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a b s t r a c t

This paper examines the influence of environmental perturbations on dynamical regimes
of model ecosystems. We study a stochastic lattice model describing the dynamics
of a group chasing and escaping between predators and prey. The model includes
smart pursuit (predators to prey) and evasion (prey from predators). Both species can
affect their movement by visual perception within their finite sighting range. Non-
conservative processes that change the number of individuals within the population,
such as breeding and physiological dying, are implemented in the model. The model
contains five parameters that control the breeding and physiological dying of predators
and prey: the birth and two death rates of predators and two parameters characterizing
the birth and death of prey. We study the response of our model of group chase
and escape to sudden perturbations in values of parameters that characterize the non-
conservative processes. Temporal dependencies of the number of predators and prey are
compared for various perturbation events with different abrupt changes of probabilities
affecting the non-conservative processes.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Simulation of population dynamics is a central research theme in computational biology, which contributes to
nderstanding the interactions between predators and prey. Classical models of predator–prey systems were developed
irst by Lotka and Volterra [1–3]. They showed that simple predator–prey models may exhibit limit cycles during which the
opulations of both species have periodic oscillations in time with a 1/4-period lag between predator and prey [4]. Such

oscillations in species abundances have successfully been observed in real-world systems [5–8]. As the field developed, the
commonly used model schemes shifted from continuous ones based on a differential equation towards discrete and agent-
based models [9–13]. Furthermore, the predator–prey systems have been studied in various contexts, such as robotics,
game theory and ecology [14–19].

Many complex systems have impulsive dynamical behavior due to abrupt jumps of some parameters affecting the
system at specific instants during the evolving processes. Ecological systems are often affected by environmental changes
and human activities, such as vaccination, medical treatment of disease, sterilization, etc. For example, numerous species
are prone to extinction due to temperature fluctuations or climatic changes, and pollution events [20–26]. Discrete nature
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of human actions or environmental changes lead to population densities changing very rapidly in a short time interval.
The maintenance of existing population density requires information as to how organisms react to intended as well as
unintended abrupt changes.

Short-term environmental perturbations (such as heavy rainfall, severe fires, or storms) are likely to cause the sudden
eath of healthy individuals within a population, which would not exhibit any changes in their biological variables within
population at a stable state. These perturbations are often assumed to be in the form of impulses in the modeling process.
owever, ecosystems can be exposed to various types of environmental perturbations for long periods of time, which
ay result in an enduring alteration of population and trait dynamics. Long-term effects of environmental perturbations

requently cause modification of the biological properties of species, such as species reproduction, mortality rates and
ther vital rates [23,27]. In this paper, we develop a stochastic lattice model describing the dynamics of a group chasing
nd escaping between predators and prey [28,29]. Non-conservative processes, such as breeding and physiological dying,
re implemented in the model [30,31]. We study the dynamics of coexistence that arises due to the introducing of the
brupt changes in the values of parameters that characterize the non-conservative processes into the model.
Our model is based on the agent-based approach to simulate numerically collective chasing and escaping in a discrete

pace and time with periodic boundary conditions, similar to the model of hunting in groups proposed by Kamimura
nd Ohira [28,32–35]. In the following, we sketch the main features of our model, along the lines of Ref. [29]. Predators
nd prey are initially placed randomly on the sites of the lattice as pointlike particles. Thus, each site is either empty
r occupied by a predator or a prey. Predators can sense the positions of the prey at an arbitrarily predefined distance
nd they try to move to one of the nearest neighboring sites in order to decrease the distance from the nearest prey. As
redators move and approach their prey, the prey try to evade the capture by making a distance of one lattice spacing in
direction away from the nearest predator. Prey is caught upon the first encounter with a predator.
Distances in the present study are measured by the L1 (‘‘Manhattan’’) metric. Manhattan distance between sites S1 and

S2 on a square lattice is equal to the length of all paths connecting S1 and S2 sites along horizontal and vertical segments,
without ever going back. In reality, predators search for prey in their vicinities. Similarly, prey can recognize the existence
of nearby predators. Therefore, each species has its specific sighting range σ in which it can see the other species. Sighting
range σ describes their skills at chasing or escaping. In that sense the model includes the smart pursuit of predators to
prey and the escape of prey from predators. Analysis of the capture dynamics in the present study is limited to species
with the same sighting ranges, i.e., σ = 2 [29]. If the value of σ equals zero, the movement is equivalent to the random
walkers [28,31,36,37].

The model contains five parameters that control the breeding and physiological dying of predators and prey: the birth
and two death rates of predators and two parameters characterizing the birth and death of prey. The goal of the present
study is to investigate the short-time response of our model of group chase and escape to sudden perturbations in the
values of parameters that characterize the non-conservative processes. In addition, we present and discuss the numerical
results regarding the time evolution of the number of predators and prey for long periods of time after the abrupt changes
of parameters affecting the non-conservative processes. In this paper we show that the short-time behavior is always
linked to the forgetting of the initial conditions through the pursuit-evasion processes. Our numerical results suggest
that this short-time evolving process is often accompanied with high amplitudes of population dynamics. The short-term
memory effects observed in our model are reflected in the fact that the future evolution of the population densities
after time tw > 0 depends not only on the densities of predators and prey at the moment tw , but also on the previous
volving history. This feature concerns the coding of the system history in various spatial configurations of predators
nd prey on the habitat. Furthermore, we try to demonstrate that the number of predators and prey in the long-term
tate are unambiguously determined by the probabilities for all nonconservative processes in the system. As consequence,
uasi-steady state regime corresponding to perturbed probabilities does not depend on the moment of their introduction.
An outline of this paper is as follows. Section 2 describes the details of the model and simulations. In Section 3 results

f numerical simulation are presented and discussed. Finally, Section 4 contains some additional comments and final
emarks.

. Definition of the model and the simulation method

The habitat where two interacting species survive and proliferate is represented by a two-dimensional square lattice
f linear size L with periodic boundary conditions. In our model, the lattice is initially empty. To prepare the environment
n the initially disordered state, we randomly distributed N (0)

1 predators and N (0)
2 prey as monomers. Spatial distribution

f species on the lattice is generated using the random sequential adsorption (RSA) method [38,39]. Consequently, each
ite can be either empty or occupied by one particle: by a predator (chaser) or prey (escapee).
After placing the predators and the prey up to the chosen densities ρ

(0)
1 = N (0)

1 /L2 and ρ
(0)
2 = N (0)

2 /L2, we switch
he species deposition events off and add the diffusive dynamics into the system. At this stage, apart from the hard core
nteraction between the species, there are rules governing the dynamic processes at the individual level. Movement within
he lattice and the population dynamics are modeled as discrete time processes. At each Monte Carlo step a lattice site is
elected at random. If the selected site is unoccupied, the configuration remains unchanged and a new site is selected at
andom. If the selected site is occupied by a predator or a prey, each species follow the hopping rules described below.
fter each Monte Carlo step, the time t is updated, t → t + 1/L2 and the process continues by choosing a new lattice site
t random.
2
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We assume that each species has its specific sighting range σ in which it can see the other species. In other words,
predator has a certain pursuit region within which it can locate prey; simultaneously, prey has an escape zone inside which
it can detect predators. The metric used in our model is L1, so e.g. the site (x, y) is at distance |x| + |y| from the origin,
ith lattice spacing equal to unity. Here, unlike the previous model [29], both predators and prey have a sighting range
= 2, which corresponds to the region around the individuals that includes the first and second neighbors. Accordingly,

he decision for every step both of the predator and prey depends on the individuals that are found at the places of the
irst and second neighbors.

Suppose that predator is placed in a randomly selected site of the lattice. If the first neighbors of the selected site are
ntirely occupied with predators, the chosen predator stays at its original position. Then, the time t is updated, and the
rocess continues by choosing a new lattice site at random. Suppose that some of the first neighbors of the selected site
re occupied with prey. Then we randomly select a prey among them, remove the selected prey from the lattice, and move
he chosen predator to this empty place. However, if the first neighbors of the chosen predator are not occupied with
rey, the predator executes a jump as long as there is at least one empty nearest neighbor site. In this case, the predator
oves to the empty adjacent site that is surrounded by the highest number of prey, n(max)

2 , as its first neighbors. If two
r more empty nearest neighbor sites correspond to the same highest number of prey n(max)

2 , one of them is selected at
andom.

Now, suppose that a prey is placed in a randomly selected site of the lattice. If there are no empty nearest neighbors
f the selected site, the chosen prey does not change its position, and the time increases by 1/L2. The process continues
y choosing a new lattice site at random. If the selected site has empty adjacent sites, the chosen prey jumps to the
mpty nearest neighbor site that is surrounded by the lowest number of predators, n(min)

1 , as its first neighbors. If two or
ore empty nearest neighbor sites correspond to the same lowest number of predators n(min)

1 , one of them is selected at
andom. It must be emphasized that prey moves to the selected site only if n(min)

1 is less than or equal to the number of
redators surrounding it in its original position.
The set of rules described above mimics the smart pursuit-evasion processes [29]. The competitive evolution of the

opulations of predators and prey is also governed by additional set of rules which defines the population dynamics. Non-
onservative processes that change the number of individuals (size of the population), such as breeding and physiological
ying, are also implemented in the model. We introduce the following five non-conservative processes into the model.
or predators:

• Predators that have eaten a prey during the displacement can give an offspring in the previously occupied site, with
probability P fed

1r (birth probability of predators). In order to breed, it is considered that the predator must be strong
enough, i.e., it must have food available in immediate surroundings.

• Predators that have not eaten a prey during the displacement can die with probability Punfed
1d . It is assumed that the

lack of food reduces the number of predators present in the habitat.
• Predators can suddenly die with probability P1d (death probability of predators).

or prey:

• After displacement, prey can give an offspring filling an empty previously occupied site with probability P2r (birth
probability of prey).

• A prey has a probability P2d of dying (death probability of prey).

eath probabilities of species describe quantitatively the dying that could be tied to any other factors and events in the
co-system, such as the old age of individuals or diseases.
Based on the above definitions we formulate the algorithm as follows. If a randomly selected site of the lattice is not

mpty, predator (prey) can die with probability P1d (P2d). If the predator (prey) died, it is removed from the lattice, and a
ew site is selected. Otherwise, we apply the rules for pursuit-evasion movement for individuals explained above. If the
andomly selected predator survives, we check whether it ate the prey during the displacement. If so, the predator leaves
n offspring in the previously occupied site, with probability P fed

1r . However, if the predator did not eat the prey during
he displacement, it dies with probability Punfed

1d . Similarly, if the randomly selected prey survives, we check whether it
oved into a new position. If so, the prey leaves an offspring in the previously occupied site, with probability P2r.
The time t is counted by the number of attempts to select a lattice site and scaled by the total number of lattice sites
= L2. Since in one Monte Carlo time step each lattice site is randomly checked once on the average, it can be considered

hat all predators and prey are active at all times and that none of the species have a priority in the number of attempts
o make a move. In our study, the typical value of lattice size is L = 128, and the simulation data are averaged over 128
ndependent runs.

. Results

At first, we present and discuss the numerical results regarding the time evolution of the normalized number of
redators Ñ1(t) = N1(t)/N

(0)
1 and prey Ñ2(t) = N2(t)/N

(0)
2 on the lattice of size L = 128, for the representative set

f probabilities S = {P fed
= 0.25, Punfed

= 0.10, P = 0.01; P = 0.20, P = 0.01} that characterize the
1 1r 1d 1d 2r 2d

3
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Fig. 1. (a) Time dependences of the number of the normalized number of predators Ñ1 = N1(t)/N
(0)
1 and prey Ñ2 = N2(t)/N

(0)
2 on the lattice of size

= 128. (b) Shown here are the temporal dependences of the Ñ1 and Ñ2 in the oscillatory region of the quasi-steady state, between t1 = 2300
nd t2 = 3400, obtained for the same conditions as in panel (a). The values of probabilities that characterize the non-conservative processes are
1 = {P fed

1r = 0.25, Punfed
1d = 0.10, P1d = 0.01; P2r = 0.20, P2d = 0.01}. The initial numbers of species are chosen as N (0)

1 = 720 and N (0)
2 = 800.

on-conservative processes (see, Fig. 1(a)). The initial numbers of species were chosen as N (0)
1 = 720 and N (0)

2 = 800,
orresponding to the initial densities ρ

(0)
1 = N (0)

1 /L2 = 0.0439 and ρ
(0)
2 = N (0)

2 /L2 = 0.0488, with the ratio ρ
(0)
1 /ρ

(0)
2 =

(0)
1 /N (0)

2 = 0.9. It can be seen that in the initial stage, during which the flocks of species are not formed, the number
f predators and prey oscillates periodically with large amplitudes. However, the amplitude of oscillation decreases with
ime. After a short transient period, the system arrives at a quasi-steady state. This state corresponds to a coexisting
tate when the densities of predators and prey oscillate (fluctuate) around some ‘‘average’’ values, which do not change
n time. More details about the temporal behavior of the number of predators and prey for the late stage of evolution,
n a time range between t1 = 2300 and t2 = 3400, are shown in Fig. 1(b). A common prediction can be observed:
rey oscillations precede predator oscillations by up to a quarter of the cycle period [4]. When predators are sparse, prey
ncrease in the abundance. As the number of prey increases, predators also increase in the abundance. When the predators
each sufficiently high densities, the prey population is driven down to low densities. With a lack of prey, the predator
opulation reduces, and the cycle repeats.
In addition, Fig. 2 shows the temporal evolution of the normalized number of predators Ñ1(t) = N1(t)/N

(0)
1 and prey

˜2(t) = N2(t)/N
(0)
2 for the set of probabilities S2 = {P fed

1r = 0.09, Punfed
1d = 0.05, P1d = 0.01; P2r = 0.15, P2d = 0.01},

nd initial numbers of species N (0)
1 = 720 and N (0)

2 = 800. For these conditions, we get qualitatively the same results as in
ig. 1. The results presented in Figs. 1 and 2 are used to establish the response in the evolution of the density of species
o a change in the probabilities S = {P fed

1r , Punfed
1d , P1d; P2r, P2d} at a given moment tw .

It is interesting to compare the oscillatory behavior of the number of predators and prey obtained using the two
ifferent sets (S , S ) of probabilities that characterize the non-conservative processes (see, Figs. 1(b) and 2(b)). In the
1 2

4
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Fig. 2. (a) Time dependences of the number of the normalized number of predators Ñ1 = N1(t)/N
(0)
1 and prey Ñ2 = N2(t)/N

(0)
2 on the lattice of size

= 128. (b) Shown here are the temporal dependences of the Ñ1 and Ñ2 in the oscillatory region of the quasi-steady state, between t1 = 2300
nd t2 = 3400, obtained for the same conditions as in panel (a). The values of probabilities that characterize the non-conservative processes are
2 = {P fed

1r = 0.09, Punfed
1d = 0.05, P1d = 0.01; P2r = 0.15, P2d = 0.01}. The initial numbers of species are chosen as N (0)

1 = 720 and N (0)
2 = 800.

econd set of parameters S2, the probabilities P fed
1r and Punfed

1d for the non-conservative processes related to predator feeding
are significantly reduced. The predator–prey cycles are based on a feeding relationship between two species. Therefore,
we can consider that the coupling of the predator and prey systems is much stronger in the case of parameters from the
set S1. Consequently, the amplitude of oscillations of predators in the quasi-stationary regime corresponding to the set
of parameters S2 is significantly smaller than in the case of the set of parameters S1.

In Fig. 3 we show the temporal dependence of the normalized number of predators Ñ1(t) = N1(t)/N
(0)
1 and prey

˜2(t) = N2(t)/N
(0)
2 on the lattices of size L = 64 and 128. It is important to note that the initial densities of predators

(0)
1 and prey ρ

(0)
2 have not changed with the lattice size L. Numerical results for Ñ1(t) and Ñ2(t) in Fig. 3 are given for the

nitial densities ρ
(0)
1 = 0.0439 and ρ

(0)
2 = 0.0488 for both lattices. It is evident that the time evolution of the normalized

umber of species does not depend on the lattice size L. However, for the lattice of fixed size L, time evolution of Ñ1(t)
nd Ñ2(t) depends on the initial number of predators N (0)

1 and prey N (0)
2 . Fig. 4 shows the dependence of the mean number

f predators ⟨N1⟩ and prey ⟨N2⟩ in a quasi-stationary state on their initial number. It can be seen that the behavior of the
ystem in the quasi-steady state ceases to depend on the initial conditions if the initial density of predators and prey is
igh enough. Indeed, the lower is the concentration of the targets (prey), the longer is the mean distance that a chaser
predator) crosses to find a target and catch it. Thus, at low densities of species, group chase with sight-limited chasers
ecomes very inefficient. Consequently, in the present paper, sufficiently large initial densities of species are chosen so
hat the average values of the number of predators and prey in the long-term state are unambiguously determined by
he probabilities for all nonconservative processes in the system.
5
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Fig. 3. Time dependences of the normalized number of predators Ñ1 = N1(t)/N
(0)
1 and prey Ñ2 = N2(t)/N

(0)
2 on the lattices of size L = 64 and 128,

as indicated in the legend. Results shown here are obtained for the same initial densities ρ
(0)
1 = 0.0439 and ρ

(0)
2 = 0.0488, for both lattices. Initial

alues for the number of predators/prey are N (0)
1 /N (0)

2 = 180/200, 720/800 for L = 64,128, respectively. The values of probabilities that characterize
he non-conservative processes are S1 = {P fed

1r = 0.25, Punfed
1d = 0.10, P1d = 0.01; P2r = 0.20, P2d = 0.01}.

Fig. 4. Shown here is the dependence of the mean number of predators and prey in a quasi-stationary state on their initial number. The values of
probabilities that characterize the non-conservative processes are: S = {P fed

1r = 0.25, Punfed
1d = 0.10, P1d = 0.01; P2r = 0.20, P2d = 0.01}. The lattice

ize value is L = 128.

One of the aims of our study were the properties of the long-term state attained by a population. We have found
hree possible states: (S1) the coexisting one with prey and predators, (S2) the absorbing one with prey only, and (S3) the
mpty one where no individual survived. Which one is the final state of a given population depends on the parameters
haracterizing the population dynamics. In the following example, we demonstrate the described behavior of the model.
rom the set of probabilities S = {P fed

1r , Punfed
1d , P1d; P2r, P2d}, three of them are fixed, i.e. we put P1d = 0.05, P2r = 0.20

nd P2d = 0.05. Probabilities P fed
1r and Punfed

1d are varied in [0, 1] range, with a step of 0.1. In Fig. 5 we show the average
alues of the normalized number of predators Ñ1(t) = N1(t)/N

(0)
1 and prey Ñ2(t) = N2(t)/N

(0)
2 in the long-term state

or the full range of probabilities P fed
1r , Punfed

1d ∈ [0, 1]. An absorbing state (S2) can be reached for each probability value
fed
1r ∈ [0, 1] if the probability Punfed

1d is large enough. It corresponds to the part of the surface in Fig. 5(a) for which the
umber of predators is equal to zero. Figs. 5(a) and 5(b) show that the system asymptotically tends to the state (S3) when
fed
1r → 1 and Punfed

1d → 0. It can be seen from Fig. 5 that all other areas correspond to the coexisting state (S1). In order to
how different possible states in a more clear manner, we presented our results also in Fig. 6 which is a two-dimensional
lot where we highlighted the states (S1), (S2), (S3), and (S1&2) which is an area of both (S1) and (S2) states. In other
ords, the individual simulation runs corresponding to the domain (S1&S2) can be finished in one of the two final states:
dsorbing or coexisting one. In the case of coexisting final state (S1), the number of prey is very high; it covers a large part
6



J.R. Šćepanović, Z.M. Jakšić, Lj. Budinski-Petković et al. Physica A 580 (2021) 126156

c

Fig. 5. Shown here is the surface plot of the normalized number of (a) predators Ñ1 = N1(t)/N
(0)
1 and (b) prey Ñ2 = N2(t)/N

(0)
2 in the long-term

state for the full range of the probabilities P fed
1r , Punfed

1d ∈ [0, 1]. Initial densities of both species on the lattice of size L = 128 are the same,
ρ
(0)
1 = ρ

(0)
2 = 0.0488, which corresponds to N (0)

1 = N (0)
2 = 800 predators and prey at t = 0.

of the lattice, but they coexist with a small number of predators. Clear boundaries between the states could be obtained
by performing many more simulations with step that is less than 0.1.

3.1. Response properties of the model

In this section, we present the results of the simulations for the previously described model subject to abrupt changes
in the values of probabilities {P fed

1r , Punfed
1d , P1d; P2r, P2d} that characterize the non-conservative processes. Starting

from an initially disordered state, with randomly distributed predators and prey on the lattice, the system evolves at
fixed probabilities S = {P fed

1r , Punfed
1d , P1d; P2r, P2d}. At a certain time, tw , probability value for some selected non-

conservative process P ∈ S changes from P(I) to another value P(II). During the further evolution of the system, the
perturbed probability value P(II) does not change.

At first, we present the results of simulations for the cases with abrupt changes of probabilities P2r and P2d that
haracterize the non-conservative processes of prey. In both cases, the system evolves to the time tw = 2500 with constant
probabilities S1 = {P fed

1r = 0.25, Punfed
1d = 0.10, P1d = 0.01; P2r = 0.20, P2d = 0.01}. Fig. 7 shows the response in the

evolution of the normalized number of predators Ñ1(t) and prey Ñ2(t) to an abrupt decrease in the birth probability of
prey P2r(I) = 0.20 → P2r(II) = 0.10 at instant tw = 2500. When P2r is abruptly lowered, the first effect is a sharp drop in
the number of prey. This is followed by a significant reduction in the number of predators due to a lack of food. After the
transient oscillatory regime, the system arrives at a quasi-steady state when the average number of predators remains
reduced, but the average number of prey has slightly increased for the chosen parameter set.
7
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o

Fig. 6. Two-dimensional representation of full range of probabilities P fed

1r , Punfed
1d ∈ [0, 1] that shows possible states of the model, (S1) — the coexisting

ne, (S2) — with prey only, (S3) — the empty one, and (S1&S2) — with both (S1) and (S2) states.

Fig. 7. Response in the evolution of the normalized number of predators Ñ1(t) = N1(t)/N
(0)
1 and prey Ñ2(t) = N2(t)/N

(0)
2 to an abrupt change of the

probability P2r(I) = 0.20 → P2r(II) = 0.10 at tw = 2500. The values of probabilities that characterize the non-conservative processes before tw are
S1 = {P fed

1r = 0.25, Punfed
1d = 0.10, P1d = 0.01; P2r = 0.20, P2d = 0.01}.

Fig. 8 shows the response in the evolution of the normalized number of predators Ñ1(t) and prey Ñ2(t) to an abrupt
increase in the death probability of prey P2d(I) = 0.01 → P2d(II) = 0.05 at instant tw = 2500. These results were obtained
for the initial probability set S1 = {P fed

1r = 0.25, Punfed
1d = 0.10, P1d = 0.01; P2r = 0.20, P2d = 0.01}, which is identical

to the previous one. Comparing Figs. 7 and 8, it can be seen that the response of the system to an increase in the death
probability is very similar to its behavior when reducing the birth probability of prey. At short times after the probability
P2d is suddenly increased, we observe an abrupt decrease in the number of prey, followed by the reduction of the number
of predators. After the transient oscillatory regime, the average number of predators is decreased because there is not
enough available food. However, the average number of prey remains the same because there are fewer predators to
catch them.

In the following, we present the results of simulations for the cases with the abrupt changes of probabilities
{P fed

1r , Punfed
1d , P1d} that characterize the non-conservative processes of predators. These simulations are performed for

two sets of initial probabilities, S1 = {P fed
1r = 0.25, Punfed

1d = 0.10, P1d = 0.01; P2r = 0.20, P2d = 0.01} and
S2 = {P fed

1r = 0.09, Punfed
1d = 0.05, P1d = 0.01; P2r = 0.15, P2d = 0.01} (see Figs. 1 and 2 showing the unperturbed

evolution of the system).
8
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Fig. 8. Response in the evolution of the normalized number of predators Ñ1(t) = N1(t)/N
(0)
1 and prey Ñ2(t) = N2(t)/N

(0)
2 to an abrupt change of the

probability P2d(I) = 0.01 → P2d(II) = 0.05 at tw = 2500. The values of probabilities that characterize the non-conservative processes before tw are
S1 = {P fed

1r = 0.25, Punfed
1d = 0.10, P1d = 0.01; P2r = 0.20, P2d = 0.01}.

Fig. 9. Response in the evolution of the normalized number of predators Ñ1(t) = N1(t)/N
(0)
1 and prey Ñ2(t) = N2(t)/N

(0)
2 to an abrupt change of the

probability P1d(I) = 0.01 → P1d(II) = 0.05 at tw = 2500. The values of probabilities that characterize the non-conservative processes before tw are
S1 = {P fed

1r = 0.25, Punfed
1d = 0.10, P1d = 0.01; P2r = 0.20, P2d = 0.01}.

In Fig. 9 we show the time evolution of the normalized number of predators Ñ1(t) and prey Ñ2(t) for the first set of
initial probabilities S1, when the death probability of predators P1d is changed from P1d(I) = 0.01 to P1d(II) = 0.05 at
nstant tw = 2500. We can see that for short times after an abrupt change of P1d the decay of the number of predators
s fast. At short times, predator deficiency leads to a rapid increase in the number of prey. However, the increased food
vailability and the better nutrition of predators maintain their presence on the habitat after the transient oscillatory
egime with almost the same average number as before the system perturbation. In other words, increasing the probability
1d has not reduced the number of predators on the habitat, but it increased the average number of prey.
It must be stressed that the density evolution of predators and prey at short times after initialization (t = 0), or after an

brupt change of probabilities S = {P fed
1r , Punfed

1d , P1d; P2r, P2d} at instant t = tw , depends not only on their density at these
nstants, but also on the corresponding spatial distribution of agents on the lattice. Initial spatial distribution of agents on
he lattice depends on the method used to build an initial distribution of individuals within the population on the lattice.
patial distribution of agents generated at moment tw = 2500 represents the initial condition for further evolution of the
ystem with new (perturbed) probabilities that characterize the non-conservative processes. It is clear that the spatial
istributions of system agents in time t = 2500 are quite different from the spatial distributions generated by the RSA
w

9
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0

0

Fig. 10. Time dependences of the number of the normalized number of predators Ñ1 = N1(t)/N
(0)
1 and prey Ñ2 = N2(t)/N

(0)
2 on the lattice of size

L = 128. The values of probabilities that characterize the non-conservative processes are S = {P fed
1r = 0.25, Punfed

1d = 0.10, P1d = 0.01; P2r =

.20, P2d = 0.05}. Solid lines: The results from Fig. 8, which are translated along the x-axis, t → t − tw . Dashed lines: Results obtained in the case
when the initial configuration of agents are generated by the RSA method.

Fig. 11. Time dependences of the number of the normalized number of predators Ñ1 = N1(t)/N
(0)
1 and prey Ñ2 = N2(t)/N

(0)
2 on the lattice of size

L = 128. The values of probabilities that characterize the non-conservative processes are S = {P fed
1r = 0.25, Punfed

1d = 0.10, P1d = 0.05; P2r =

.20, P2d = 0.01}. Solid lines: The results from Fig. 9, which are translated along the x-axis, t → t − tw . Dashed lines: Results obtained in the case
when the initial configuration of agents are generated by the RSA method.

method. Therefore, the responses of the system at short times after initialization (t = 0) and after an abrupt change of the
any of probabilities S = {P fed

1r , Punfed
1d , P1d; P2r, P2d} at the time tw = 2500 are quite different. In Figs. 10 and 11 we show

such comparisons. This can be explained by the memory effect, which is a common phenomenon in out-of-equilibrium
systems. It is well known that the system can be found in states, characterized by the same density of predators and prey,
that have different spatial distribution of agents on the lattice. Memory of the hunting history up to the densities ρ1(t)
and ρ2(t) is encoded in the arrangement of the agents in the environment. This implies that the knowledge of the density
of agents ρ1(t) and ρ2(t) is not sufficient to predict the further evolution of the system. This feature concerns the coding
of the system history in the ‘‘microscopic’’ configurations.

Furthermore, a quasi-steady state regime corresponding to perturbed probabilities does not depend on the moment of
their introduction. This conclusion is confirmed by the results shown in Figs. 10 and 11. It can be seen that using different
moments (t = 0 or t = tw = 2500) of introducing the perturbed values of probabilities for non-conservative processes
give quantitatively the same results for the temporal evolution of Ñ1(t) and Ñ2(t) in the quasi-steady state regime.

In order to gain a better insight into the effect of a sudden increase in P1d on the population dynamics, the same set
of numerical experiments is carried out as in Fig. 9, with the only difference that the set of initial probabilities for the
non-conservative processes is changed from S to S . These results are shown in Fig. 12. By comparing the results shown
1 2

10
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Fig. 12. Response in the evolution of the normalized number of predators Ñ1(t) = N1(t)/N
(0)
1 and prey Ñ2(t) = N2(t)/N

(0)
2 to an abrupt change of

he probability P1d(I) = 0.01 → P1d = 0.05 at tw = 2500. The values of probabilities that characterize the non-conservative processes before tw are
2 = {P fed

1r = 0.09, Punfed
1d = 0.05, P1d = 0.01; P2r = 0.15, P2d = 0.01}.

in Figs. 9 and 12, it is obvious that the same kind of numerical experiments for different initial probabilities S1 and S2
roduce qualitatively similar results for the time evolution of the number of predators and prey. However, small changes
n the system behavior are possible. From Fig. 12, it is evident that the change in the initial probabilities S1 → S2 has led
o a shortening of the transient oscillatory regime. The sudden increase in the death probability of predators P1d causes
n increase in the number of prey. However, after the transient regime, the number of predators slightly decreased, in
he contrary to the behavior of the system shown in Fig. 9.

In the following, we shall demonstrate that an abrupt decrease in the birth probability of predators P fed
1r has a very

imilar effect on the systems evolution as an abrupt increase of their death probability P1d. Fig. 13 shows the response in
he evolution of the normalized number of predators Ñ1(t) and prey Ñ2(t) for the set of initial probabilities S1, when the
irth probability of predators P fed

1r is decreased from P fed
1r (I) = 0.25 to P fed

1r (II) = 0.15 at instant tw = 2500. Fig. 14 shows
he same time dependences, but for the system whose initial probabilities are given by S2 and the birth probability of
redators P fed

1r is abruptly changed from P fed
1r (I) = 0.09 to P fed

1r (II) = 0.05. Similarly to the results presented in Figs. 9 and
2, here we observe a fast decay of the number of predators for short times after an abrupt change of P fed

1r . At short times
his leads to a rapid increase in the number of prey. As previously mentioned, better food availability favorably affects
he presence of predators in the habitat, so that their number increases slightly after the transient regime.

Inadequate and insufficient nutrition can lead to increased predator mortality. In our model, the predators that have not
aten any prey in the previous MC step can die with probability Punfed

1d . In Figs. 15 and 16 we show the time evolution of the
ormalized number of predators Ñ1(t) and prey Ñ2(t), when the death probability of predators Punfed

1d is abruptly doubled
at instant tw = 2500. In Figs. 15 and 16, the results are shown for the sets of initial probabilities S1 and S2, respectively.
fter an abrupt increase of the probability Punfed

1d , large and long-lasting oscillations in the number of predators occur,
followed by large oscillations in the number of prey. As expected, the average number of prey is increased compared to
the one observed before the perturbation, but the average number of predators stays almost the same. An increase in the
number of prey makes the food more available, which maintains the number of predators.

4. Concluding remarks

In this paper, we have developed an intuitively clear framework for understanding the impacts of environmental
perturbations on the population dynamics of the predator–prey systems. We have studied a stochastic lattice model
describing a group chase and escape with sight-limited predators and prey by numerical simulations. Five probabilities
that control the breeding and physiological dying of predators and prey were introduced into the model. Although the
probability values used in the simulations were not taken from any specific research, our results highlight some possible
consequences of perturbations in the predator–prey systems. Our MC simulations have shown that there are three possible
final states into which the dynamics could lead the populations: coexistence of predator and prey, prey only, and an empty
state in which both populations are extinct.

In the model, a perturbation was introduced at a specific instant during the evolving process by the abrupt change of
the birth and death rates. In short times, after an abrupt change probability that characterizes the chosen non-conservative

process, we have observed a sharp drop or jump in the numbers of predators and prey. Sudden changes in their number

11
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Fig. 13. Response in the evolution of the normalized number of predators Ñ1(t) = N1(t)/N
(0)
1 and prey Ñ2(t) = N2(t)/N

(0)
2 to an abrupt change of

he probability P fed
1r (I) = 0.25 → P fed

1r (II) = 0.15 at tw = 2500. The values of probabilities that characterize the non-conservative processes before tw
re S1 = {P fed

1r = 0.25, Punfed
1d = 0.10, P1d = 0.01; P2r = 0.20, P2d = 0.01}.

Fig. 14. Response in the evolution of the normalized number of predators Ñ1(t) = N1(t)/N
(0)
1 and prey Ñ2(t) = N2(t)/N

(0)
2 to an abrupt change of

he probability P fed
1r (I) = 0.09 → P fed

1r (II) = 0.05 at tw = 2500. The values of probabilities that characterize the non-conservative processes before tw
re S2 = {P fed

1r = 0.09, Punfed
1d = 0.05, P1d = 0.01; P2r = 0.15, P2d = 0.01}.

re stabilized during the transient oscillatory regime. After the transient oscillatory regime, the system arrives at a quasi-
teady state when the densities of predators and prey oscillate (fluctuate) around some ‘‘average’’ values, which do not
hange in time. Our simulations predict the oscillations with a 1/4-period lag between predator and prey during and
fter the transient oscillatory regime. We have demonstrated that perturbation of a selected non-conservative process in
umerical experiments with different initial probabilities produces qualitatively similar results for the time evolution of
he number of predators and prey.

Our results suggest that the response of the system to an increase in the death probability of prey is very similar to
ts behavior when reducing the birth probability of prey. In both cases, the average number of predators is decreased
fter the transient oscillatory regime due to the lack of food. Further, we have found that an abrupt decrease in the
irth probability of predators affects the evolution of the system similarly to an abrupt increase of their death probability.
ecreasing (increasing) the birth (death) probability of predators changes their number slightly, but considerably increases
he number of prey in the quasi-steady state regime. Such perturbations lead to a rapid increase in the number of prey
t short times. Consequently, increased food availability maintains the presence of predators on the habitat after the
ransient oscillatory regime.
12
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Fig. 15. Response in the evolution of the normalized number of predators Ñ1(t) = N1(t)/N
(0)
1 and prey Ñ2(t) = N2(t)/N

(0)
2 to an abrupt change of

he probability Punfed
1d (I) = 0.10 → Punfed

1d (II) = 0.20 at tw = 2500. The values of probabilities that characterize the non-conservative processes before
w are S1 = {P fed

1r = 0.25, Punfed
1d = 0.10, P1d = 0.01; P2r = 0.20, P2d = 0.01}.

Fig. 16. Response in the evolution of the normalized number of predators Ñ1(t) = N1(t)/N
(0)
1 and prey Ñ2(t) = N2(t)/N

(0)
2 to an abrupt change of

he probability Punfed
1d (I) = 0.05 → Punfed

1d (II) = 0.10 at tw = 2500. The values of probabilities that characterize the non-conservative processes before
w are S2 = {P fed

1r = 0.09, Punfed
1d = 0.05, P1d = 0.01; P2r = 0.15, P2d = 0.01}.

This study could serve as a good basis for further studies of the dynamics of multi-species communities that are exposed
o sudden environmental perturbations. It would be interesting to perform a similar investigation in a heterogeneous
andscape, i.e., in an environment that contains obstacles [29]. This would allow us to study the role that rapid changes
n the spatial structure of the natural habitat play in the time evolution of the number of predators and prey.
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