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Random sequential adsorption of lattice animals on a three-dimensional cubic lattice
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2Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade,

Pregrevica 118, Zemun 11080, Belgrade, Serbia

(Received 15 September 2019; published 14 January 2020)

The properties of the random sequential adsorption of objects of various shapes on simple three-dimensional
(3D) cubic lattice are studied numerically by means of Monte Carlo simulations. Depositing objects are “lattice
animals,” made of a certain number of nearest-neighbor sites on a lattice. The aim of this work is to investigate
the impact of the geometrical properties of the shapes on the jamming density θJ and on the temporal evolution of
the coverage fraction θ (t ). We analyzed all lattice animals of size n = 1, 2, 3, 4, and 5. A significant number of
objects of size n � 6 were also used to confirm our findings. Approach of the coverage θ (t ) to the jamming limit
θJ is found to be exponential, θJ − θ (t ) ∼ exp(−t/σ ), for all lattice animals. It was shown that the relaxation
time σ increases with the number of different orientations m that lattice animals can take when placed on a cubic
lattice. Orientations of the lattice animal deposited in two randomly chosen places on the lattice are different if
one of them cannot be translated into the other. Our simulations performed for large collections of 3D objects
confirmed that σ ∼= m ∈ {1, 3, 4, 6, 8, 12, 24}. The presented results suggest that there is no correlation between
the number of possible orientations m of the object and the corresponding values of the jamming density θJ.
It was found that for sufficiently large objects, changing of the shape has considerably more influence on the
jamming density than increasing of the object size.
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I. INTRODUCTION

A broad variety of structures are created of objects packed
together, and describing the packing processes are among the
most persistent problems in science [1,2]. Understanding of
various aspects of packing is of a great scientific and industrial
importance, with applications in nanotechnology, material sci-
ence, biology, agriculture, and ecology [3–7]. Particle packing
is still far from well understood. Packing structure is still
not able to be predicted by a general model that takes into
account various controlling parameters, such as geometric and
material properties of objects, gravity, and packing methods.

One common approach to studying the packaging of ob-
jects of various shapes is the random sequential adsorption
(RSA) method [8] which appears to be the simplest but non-
trivial model of random packing. The RSA model considers
sequential addition of particles of various shapes at randomly
chosen places on the n-dimensional substrate. Overlapping
of the particles is not allowed, and there is no diffusion of
the deposited objects. The time evolution of the coverage
(or the density of the system), θ (t ), i.e., the fraction of the
substrate occupied by the deposited objects at time t , describes
the kinetic properties of the deposition process. Once an ob-
ject is placed, it affects the geometry of all later placements, so
that the dominant effect in RSA is the blocking of the available
substrate space. At sufficiently large times the coverage θ (t )
approaches the jamming value θJ, where only gaps too small
to place new particles are left on the substrate.
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Depending on the system of interest, the substrate can be
continuum or discrete, and RSA models can differ in substrate
dimensionality. Analytical results are available mostly for
one-dimensional problems [9–11]. Due to the complexity of
deposition of objects of various shapes in higher dimensions,
Monte Carlo simulations remain a main tool for describing
such systems. The long-term behavior of the coverage fraction
θ (t ) is known to be asymptotically algebraic for continuum
substrates [11–15] and exponential for lattice models [16–20].
For the discrete case, the approach of the density θ (t ) to the
jamming limit θJ is of the form

θJ − θ (t ) ∼ exp(−t/σ ), (1)

where jamming density θJ and the characteristic time σ are
the parameters that depend on the details of the model, such
as shape and symmetry properties of the depositing objects
[17,18,20]. In our model, relaxation time σ is the fitting
parameter that will be discussed within the context of the
orientational freedom of the shape.

During the past few decades the methods of random
sequential deposition of different objects on substrates of
various dimensions have developed extensively. Previously,
the majority of work has been done for spherical particles
[21–23]. To examine the significance of particle anisotropy
in formation of the jammed state coverings, RSA of many dif-
ferent object shapes has been studied for both continuum and
lattice models. For example, RSA on continuous substrates
has been studied for lines and ellipses [24,25], rectangles
[26,27], starlike particles [28], superdisks bounded by the
Lame curves [29], spherocylinders and ellipsoids [24,30],
cubes [31], cuboids [32], and polymers modeled as chains
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of identical spheres [33]. It was found that the kinetics of
irreversible deposition and morphological characteristics
of the packing are strongly dependent on the shape and size
of the depositing particles.

Formation of random deposits on discrete substrates has
also been extensively studied for various object shapes
[16–19,34,35]. Wang and Pandey [36] have studied the RSA
kinetics of self-avoiding walk chains on a square lattice and
found that the jamming coverage decreases with the chain
length according to a power law. Deposition of objects of
various sizes and rotational symmetries was studied for a
square and triangular lattice [17,18]. It was found that the
rapidity of the approach to the jamming coverage depends
only on the symmetry order of the shape. The crucial role of
the object shape in deposition dynamics was also confirmed
in Ref. [20], where the depositing objects were formed by
self-avoiding lattice steps, whereby the size of the objects was
gradually increased by wrapping the walks in several different
ways. Values of the relaxation time σ have been found to
depend only on the symmetry properties of the shape, and it
can be seen that objects differing in only one lattice step can
have significantly different values of the relaxation time. This
work provides the link between the decay of probability for
the insertion of a new particle onto a lattice and the intrinsic
properties of the shapes, such as parameter of nonsphericity
of the objects.

Much attention has been paid to the RSA on 1D and
2D lattices, but there are only a few studies of irreversible
deposition in 3D. Irreversible deposition on three-dimensional
lattices has been studied mostly for k-mers [37–40]. Tara-
sevich and Cherkasova [38] examined the percolation and
jamming properties of dimers on simple 3D cubic lattices. In
Ref. [40], the study of Tarasevich and Cherkasova is extended
to larger k-mers (2 � k � 64) to determine the dependence
of the jamming coverage on the size of the deposited k-mers
for 3D cubic lattices. To the best of our knowledge, there are
no results for RSA of various shapes formed by connected
sites on a 3D lattice. It should be stressed that examining all
possible positions of irregular shapes during the RSA process
is complex and very time consuming. There is also a number
papers dealing with percolations in 3D [41–45], including
some results for more complex systems.

It is obvious that object deposition is not physically realiz-
able in three dimensions since sometimes it requires objects
to be placed in locations that are surrounded by objects
previously deposited. However, RSA in 3D is useful as the
simplest, yet nontrivial model of random packing, which
takes into account excluded volume effects. Most research is
focused on the random close packings (RCPs) where neigh-
boring particles touch each other [2]. The RCP state is dif-
ficult to define because by introducing order, higher packing
fractions can be obtained [46]. In other words, the properties
of RCPs are very sensitive to a numerical protocol used for
packing objects. In contrast to random close packings, for
RSA packing, the mean packing density is unambiguously
defined, and it is more convenient for studying the influence
of object shape on the structure of the packing and its density.

The aim of this work is to study the RSA of large collec-
tions of objects made by connected sites on a simple 3D cubic
lattice, the so called “lattice animals.” More precisely, a lattice

animal can be viewed as a finite set of lattice sites connected
by a network of nearest neighbor bonds. Object size is the
number n of nodes that lattice animal covers on the grid. In
the physics literature lattice animals are often called clusters,
due to their close relationship to percolation problems [47,48].
Series expansions for the percolation probability or the aver-
age cluster size can be obtained as weighted sums over the
number of lattice animals gn,p, enumerated according to their
size n and perimeter p [49]. Lattice animals have also been
suggested as a model of branched polymers with excluded
volume [50,51]. In the present study the deposition kinetics
and the jamming limit are analyzed for all lattice animals of
size n = 1, 2, 3, 4, and 5 (41 different shapes). Our results
suggest that the number of different orientations that lattice
animals can take when placed on a cubic lattice exerts a
decisive influence on the adsorption kinetics near the jamming
limit θJ. To further confirm this finding, we have analyzed
some additional lattice animals of size n = 6 (8 objects) and
n � 7 (11 objects).

The paper is organized as follows. Section II describes
the model and the details of the simulations. The jamming
densities and the jamming configurations are analyzed in
Sec. III A. The approach of the coverage fraction θ (t ) to the
jamming limit θJ is analyzed in Sec. III B. Finally, Sec. IV
contains some additional comments.

II. DEFINITION OF THE MODEL AND
THE SIMULATION METHOD

Depositing objects are “lattice animals,” made of a certain
number of connected sites. In mathematics, and combinatorics
in particular, the term polyominoes and polycubes are fre-
quently used for 3D discrete objects. A polyomino of size n
is an edge-connected set of n squares on the square lattice
Z2 (the set of integers is denoted by Z). Polycubes are the
3D analogues of the planar polyominoes, i.e., polycube of
size n is a face-connected set of n cubes in the simple-cubic
lattice Z3. Because the square (cubic) lattice is self-dual,
the number of polyominoes (polycubes) with n cells is pre-
cisely the number of 2D (3D) site animals with n vertices.
Consequently, polyominoes (polycubes) are equivalent to site
animals on the dual lattice. In this work we use the term
“lattice animal” interchangeably with the other relevant terms
such as “polyomino” and “polycube.”

Fixed polycubes are considered distinct if they have differ-
ent shapes or orientations. In other words, two fixed polycubes
are identical if one of them can be translated into the other.
The number of fixed d-dimensional polycubes of size n is
usually denoted in the literature by Ad (n). In the mathematical
literature, fixed polycubes are most discussed in the context
of simple combinatorial problem—enumeration. Enumeration
deals with determining the number of polycubes correspond-
ing to a certain parameter, usually their size or perimeter.
Lunnon [52] has made the first successful enumeration. He
computed the number of polyominoes up to size 18 [with
a slight error in A2(17)]. It is very interesting that to this
day there is no known analytic formula for Ad (n) (d > 1).
The only known methods for computing Ad (n) are based on
explicitly or implicitly enumerating all the polyominoes or
polycubes using various numerical algorithms [52–56].
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TABLE I. All polycubes (x) of size n = 1, 2, 3, 4 and their
number of orientations m.

(x) m shape (x) m shape

(M) 1 (I4) 3

(D) 3 (L4) 24

(I3) 3 (O4) 3

(V3) 12 (P4) 8

(A4) 12 (S4) 12

(B4) 12 (T4) 12

Free lattice animals, however, are distinguished only by
shape, not by orientation. The number of free d-dimensional
polycubes of size n with m different orientations is denoted
by Am

d (n). Lunnon [57] analyzed three-dimensional polycubes
by considering symmetry groups, and computed (manually!)
A3(n) up to n = 6. Most polycubes are asymmetric, but many
have more complex symmetry groups. The maximum symme-
try for a polycube is the full symmetric group of a cube, with
48 elements—achiral octahedral group Oh. Lunnon found
[57] that Oh has 98 subgroups falling into 33 conjugacy sets
(polycube symmetry types). A polycube without symmetry
has 24 different orientations. This is easy to visualize with a
die. A die has 6 faces numbered 1 thru 6. If we place a die on
the table with the “1” showing up, then we can rotate it to get 4
different orientations with the “1” still on top. Since there are 6
faces, there are 6 × 4 = 24 different orientations. It is evident
that a number of orientations that a polycube may take varies
with the symmetry of the polycube. Since we solely consider
free lattice animals in this work, the term “free” is omitted in
the following text.

Table I shows all polycubes of size n = 1, 2, 3, and 4.
Polycubes of size n = 1, 2, 3 are planar with a maximum of 12
different orientations (object V3). There are eight tetracubes

TABLE II. All polycubes (x) of size n = 5 and their number of orientations m.

(x) m shape (x) m shape (x) m shape (x) m shape

(A5) 24 (L25) 24 (S15) 24 (V25) 12

(F5) 24 (L35) 24 (S25) 24 (W5) 12

(I5) 3 (L45) 24 (T5) 12 (X5) 3

(J15) 12 (N5) 24 (T15) 12 (Y5) 24

(J25) 24 (N15) 24 (T25) 24 (Z5) 12

(J45) 24 (N25) 24 (U5) 12

(L5) 24 (P5) 24 (V5) 12

(L15) 12 (Q5) 24 (V15) 12
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TABLE III. Some polycubes (x) of size n = 6 and their number
of orientations m.

(x) m shape

(I06) 3

(Ba6) 4

(Xb6) 6

(Tp6) 6

(Th6) 12

(Zf6) 12

(Te6) 24

(Ti6) 24

(fourth-order polycubes), five of which are planar [58]. It
must be emphasized that polycubes are usually counted with
mirror pairs (so-called chiral twins) distinguished, as would
be natural for the cubical case in ordinary space. For example,
a tetracube A4 and its mirror image B4 are considered distinct
because there is no rigid motion that transforms one onto the
other.

All polycubes of size n = 5 (pentacubes) are shown in
Table II. There are 29 distinct three-dimensional pentacubes
[58]. As it can be seen, 12 pentacubes are flat and correspond
to solid pentominoes. Among the nonplanar pentacubes, there
are five that have at least one plane of symmetry (A5, L35,
Q5, T15, T25) and each of them is its own mirror image.
The remaining twelve nonplanar pentacubes form six chiral
pairs: {J15, L15}, {J25, L25}, {J45, L45}, {N15, S15}, {N25,
S25}, {V15, V25}. Of the 29 pentacubes, for two flats (I5, X5)
there are only three possible orientations. Ten pentacubes have
twelve orientations and each of the remaining 17 pentacubes
has 24 orientations.

Polycubes of size n � 5 can have 1, 3, 8, 12, or 24
different orientations. However, there are hexacubes (sixth-
order polycubes) that have four and six different orientation.
There are 166 hexacubes, 35 of which are planar [58]. Some
hexacubes are shown in Table III. Hexacube Ba6 is the sole
polycube of size n � 6 with four orientations. It is interesting
that among the polycubes of size n � 6 only one object has
eight different orientations (see, tetracube P4 in Table I).

TABLE IV. Shown here is the number of polycubes Am
3 (n) of size

n with the specified number of possible orientations m. The results
are shown for all polycubes of size n � 6.

n A1
3 A3

3 A4
3 A6

3 A8
3 A12

3 A24
3 N = ∑

m Am
3

1 1 1
2 1 1
3 1 1 2
4 2 1 4 1 8
5 2 10 17 29
6 1 1 3 34 127 166

Further, three hexacubes have six orientations. Most of the
hexacubes have 12 and 24 different orientations (34 and 127
objects, respectively). Table IV shows the number of possible
orientations m for polycubes of size n � 6 and the number of
objects Am

3 (n) with the specified number of orientations.

A. Simulation method

In this paper the primary lattice animal is a connected set of
sites in Z3 that contains the origin (0,0,0). We call that point
the head of an object. At each Monte Carlo step a lattice site
is selected at random. If the selected site is unoccupied, then
deposition of the object is tried in one of the 24 orientations
which is chosen at random. Then we fix the head of the object
at the selected site and search whether all necessary sites
are unoccupied. If so, then we occupy these sites and place
the object. If the attempt fails, then a new site and a new
orientation are selected at random, and so on.

It is crucial to explain how to choose a random object
orientation. A basic rotation of the lattice animal is a rotation
about one of the axes of a coordinate system. Each rotation is
specified by an angle ψ of rotation. The rotation angle ψ is
defined to be positive for a rotation that is counterclockwise
when viewed by an observer looking along the rotation axis
towards the origin. In accordance with the Euler’s rotation the-
orem any arbitrary rotation can be composed of a combination
of these three rotations [59]. The rotation matrices that rotate
a vector around the x, y, and z axes are given by [59]

Rx(α) =

⎡
⎢⎣

1 0 0

0 cos(ψ1) − sin(ψ1)

0 sin(ψ1) cos(ψ1)

⎤
⎥⎦

(counterclockwise rotation around x axis), (2)

Ry(β ) =

⎡
⎢⎣

cos(ψ2) 0 sin(ψ2)

0 1 0

− sin(ψ2) 0 cos(ψ2)

⎤
⎥⎦

(counterclockwise rotation around y axis), (3)

Rz(γ ) =

⎡
⎢⎣

cos(ψ3) − sin(ψ3) 0

sin(ψ3) cos(ψ3) 0

0 0 1

⎤
⎥⎦

(counterclockwise rotation around z axis). (4)
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For example, a vector v can be rotated in any direc-
tion using a composition of three rotations [59]: v′ =
Ra(ψ1)Rb(ψ2)Rc(ψ3)v, a, b, c ∈ {x, y, z}. In our model, ro-
tation angles can take the following values: ψ1, ψ2, ψ3 ∈
{0, π/2, π, 3π/2}.

When choosing a random object orientation, it is essential
that the numerical algorithm provides a search of all
possible object orientations. If we apply a sequence RaRbRc,
a, b, c ∈ {x, y, z} of basic 3D rotations to the lattice animal,
then it is known that the order in which they are applied
affects the final result. In other words, operators of rotation in
3D [Eq. (4)] are noncommutative [59]. Therefore, when we
try to deposit an object, one random permutation (a b c) of

a set {x, y, z} is selected at first. Random permutation (a b c)
defines the order of successive rotations RaRbRc of an object
about the axes a, b, c ∈ {x, y, z} of the coordinate system.
Further, three random rotation angles ψ1, ψ2, ψ3 of an object
around the a, b, c ∈ {x, y, z} axes are chosen from the set
{0, π/2, π, 3π/2}. The primary object is rotated by applying
the operator Ra(ψ1)Rb(ψ2)Rc(ψ3), after which its head is
moved from the point (0,0,0) to a randomly selected lattice
site and checked for any overlap with neighboring lattice
animals already placed in the lattice. Let us remark that a
different choice of the head of the object does not change the
obtained results. We have verified that usage of different heads
for all examined objects gives quantitatively the same results

TABLE V. All lattice animals (x) of size n = 1, 2, 3, 4 and their number of orientations m.

(x), m shape (x), m shape (x), m shape

(M),1 XY

Z

(A4),12

Z

Y X (O4),3 XY

Z

(D),3 XY

Z

(B4),12

Z

Y X (P4),8

Z

Y X

(I3),3 XY

Z

(I4),3 XY

Z

(S4),12 X
Y

Z

(V3),12 XY

Z

(L4),24 XY

Z

(T4),12 X
Y

Z
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TABLE VI. All lattice animals (x) of size n = 5 and their number of orientations m.

(x), m shape (x), m shape (x), m shape

(A5),24

Z

Y X (L45),24 Y X

Z

(T25),24

Z

Y
X

(F5),24 XY

Z

(N5),24 X
Y

Z

(U5),12 X
Y

Z
(I5),3 XY

Z

(N15),24

Z

Y
X (V5),12 XY

Z

(J15),12 Y X

Z

(N25),24

Z

Y
X (V15),12 X

Z

Y

(J25),24 Y X

Z

(P5),24 XY

Z

(V25),12

Z

Y
X

(J45),24 Y X

Z

(Q5),24

Z

Y X (W5),12 XY

Z
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TABLE VI. (Continued.)

(L5),24 XY

Z

(S15),24

Z

Y
X (X5),3 XY

Z

(L15),12 Y X

Z

(S25),24

Z

Y
X (Y5),24 XY

Z

(L25),24 Y X

Z

(T5),12 XY

Z

(Z5),12 XY

Z

(L35),24 Y X

Z

(T15),12

Z

Y
X

(x), m shape (x), m shape (x), m shape

for the temporal evolution of density θ (t ) and the jamming
limit θJ.

During the simulation, we can record the number of all
inaccessible sites in the lattice. These include the occupied
sites and the sites that are unoccupied but cannot be the
head of the object deposited in any of the 24 possible ori-
entations. The jamming limit is reached when the number
of inaccessible sites is equal to the total number of sites
in the lattice. Checking this condition is performed after
every kL2 attempts to absorb the object, starting at some
late time point estimated in the trial simulations on smaller

lattices. Depending on the object size, the values of param-
eter k are 5, 20, and 50. If the condition is true, then we
stop the current run and continue with the next simulation
run.

The Monte Carlo simulations are performed on a 3D cubic
lattice of size L = 128. Periodic boundary conditions are
used in all directions. The time is counted by the number
of attempts to select a lattice site and scaled by the total
number of lattice sites L3 ≈ 2 million. The data are averaged
over 100 independent runs for each of the investigated lattice
animals.
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TABLE VII. Some lattice animals (x) of size n = 6 and their number of orientations m.

(x), m shape (x), m shape (x), m shape

(I06),3 XY

Z

(Tp6),6

Z

Y X (Te6),24

Z

Y
X

(Ba6),4

Z

Y X (Th6),12

Z

Y
X (Ti6),24

Z

Y
X

(Xb6),6

Z

Y
X (Zf6),12 XY

Z

III. RESULTS AND DISCUSSION

As stated in Sec. II, the structure of a polycube can be
represented by means of a lattice animal that has a vertex for
each cube and an edge for each two cubes that share a square.
Lattice animals that are equivalent to polycubes presented
in Tables I–III are shown in Tables V–VII. Some additional
lattice animals of size n � 7 are shown in Table VIII. The
number of examined objects represents a good basis for
studying the impact of the geometrical properties of the shapes
on the packing process in 3D, i.e., on the jamming coverage θJ

and on the temporal evolution of the coverage fraction θ (t ).

A. Jamming densities

The first quantity of interest is the jamming limit θJ which
is reached when no more objects can be placed in any position
on the lattice. Numerical values of the obtained jamming
limits θJ are given in Tables IX–XII for all examined shapes.
We can see that in each chiral pair, both objects have the
identical values of the jamming density. From Tables IX
and X it is evident that for small shapes (n � 5), jamming
densities θJ decrease rapidly with the size n of the objects.

Most objects of size n � 4 have a jamming density θJ greater
than 0.80, while θJ for all objects of size n = 5 is in the
interval 0.70–0.80. Jamming densities θJ for all examined
objects of size n � 7 have values below ≈0.70. Noticeable
drop in the jamming density θJ is thus a clear consequence of
the enhanced frustration of the spatial adsorption. However,
adding a single node to large objects does not result in a
significant increase in their size. Therefore, changing of the
shape of the large objects has considerably more influence on
the jamming density than increasing of the object size. For ex-
ample, jamming densities for objects LA7b (n = 7) and LA12
(n = 12) with m = 3 possible orientations from Table XII are
almost identical ≈0.67, although they are of different sizes.
The results presented in Tables IX–XII also suggest that there
is no correlation between the number of possible orientations
of the object and the corresponding values of the jamming
density θJ. Indeed, the jamming density of the object Xb6
with m = 6 possible orientations is θJ ≈ 0.68, but objects
I06 and Ba6 with a smaller number of possible orientations
than six have, respectively, a higher and lower θJ value than
0.68 (see Table XI). Similarly, the jamming density of the
object LA7b with m = 3 possible orientations is θJ ≈ 0.67.
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TABLE VIII. Some lattice animals (x) of size n � 7 and their number of orientations m.

(x), m shape (x), m shape (x), m shape

(LA7a),1

Z

Y X (LA7e),24 Y

Z

X (LA10),8

Z

Y X

(LA7b),3 XY

Z

(LA8a),1

Z

Y X (LA12),3

Z

Y
X

(LA7c),6 X
Y

Z

(LA8b),3 X

Z

Y (LA13),6 X
Y

Z

(LA7d),8

Z

Y X (LA8c),12

Z

XY

However, objects LA7c and LA7d with a greater number of
possible orientations than three have, respectively, a lower and
higher θJ value than 0.67 (see Table XII). Note that our results
for the jamming densities of linear objects (k-mers: D, I3–I5,
I06, LA7b) are in a good agreement with the results presented
in reference [40] in which RSA of straight rigid rods on a
simple cubic lattice is analyzed.

Figure 1 shows typical snapshot configurations at the jam-
ming density obtained for objects (a) LA7a, (b) LA8b, (c)
Ba6, (d) Xb6, (e) P4, (f) T15, and (g) LA7e. The snapshots
of size 	L3 = 103 are taken from the central part of the
lattice. Figure 1 displays configurations for seven objects that
match all values of the number of possible orientations (m =
1, 3, 4, 6, 8, 12, 24) for given objects.

B. RSA kinetics

Now, we report and discuss the numerical results regarding
the influence of the number of possible orientations of the

shape on the kinetics of the deposition processes. Figures 2–6
show the plots of ln[θJ − θ (t )] versus t for seven classes of the
objects, i.e., for seven values m = 1, 3, 4, 6, 8, 12, 24 of the
number of different orientations that lattice animals can take
when placed on a cubic lattice. Each of these figures contains
results for objects with the same number of possible orienta-
tions. For all examined objects plots of ln[θJ − θ (t )] versus t
are found to be straight lines at the late times of the deposition
process, confirming the exponential approach to the jamming
limit of the form Eq. (1), with parameters σ and θJ that depend
on the shape of a depositing object. Furthermore, for a given
value of m, these plots are parallel lines in the late stages of the
deposition process for lattice animals of very different sizes
[e.g., see Fig. 3(b)]. Hence, for objects that have the same
value of the parameter m, rapidity of the approach to the jam-
ming state is not affected by the size of the object. The number
of possible orientations m of the object has an essential influ-
ence in the late times of the deposition process. Lines with
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TABLE IX. For each lattice animal (x) of size n = 1, 2, 3, 4
with m possible orientations, θ

(x)
J is the jamming coverage and σ

is the relaxation time [Eq. (1)]. The numbers in parentheses are the
numerical values of the standard uncertainty of θ

(x)
J referred to the

last digits of the quoted value.

Shape (x), size n m σ θ
(x)
J

(M), n = 1 1 0.99 1.0000(0)
(D), n = 2 3 3.09 0.9184(1)
(I3), n = 3 3 3.16 0.8390(2)
(V3), n = 3 12 12.36 0.8788(2)
(A4), n = 4 12 12.45 0.8178(2)
(B4), n = 4 12 12.47 0.8178(2)
(I4), n = 4 3 3.19 0.7808(3)
(L4), n = 4 24 23.98 0.8339(2)
(O4), n = 4 3 3.06 0.8079(3)
(P4), n = 4 8 8.03 0.7941(3)
(S4), n = 4 12 12.08 0.8149(2)
(T4), n = 4 12 12.49 0.8114(3)

seven different slopes are plotted in Fig. 7, showing the late
times of the deposition process corresponding to objects of

TABLE X. For each lattice animal (x) of size n = 5 with m possi-
ble orientations, θ

(x)
J is the jamming coverage and σ is the relaxation

time [Eq. (1)]. The numbers in parentheses are the numerical values
of the standard uncertainty of θ

(x)
J referred to the last digits of the

quoted value.

Shape (x) m σ θ
(x)
J

(A5) 24 24.21 0.7716(2)
(F5) 24 24.29 0.7860(3)
(I5) 3 3.18 0.7369(4)
(J15) 12 11.95 0.7635(2)
(J25) 24 24.72 0.7839(2)
(J45) 24 24.12 0.7958(3)
(L5) 24 23.91 0.7695(3)
(L15) 12 12.20 0.7635(3)
(L25) 24 24.24 0.7839(2)
(L35) 24 24.42 0.7774(3)
(L45) 24 24.88 0.7957(2)
(N5) 24 24.34 0.7866(3)
(N15) 24 24.88 0.7842(2)
(N25) 24 24.35 0.7790(3)
(P5) 24 24.20 0.8017(3)
(Q5) 24 23.95 0.7826(3)
(S15) 24 24.41 0.7841(2)
(S25) 24 24.25 0.7790(3)
(T5) 12 12.76 0.7500(3)
(T15) 12 12.43 0.7582(3)
(T25) 24 24.58 0.7863(2)
(U5) 12 12.48 0.7611(3)
(V5) 12 11.94 0.7628(3)
(V15) 12 12.37 0.7647(3)
(V25) 12 12.64 0.7647(3)
(W5) 12 12.31 0.7615(3)
(X5) 3 3.08 0.7007(3)
(Y5) 24 24.62 0.7595(3)
(Z5) 12 12.79 0.7643(2)

TABLE XI. For lattice animal (x) of size n = 6 with m possible
orientations, θ (x)

J is the jamming coverage and σ is the relaxation time
[Eq. (1)]. The numbers in parentheses are the numerical values of the
standard uncertainty of θ

(x)
J referred to the last digits of the quoted

value.

Shape (x) m σ θ
(x)
J

(I06) 3 3.06 0.7026(4)
(Ba6) 4 4.02 0.6683(3)
(Xb6) 6 6.03 0.6827(3)
(Tp6) 6 6.13 0.6879(4)
(Th6) 12 12.18 0.7179(3)
(Zf6) 12 12.25 0.7215(3)
(Te6) 24 24.55 0.7378(3)
(Ti6) 24 24.60 0.7369(3)

different number of possible orientations m, as indicated in the
legend.

We have calculated the values of the parameter σ [Eq. (1)]
from the slopes of the ln[θJ − θ (t )] versus t curves in the
late times of the process. The parameter σ determines how
fast the lattice is filled up to the jamming coverage θJ. The
values of the relaxation time σ are given in Tables IX–XII
for all examined lattice animals. Approximate values of the
parameter σ for the seven classes of objects are found to be
equal the number of possible orientations of the shape:

σ � m ∈ {1, 3, 4, 6, 8, 12, 24}. (5)

This means that the approach to the jamming limit is slower
for objects with a larger number of possible orientations. At
large times, adsorption events take place on islands of un-
occupied sites. The individual islands act as selective targets
for specific deposition events. In other words, there is only a
restricted number of possible orientations in which an object
can reach a vacant location, provided the location is small
enough. Such difficult placement of an object in locations that
allow only a small number of object orientations is a feature
of the deposits near the jamming state. Namely, for an object

TABLE XII. For lattice animal (x) of size n � 7 with m possible
orientations, θ (x)

J is the jamming coverage and σ is the relaxation time
[Eq. (1)]. The numbers in parentheses are the numerical values of the
standard uncertainty of θ

(x)
J referred to the last digits of the quoted

value.

Shape (x), size n m σ θ
(x)
J

(LA7a), n = 7 1 0.98 0.6225(4)
(LA7b), n = 7 3 2.97 0.6749(5)
(LA7c), n = 7 6 6.19 0.6336(4)
(LA7d), n = 7 8 8.06 0.6897(4)
(LA7e), n = 7 24 24.20 0.7006(3)
(LA8a), n = 8 1 0.98 0.6453(5)
(LA8b), n = 8 3 3.11 0.5858(4)
(LA8c), n = 8 12 12.18 0.6308(3)
(LA10), n = 10 8 8.08 0.5693(4)
(LA12), n = 12 3 3.04 0.6719(5)
(LA13), n = 13 6 6.12 0.4899(4)
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FIG. 1. Snapshots of patterns formed during the RSA of objects (a) LA7a, m = 1 (Tables VIII and XII), (b) LA8b, m = 3 (Tables VIII and
XII), (c) Ba6, m = 4 (Tables VII and XI), (d) Xb6, m = 6 (Tables VII and XI), (e) P4, m = 8 (Tables V and IX), (f) T15, m = 12 (Tables VI
and X), and (g) LA7e, m = 24 (Tables VIII and XII). The snapshots are taken from the central part of the lattice at times needed for the system
to reach the jamming state. A corresponding lattice animal is shown in the lower right corner of each panel (a)–(g). The objects are colored
with 12 colors randomly selected for each one.

with a larger number of possible placements, a longer time is
needed to examine all isolated empty locations that are left
in the late times of the process. Hence, the increase in the
number of possible placements of the shape reduces the rate
of single particle adsorption. This extends the mean waiting
time between consecutive and successful deposition events,
and the approach to the jamming state is slower.

IV. CONCLUDING REMARKS

In the case of irreversible deposition on planar lattices, it is
well established that the kinetics of the late stage of deposition
is determined exclusively with the symmetry properties of the

shapes. For the shapes made by self-avoiding lattice steps
on the 2D triangular lattice, relaxation time σ [Eq. (1)] is
inversely proportional to the order of symmetry axis ns of
the shape, σ = 6/ns [18,20]. However, for a planar shape
with symmetry order ns on a triangular lattice, the number of
possible orientations is given exactly by the expression 6/nn.
To generalise this result to 3D shapes, we have performed
extensive numerical simulations of the RSA using large col-
lections of objects (“lattice animals”) made by connected sites
on a simple 3D cubic lattice.

As expected, the approach to the jamming limit θJ was
found to be exponential for all the lattice animals. It was
shown that the relaxation time σ [Eq. (1)] is equal to the
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FIG. 2. Plots of ln[θJ − θ (t )] versus t for objects (M), (LA7a),
and (LA8a) with one possible placement (Tables V and VIII).
Additionally, the slanted straight line with the slope −1/σ = −1 is
shown, indicating the late-time RSA behavior and is guide to the eye.

number of different orientations m that lattice animals can
take when placed on a cubic lattice [Eq. (5)]. To confirm this
finding, we have analyzed all lattice animals of size n = 1,
2, 3, 4, and 5 (41 different shapes), eight lattice animals of
size n = 6 and eleven objects of size n � 7. In other words,
the coverage kinetics is slowed down with the increase in the
number of possible placements m of the shape. Indeed, the
mean waiting time between consecutive deposition events
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FIG. 3. Plots of ln[θJ − θ (t )] versus t for: (a) objects (D),
(LA8b), and (LA12) with three possible placements (Tables V
and VIII); (b) k-mers (k = 2, 3, 4, 5, 6, 7). Additionally, the slanted
straight lines with the slope −1/σ = −1/3 are shown, indicating the
late-time RSA behavior and are guide to the eye.
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FIG. 4. Plots of ln[θJ − θ (t )] versus t for: (a) object (Ba6) with
four possible placements (Table VII); (b) objects (LA7c), (Xb6),
and (LA13) with six possible placements (Tables VII and VIII).
Additionally, the slanted straight lines with the slopes −1/σ =
−1/4 (a), −1/6 (b) are shown, indicating the late-time RSA behav-
ior and are guide to the eye.

-12

-10

-8

-6

-4

-2

 0  20  40  60  80  100

σ=8

(a)

ln
(θ

J -
 θ

(t
))

t

(P4)
(LA10)
(LA7d)

-12

-10

-8

-6

-4

-2

σ=12

(b)

ln
(θ

J -
 θ

(t
))

(V3)
(T15)
(Th6)

FIG. 5. Plots of ln[θJ − θ (t )] versus t for: (a) objects (P4),
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late-time RSA behavior and are guide to the eye.
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extends with m, so that the approach to the jamming state is
slower.

We have pointed out that for sufficiently large objects,
changing of the shape has considerably more influence on
the jamming density than increasing of the object size. These
findings are in an excellent qualitative agreement with the
results of Karayiannis and Laso [60,61]. They proposed a
Monte Carlo scheme which is able to efficiently sample
freely-jointed chains of hard spheres even up to the maximally
random jammed (MRJ) state. In this model, chain connectiv-
ity imposes constraints that force bonded spheres to adopt
specific local configurations. As an interesting result, the
constraints imposed by chain connectivity were found to play
a more important role in determining the MRJ states than the
size of flexible chains. However, our results suggest that there
is no correlation between the number of possible orientations
of the object and the corresponding values of the jamming
density θJ. In Ref. [20], special attention is paid to the behavior
of probability pinsert for the insertion of a new particle onto a
planar triangular lattice during the deposition process. Shape
factor, defined as the degree to which a particle is similar to
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FIG. 7. Plots of ln[θJ − θ (t )] versus t for objects (LA8a),
(LA12), (Ba6), (LA13), (LA7d), (Th6), and (LA7e) from
Tables VII and VIII. The curves correspond to objects with the
various number of possible orientations, m, as indicated in the leg-
end. Additionally, the slanted straight lines with the slope −1/σ =
−1, −1/3, −1/4, −1/6, −1/8, −1/12, −1/24 are shown, indi-
cating the late-time RSA behavior and are guides to the eye.

a circle, is associated with the evolution of probability pinsert.
It would be interesting to perform a similar investigation with
3D objects of various shapes within the context of the shape
descriptors, such as aspect ratios, compactness of the object,
smoothness of the perimeter, and the shape factor. As an open
possibility for the future, we think that the three-dimensional
model presented in this work can be generalized to mixtures
of several kinds of 3D objects.
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