both axes is larger for the red than blue-detuned laser.

In Figure 11, chaos is also signaled by all the above
physical observables in an anharmonic trap with a blue-
detuned laser. In this case, the trajectories probe more of
the space of (E, F) and a larger number of excited states
is manifested than for the corresponding harmonic trap
in Figure 9. This is because anharmonicity introduces a
larger quantum pressure due to stronger confinement that
excites the BEC to higher energy levels. In the correspond-
ing Figure 12 with a red-detuned laser, the patterns of
the trajectories are qualitatively not very different from
their counterparts in Figure 11 demonstrating that the
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trap anharmonicity has become dominant in determining
the qualitative behavior of the trajectories. The trajec-
tories (Ryms, Rrms) in Figures 11 and 12 clearly exhibit
chaos as they do not form periodic orbits. Compared with
the harmonic trap, the extent of these trajectories along
R,ms is reduced, whereas along F it increases with in-
creasing confinement strength via p; = po.

4.6 More quantum effects

What remains now is to examine chaos with increased I'.
Figure 13 shows the trajectories (X, X) for the evolution
of Ryms, E.p, and Efjoy. These figures verify the presence
of chaos in coordinate and energy space with increased I
because none of them manifests periodic behavior. The
range of these observables and their time-derivatives rises
with increasing I'. For R,.,s, this shows that an increased
degree of chaos implies a rise in the relative sizes of the
BEC and external trap. One can also ascribe to this be-
havior an artificial rise in the “volume” of phase-space
that signals an increase in the number of energy states.
This is further supported by an increase in the range of
E., and Eyjo, (and their derivatives).

4.7 Confirmation of energy chaos via the Lyapunov
exponent

The aim now is to apply the Lyapunov exponent as a
measure that further confirms the presence or absence of
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Fig. 11. As in Figure 9; but for p1 = p2 = 7 (system in Figs. 2e
and 2f).

chaos and how long it persists in the BEC. In Figure 14,
the evolution of £ for the energy components is displayed.
Scanning all frames, it can be seen that after a long sim-
ulation time L is positive for all the observables under
consideration; except in frame (K'). However, it was found
hard to assign a certain behavioral pattern for £ in terms
of trapping geometry and laser parameters. For a har-
monically trapped BEC that is excited by a red-detuned
laser, £ for the energies seems to approach stable values,
except for ., where £ declines after ¢ ~ 2000. This de-
cline is an indication that the degree of chaos in E,, de-
creases with time. Similarly, with a blue-detuned laser, the
L’s stabilize with time except for Efjow and Ej,, which
keep rising, and with it the degree of chaos in them. For
anharmonic trapping with a red- or blue-detuned laser,
there is no qualitative change in the behavior of £ when
compared with the corresponding harmonic trapping. For
some of the observables, the values of £ are significantly
larger than for the harmonic trapping. For example, in
frame (F'), £ for Ej;, reaches ~3.6 whereas in frame (B)
it is ~0.2 for the same blue-detuned laser. In frame (E), £
for Efow reaches ~4.6 compared with ~3.5 in frame (A)
for the same red-detuned laser, and similarly for other ob-
servables. Over some energy intervals, chaos arises with
increasing trapping anharmonicity bringing this in line
with the behavior of energy trajectories in Figures 9-12.
Frames (G) and (H) present the same qualitative infor-
mation as in frame (B) with different blue-detuned laser
amplitudes. Nevertheless, some predictability can be as-
signed to the response of the magnitude of £ to increasing
quantum effects. £ for Eyo,, and E., is seen to rise with
increasing I" beyond 1. In contrast, with I" < 1, £ tends
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Fig. 12. As in Figure 10; but for p1 = p2 = 7 (system in
Figs. 2k and 21).

to approach zero except for E,s. where £ becomes neg-
ative signalling the absence of chaos. This is brought in
line with observations in Figures 4a and 4b. Therefore,
the reduction of quantum effects leads to ordered behav-
ior in physical observables. The chaotic behavior remains
in general unpredictable. From the previous displays, one
concludes that chaos persists for a very long time and does
not easily vanish in nondissipative systems.

4.8 Analogy to the chaotic billiard

The spatial chaos and order found in Figures 1 and 2 can
be explained by the chaotic billiard concept [31] whose
effects can be mimicked by an anharmonic trap. In 2D,
the trajectories of a particle moving with constant energy
on a billiard table with defocusing boundaries are chaotic
unlike one that has a circular-shaped boundary [31]. For
a harmonic trap in 2D, the BEC with low kinetic energy
is unable to surmount the barrier of the external trap and
remains therefore far away from the BP hard walls. Ac-
cordingly, it oscillates periodically inside a circular area
and endures no chaotic billiard effect. If the energy is in-
creased, the BEC oscillates within a larger circular area
which if cutoff by the BP becomes, for certain energy lev-
els, square-like with rounded corners. By increasing the
energy, the BEC moves up the potential barrier of the ex-
ternal trap and eventually becomes a squared area. After
this, it no longer oscillates periodically. For an anharmonic
trap, the shape of the spatial boundary is not circular as
for a harmonic trap, but square-like with rounded cor-
ners and becomes square with increasing anharmonicity.
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Therefore, the dynamics of the BEC becomes chaotic with
a broad excitation spectrum and spatial chaos increases
with growing anharmonicity. One understands now why
there is spatial order for a blue-detuned laser: for the
BDLP parameters considered, the BEC is not excited to
energy levels where the BP begins to be assertive; the BEC
remains therefore inside a circular boundary and oscillates
periodically. In contrast, the RDLP excites the BEC to
high energy levels where the BP begins to be assertive.

5 Validity of the GPE in the present approach

Our use of the GPE is justified (1) by the success of previ-
ous similar work [42,43,47,55,89], (2) because the temper-
ature remains in a regime well below the critical tempera-
ture Ti, and (3) because the scattering length a, < d,
where d = /L2/N = 2.81 pm is less than the aver-
age interparticle separation; i.e., our systems are very di-
lute Bose gases. Regarding (1), Fujimoto and Tsubota
(FT) [43] examined the dynamics of a trapped BEC in-
duced by an oscillating Gaussian potential. Their study
was based on a numerical simulation of the 2D GPE. Be-
cause it was thought that the oscillating potential might

induce some heating effects that might invalidate their use
of the GPE, they calculated the increase of temperature
and showed that it remained relatively very small.

Further support for our arguments can be drawn from
the work of reference [90], where a quasipure condensate
was identified because it constituted a fraction of only
77%. In addition, the GPE was applied to explore BECs
excited by obstacles. For example, Sasaki et al. [89] ex-
plored vortex shedding from an obstacle moving inside the
BEC. Horng et al. [55] examined the dynamics of turbu-
lent flow in a 2D trapped BEC. Caradoc-Davis et al. [47]
simulated the effects of rotationally stirring a 3D trapped
BEC with a Gaussian laser beam.

Concerning point (2), FT used the specific-heat equa-
tion of the 2D ideal trapped Bose gas written:

_ BRET3E(3)

O(T) = , (22)

RPwawy
to estimate the heating of their condensate (here &(n) is
the Riemann Zeta function with £(3) = 1.2021). This
was simply obtained from a division of the energy rise
AE by the value of C(T') at the transition tempera-
ture T,. Because our systems are dilute (N ~ 117, ay <
d) and weakly-interacting, we can follow FT and apply
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time is in units of 10%.

equation (22) to estimate the temperature of our sys-
tems in the excited state only after the stirrer has left
the BP. First of all, for our harmonically trapped BEC
without excitation by any laser, the energy per particle is
E(A =0) = 1.3340 (fuwp,); for the same system, but ap-
plying a stirring laser (A = —30) the energy per particle
is E(A = —30) = 8.709 (hwpe). Now the difference in en-
ergies is AE = F(A = —30) — E(A =0) = 7.375 (hwp,),
which is equivalent to AE = 7.375hwp, = 1.216 x 10731 J
per particle; a value much smaller than that of FT. Sec-
ond, the change in temperature from an initial value T}
can be estimated from

NAFE

AT =T -Ty =
0 C(TC)7

(23)

where T, is substituted into equation (22). It is recalled
that T, for the ideal 2D BEC in a harmonic trap is given

by [82]
e | N
1= \/ &)’

with kp Boltzmann’s constant and £(2) = 1.6449. For
N ~ 117, T, = 10.12 nK. Considering w, = wy = who
and that Ty = 0, one gets AT = T = 2.018 nK. The
condensate fraction is then estimated from

T2
e L),

and is equivalent to N/Ny = 0.96. Therefore, our T is
indeed small. See, for example Neely et al. [48] and Onofrio

(24)

(25)
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et al. [50] where temperatures of T = 52 nK and T =
10 nK, respectively, were reported.

There exist methods for beyond mean-field examina-
tions of BEC dynamics in the group of L. Cederbaum, e.g.
by Bfezinova et al. [24] who explored the expansion of a
BEC in shallow 1D potentials using the TDGPE and the
multi-configurational time-dependent Hartree for bosons
(MCTDHB) [91] methods. It has been shown, that the
onset of wave chaos in the GPE can be used as an indi-
cation for condensate depletion. The authors particularly
focused on the case where the condensate depletion is rel-

atively weak < 5%. So far, it is known that as condensate
depletion increases, the GPE becomes less valid as one
faces a many-body problem beyond the GPE. However,
Brezinova et al. made a comparison between the dynam-
ics of the GPE and the MCTDHB and revealed that the
mean-field effect of wave chaos — i.e., the buildup of ran-
dom fluctuations — corresponds to the many-body effect of
condensate depletion. An important and surprising finding
has been that there is good agreement between expecta-
tion values of observables obtained by GPE and MCT-
DHB, such as the width of the cloud and the kinetic en-
ergy. It has been further found, that the GPE can mimick
excitations out of the condensate, and although the deple-
tion lies outside the range of GPE applicability, one can
monitor the onset of depletion by the onset of wave chaos
within GPE, a fact that extends the range of GPE applica-
bility. Further work involving beyond-the-GPE treatments
has been presented, e.g., by Billam et al. [35,36] in which
a second-order number-conserving numerical method has
been applied to solve the equations of motion involving
a coupling between the condensate and noncondensate.
Their goal was to explore finite-temperature BEC dynam-
ics and their method has been successfully applied to the
0-kicked rotor BEC.

6 Summary and conclusions

In summary, conditions have been obtained under which
order and chaos appear in the dynamics of interacting
trapped Bose gases. This work has specifically distin-
guished chaos in coordinate space from that in energy
space. The chief result is that either quantum effects or
trap anharmonicity is a generator of chaos in energy space.
This conclusion has been reached through an artificial
variation of the relative Planck’s constant I' to values
smaller or larger than 1 following reference [16]. A sec-
ond important result is that chaos has been confirmed in
the energy space of an excited trapped BEC. For severely
reduced quantum effects (I" < 1) in the presence of an
external harmonic trap, no chaos is observed in either co-
ordinate or energy space. Therefore, one way of suppress-
ing chaos is by increasing the characteristic scale associ-
ated with the external trap with respect to the condensate
size. Therefore, trap harmonicity in the absence of quan-
tum effects is a generator of complete order in the physical
observables. The presence of an external anharmonic trap
and severely reduced quantum effects yields chaos in en-
ergy space, but not in coordinate space. The same happens
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Table 3. Overview of conditions for order and chaos in coor-
dinate (RMS radius /(r2)) and energy ((E)) space under the
possibility of an artificial variation of the relative Planck’s con-
stant [I" = (fio/h)?] following reference [16]. The system is a
BEC in an external trap cut off by a hard-wall BP boundary. It
is excited by a stirring laser (see main text). From left to right,
the table lists conditions: QE?= quantum effects?, TA?= trap
anharmonicity?, and the results for the presence or absence of
chaos in both spaces. Answers are either yes (Y) or no (N).

QE? TA? Chaos /(r2)? Chaos (E)?
N N N N
N Y N Y
Y N N Y
Y Y Y Y

in the presence of quantum effects (I" = 1) and trap har-
monicity. Therefore, to obtain chaos in coordinate space,
both quantum effects (with I > 1) and trap anharmonic-
ity (with p; = pa > 1) must be present. This can also be
inferred from Table 3, which turns out to be similar to the
logic-OR table. It is noted that, even if chaos exists in the
energy space of a trapped BEC, it does not necessarily
translate to chaos in coordinate space. Likewise, order in
coordinate space does not imply order in energy space.

Other results are as follows:

1. The non-periodic trajectories of X vs X (X being any
physical quantity) supported by positive Lyapunov ex-
ponents are manifestations of chaos in the physical
observables.

2. The frequency of oscillation of a property X is primar-
ily determined by the external trap. In the presence
of a stirring blue-detuned laser, this frequency is not
affected, whereas a stirring red-detuned laser changes
the frequency. A dynamically changing effective trap-
ping frequency is found to be a source of chaos in the
BEC.

3. While the stirring laser is inside the trap, this situation
could be viewed as an initial condition. If one consid-
ers measuring these systems after the removal of the
stirrer, then one can think of different initializations
according to whether there was a stirring BDLP or
RDLP. Inspecting the post-stirring dynamics in Fig-
ure 1, one can infer that these systems are able to re-
member the kind of laser potential used to excite them.
It turns out that the dynamics of the BEC is deter-
mined according to its history of excitations. As the
trajectories that a chaotic system follows are sensitive
to initial conditions [8,31], then this further confirms
that our systems are indeed chaotic.

The usefulness of the present work is that: (1) it looks
deeper into the chaotic dynamics of a BEC by looking
at the dynamics of the energy components; (2) the ideas
presented here can be used to gain further understand-
ing of other analogous complex systems, such as the re-
cently achieved photonic BEC [92]; (3) it should moti-
vate the exploration of chaos excited by other methods,
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such as an oscillating stirrer [42,43,50,53] and a rotational
one [46,47,52,54].
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Appendix: Effective trapping frequency

The trapping frequencies w, and w, of the combined ex-
ternal+laser trap V(z,y;t), equation (3), are given by:

02V (z, y; t
wq<x,y;t>=\/ s,

where ¢ = (z,y) and w, is therefore a function of the
coordinates. However, these equations are only valid near
the minima of V(x,y;t). Substituting equation (3) into
equation (A.1) yields

(A1)

orlopst) = { Toalor = 1)l = 25401 - 26

1/2

<eol-8 -]} L (A2

and
wy(z,y:t) = {ZPQ(ID - 1)|y|p2—2 —28A[1 —20(y — vt)2]

1/2
x exp[—B(z* + (y — vt)Q)]} . (A.3)

Hence, w, and w, are controlled by the overall shape of
the combined trap and particularly the height or depth
of the applied laser potential. Note that for A < 0, w,
and w, will increase with “increasing” A < 0. If A > 0,
the frequencies decrease.

By setting p1 = p2 = 2, one obtains for a harmonic
trap

wa (2, ;)
- {‘2’ — 208A(1 — 262”) exp[-B(a® + (y — vt)2)1}1/2 )
(A.4)
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and
wy (@, ;1)
o 1/2
= {2841 - 28(y—ot)* expl-B(a + (y—v1)?)] }
(A.5)

Note that in this case, the spatial variations of the com-
bined trap ruling w, arise only from the laser poten-
tial because those due to the harmonic trap have been
eliminated!

A.1 Red-detuned Laser

At t = 0, the only minimum in the combined harmonic
trap is found at = y = 0 at the bottom of the RDLP
well. Therefore
o 1/2
w2 (0,050) = w, (0,0;0) = [2 _ 2@4} . (A6)
At t > 0, when the laser has moved only a little, such that
there is still only one minimum in the combined trap, one
gets at = 0 and y = vt the same w, and w, as in
equation (A.6), i.e.,
o 1/2
wa(0, 08 £) = wy (0, vi; t) = [2 - 254 . (AT

As long as there is only one minimum (that of the RDLP),
w and w, will remain constant at all times ¢. However,
when the red-detuned laser has moved far enough from the
center of the harmonic trap, another minimum arises at
x = y = 0. Here, the frequencies become time-dependent
with values given by:

wz(0,05t) = {; —2BA e)){p[—ﬁv27§2]}1/2 , (A.8)
and
o 1/2
wy(0,0:) = {2 — 2BA[1 — 2Bv*#?] exp[—ﬁthz]} .
(A.9)

Hence the frequency of BEC-density oscillations inside the
trap is subject to change with time, and this tends to
be one source of chaos in these oscillations. Inside the
reference frame of the RDLP, the BEC oscillates at a fixed
frequency when p; = py = 2.

For the anharmonic trap, say with p; = ps = 7, at the
minimum of the RDLP z = y = 0, one obtains for t =0

wz(0,0;0) = wy(0,0;0) = /—26A4, (A.10)
and similarly for ¢ > 0
we (0,085 1) = wy (0, vt; 1) = /—2BA. (A.11)

When the RDLP has moved far away from x = y = 0,
there arises a minimum at the center of the anharmonic
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trap with trapping frequencies
1
02(0.0:0) = /=25 0xp - 0% )

wy(0,0;t) = \/—ZﬁA(l — 28v%t?) exp (—;502752) ,

(A.12)
and inside the RDLP
wy(0,0t;1) = [10.50vt]" — 284]"/?,
wa (0, vt 1) = \/—2BA. (A.13)

A.2 Blue-detuned laser

In this case for a harmonic trap at ¢t = 0, we have a max-
imum at z = y = 0, and there exists a minimum along a
circular region around the barrier of V(x,y;t). Assuming
that this circle of minima has a radius 7o, then 23+y32 = 73
and t = 0 yield

/
wa (20, 40; 0) = {; — 2BA(1 — 2p23) exp[—ﬁfg]}l i ;
(A.14)
and
o 9 9 1/2
wy(w0,030) = { 7 — 2BA(1 - 2848) exp|—6r8] |

(A.15)
When the BDLP moves, the previous circle of minima
will vanish, and once the BDLP is far enough from the
center of the harmonic trap the minimum at z =y = 0
reappears. There is still a second minimum between the
BDLP and the BP when viewed along the y-direction. If
this minimum is located at yy and time ¢, then it is possible
that this minimum with trapping frequency

o(0vmit) = { 5 28401 26000 — w1

< expl—A(yo - vtﬂ}, (A.16)

could provide some trapping at yo along y. However, in
the a-direction equation (A.1) no longer applies for this
case. The latter extremum is a saddle point with negative
curvature in the z-direction and positive curvature in the
y-direction.
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