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Mapping flows on sparse networks with missing links
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Unreliable network data can cause community-detection methods to overfit and highlight spurious structures
with misleading information about the organization and function of complex systems. Here we show how
to detect significant flow-based communities in sparse networks with missing links using the map equation.
Since the map equation builds on Shannon entropy estimation, it assumes complete data such that analyzing
undersampled networks can lead to overfitting. To overcome this problem, we incorporate a Bayesian approach
with assumptions about network uncertainties into the map equation framework. Results in both synthetic and
real-world networks show that the Bayesian estimate of the map equation provides a principled approach to
revealing significant structures in undersampled networks.
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I. INTRODUCTION

Unraveling the modular organization of social and biolog-
ical systems with interactions comprising measured move-
ments of some entity such as people, money, or information
requires reliable maps of network flows [1–5]. To find modu-
lar regularities in network flows, the map equation estimates
a modular description length of the flows with information-
theoretic measures. Optimizing the map equation with the
search algorithm Infomap maximally compresses the modular
description and detects significant flow-based communities
when enough links are observed [2,6]. However, if too many
links are missing, then the map equation may highlight spu-
rious communities resulting from mere noise. While there
are generative methods that can deal with uncertain net-
work structures, including link-prediction algorithms [7–9]
and network reconstruction approaches that often build on
the stochastic block model [10–14], no method can reliably
identify flow-based communities in networks with missing
links.

The map equation estimates the modular description length
of network flows with the Shannon entropy [15]. With missing
data, the Shannon entropy underestimates the actual entropy
of the complete data [16]. Consequently, when a network has
many missing links, the map equation underestimates the ac-
tual description length of the complete network, capitalizes on
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details in the observed network, and favors network partitions
with many small communities. While higher model complex-
ity can further compress the description length, the result-
ing communities become sensitive to network perturbations.
Having more missing links further obscures the community
structure and leads to higher sensitivity. Overfitting happens
when the communities poorly compress the description length
of the complete network or other samples of the complete
network [17,18].

Underestimating the entropy in networks with missing
links also causes problems for standard procedures that evalu-
ate model-prediction performance, including cross-validation:
When the modular description length depends on the number
of observed links, it also depends on the number of cross-
validation folds such that only balanced but wasteful equal-
sized splits of a network into training and test networks give
useful results.

To overcome these problems, we present two regulariza-
tion methods based on entropy estimation for undersampled
discrete data. First, we incorporate a Bayesian approach in
the map equation framework [19] and derive a closed-form
formula for the posterior mean of the map equation under the
Dirichlet prior distribution of network flows. Second, to en-
able more effective cross-validation, we measure the modular
description length of the training and test networks for a given
partition using Grassberger entropy estimation [20].

We show that the Bayesian estimate of the map equa-
tion does not detect spurious communities in the under-
sampled regime in either synthetic or real-world networks.
Also, compared with the degree-corrected stochastic block
model [21,22], this approach gives solutions that are more
robust to missing links in the analyzed networks. Moreover,
with Grassberger entropy estimation, the modular description
length becomes nearly independent of the amount of data:
Instead of wasteful equal-sized splits, we can use most links in
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the training network to detect communities with Infomap and
validate them using the remaining links in the test network.
These two complementary solutions help us reduce overfitting
and allow us to detect significant flow-based communities in
networks with missing links.

II. MAPPING FLOWS ON COMPLETE NETWORKS

The map equation is an information-theoretic objective
function for community detection based on the equivalence
between data compression and identifying regularities in data.
Building on this minimum description length principle, the
map equation estimates the per-step theoretical lower limit
of the average code word length needed to describe network
flows with a modular description [2,6]. When the links them-
selves do not represent flows, we can model the network flows
with a random walker traversing the network. The goal is to
identify the network partition that maximally compresses the
modular description, which, at the same time, best captures
the modular regularities of the network flows.

For simplicity, here we consider modular descriptions with
a two-level community hierarchy (for the multilevel map
equation, see Appendix B). In a network with a well-defined
community structure, the network flows stay for a relatively
long time within communities. Therefore, to encode move-
ments of the random walker between nodes with better com-
pression, the map equation reuses short code words in modu-
lar codebooks instead of using unique code words for each
node. For a uniquely decodable description, this approach
requires an additional index codebook to encode transitions
between communities.

The map equation measures the theoretical lower limit of
the code length using the Shannon entropy [15]. For partition
M of nodes α = 1 . . .V in communities i = 1 . . . m, the map
equation takes as input the probability that the random walker
enters community i, qi�, the probability to visit node α, pα ,
and the probability to exit community i, qi�. With p�i =
qi� + ∑

α∈i pα for the total use rate of module codebook i,
the average per-step code length needed to describe random
walker movements within community i is

H (Pi ) = −qi�

p�i
log2

qi�

p�i
−

∑
α∈i

pα

p�i
log2

pα

p�i
. (1)

Similarly, the average per-step code length needed to describe
random walker transitions between communities is

H (Q) = −
m∑

i=1

qi�

q�
log2

qi�

q�
, (2)

where q� = ∑m
i=1 qi� is the total use rate of the index

codebook. Therefore, we can express the map equation as the
sum of the average code length of all codebooks weighted by
their use rate:

L(M) = q�H (Q) +
m∑

i=1

p�i H (Pi ). (3)

To identify the partition that minimizes the map equation, In-
fomap explores the space of possible solutions in a stochastic
and greedy fashion.

(a)

(b)

FIG. 1. Illustration of the overfitting problem in a small modular
network. (a) The network has three communities. (b) When observ-
ing only a fraction of the links, the identified thirteen communities
misrepresent the underlying network structure.

III. MAPPING FLOWS ON SPARSE NETWORKS
WITH MISSING LINKS

Combined with Infomap, the map equation is an accurate
method for community detection when complete network data
are available [23]. However, empirical network data can lack
data or contain measurement errors that cause missing or
spurious links. When the map equation is applied to such
unreliable network data, it may identify spurious communities
with misleading information about the underlying network
structure and function (Fig. 1).

We focus on missing links, a common problem in social
and biological networks, that causes the sample estimates
of the random walker’s transition probabilities to lose preci-
sion. When plugging the estimates into the Shannon entropy,
the obtained entropy estimator suffers from a negative bias
and underestimates the entropy terms of the map equation
[16]. Consequently, for the same partition M, the description
length decreases and the relative code length savings over the
one-module solution, l = 1 − L(M)/L(1), increases with the
number of missing links (Fig. 2).

Worse yet, underestimating the index and module code-
books distorts their balance and shifts the optimal solution.
The index codebook underrates the increase in between-
module description length when using more communities, and
the module codebooks overrate the within-module compres-
sion gain when using smaller communities. Also, stochastic
fluctuations in missing links can lead the search algorithm off
track because more undersampled regions attract community
boundaries. Capitalizing on noise in this way underestimates
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FIG. 2. Modular compression in sparse networks. (a) Modular
code length for planted partitions after link removal. (b) Relative
code length savings in networks for planted partitions. With stan-
dard entropy estimation, the average description length decreases
as the number of missing links increases, and we cannot compare
relative code length savings in networks with different densities. In
contrast, Grassberger entropy estimation almost eliminates the code
length’s density dependency. For r > 0.7, the code length savings
are negative for the Bayesian estimate of the map equation with prior
aα = ln(V ). By preferring the one-module solution over the planted
partition in severely undersampled networks, the Bayesian estimate
of the map equation avoids overfitting. For each r, we plot averages
and variances over 100 network samplings of the synthetic network
described in Sec. IV.

not only the codebooks but also, primarily, the transition
rates between communities. As a result, the map equation
favors more and smaller communities in sparse networks with
missing links [9] (Fig. 1). This effect is evident when so many
links are missing that actual communities become sparse or
even form disconnected components. Then the map equation
cannot detect the actual communities; instead it overfits and
identifies spurious communities from mere noise in the net-
work. To overcome overfitting, we incorporate a Bayesian
estimate of the map equation.

A. Bayesian estimate of the map equation

Different methods have been proposed to address the
problem of entropy underestimation [19,20,24–27]. Meth-
ods based on bias reduction cannot prevent overfitting of
the map equation because they have a high variance in the
undersampled regime [20,24,25] and cannot deal with the
underestimation of the transition rates between communities.
Instead, we use a Bayesian approach proposed by Wolpert and
Wolf to estimate the function of probability distributions [19].
This method not only prevents overfitting to noisy structures
better than other Bayesian estimators [26,27]; it also enables
an analytical estimation of the map equation and a computa-
tionally efficient implementation in Infomap.

In general, we seek the Bayesian estimator f̂B of a func-
tion f (ρ) that takes a discrete probability distribution ρ =
(ρ1, ρ2, . . . , ρm) as input. When ρ is not given and we have
only observations n = (n1, n2, . . . , nm), with

∑m
i=1 ni = N

sampled according to the distribution ρ (E (ni ) = ρiN), we
must estimate f (ρ) using the observed data n. The Bayesian
estimator for f (ρ) is the posterior average,

f̂B(n) = E [ f |n] =
∫

f (ρ)P(ρ|n)dρ, (4)

where P(ρ|n) is the posterior over the unknown distribution ρ

given by Bayes’ rule,

P(ρ|n) = P(n|ρ)P(ρ)

P(n)
. (5)

To obtain P(ρ|n), we choose an appropriate prior probability
distribution P(ρ) and use the fact that the likelihood

P(n|ρ) = N!
m∏

i=1

ρ
ni
i

ni!
(6)

and the total probability of the data

P(n) =
∫

dρP(n|ρ)P(ρ). (7)

Applied to the map equation, we seek the Bayesian esti-
mator of f (ρ) = L(M). Assuming undirected and unweighted
links, the transition rate estimates are [28]

pα = kα∑V
α=1 kα

, (8)

qi� = ki�∑V
α=1 kα

, (9)

qi� = ki�∑V
α=1 kα

, (10)

where kα is the degree of node α and ki� = ki� is the degree
of module i, the number of links that connect nodes of module
i with nodes of other modules j, j �= i. However, when the
information about links is incomplete, the actual values of
node and module degrees can deviate from these estimates.
Therefore, we must apply a probabilistic approach, or the map
equation will overfit and exploit spurious network structures.

To develop a Bayesian treatment of the map equation,
for a given partition M, we specify a prior distribution
P(pα, qi�, qi�) over the transition rates pα, qi�, and qi�. A
convenient choice is the Dirichlet distribution, which has sim-
ple analytical properties and can be interpreted as a probability
distribution over the multinomial distribution of the transition
rates,

P(pα, qi�, qi�|aα, ai�, ai�)

= �(a1 + · · · + am�)

�(a1) . . . �(am�)

V∏
α=1

paα−1
α

m∏
i=1

qai�−1
i�

m∏
i=1

qai�−1
i� .

(11)

Here �(x) is the gamma function and a1, . . . , aV ,
a1�, . . . , am�, and a1�, . . . , am� are the parameters of the
distribution. While

∑V
α=1 pα + ∑m

i=1 qi� + ∑m
i=1 qi� �= 1,
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we can use normalized transition rates because the map
equation is scale invariant (see Appendix A).

We obtain the posterior distribution of the transition rates
in Eq. (5) by multiplying the Dirichlet prior by the likelihood
function and normalizing:

P(pα, qi�, qi�|kα, ki�, ki�, aα, ai�, ai�)

∝
V∏

α=1

pkα+aα−1
α

m∏
i=1

qki�+ai�−1
i�

m∏
i=1

qki�+ai�−1
i� . (12)

By combining this distribution and the expanded form of the
map equation,

L(M) = −
V∑

α=1

pα log2(pα ) −
m∑

i=1

qi� log2(qi�)

+
m∑

i=1

(
qi� +

∑
α∈i

pα

)
log2

(
qi� +

∑
α∈i

pα

)

−
m∑

i=1

qi� log2(qi�)

+
(

m∑
i=1

qi�

)
log2

(
m∑

i=1

qi�

)
, (13)

in Eq. (4), and integrating, we obtain a closed formula for the
posterior average of the map equation,

L̂B(M) = 1

ln(2)

1∑V
α=1 uα

×
[
−

V∑
α=1

uαψ (uα + 1) −
m∑

i=1

ui�ψ (ui� + 1)

+
m∑

i=1

(
ui� +

∑
α∈i

uα

)
ψ

(
ui� +

∑
α∈i

uα + 1

)

−
m∑

i=1

ui�ψ (ui� + 1)

+
(

m∑
i=1

ui�

)
ψ

(
m∑

i=1

ui� + 1

)]
, (14)

where ux = kx + ax and ψ (x) is the digamma function.
The parameters a reflect our prior assumption of the link

distribution in the network before we observed the network
data. After seeing the data, we update our assumption by
increasing the value of ax by kx and obtain the posterior
distribution. For a sparse, undersampled network, therefore,
the prior parameters a dominate the posterior link distribution.
Conversely, as the network density increases, the posterior
distribution becomes sharply peaked and the network data
dominate the posterior link distribution. Proper selection of
prior parameters a is important for good performance.

We consider as an uninformative prior an Erdős-Rényi
network with V nodes, where each pair of nodes is connected
with some constant probability p [29]. The average degree
is 〈k〉 = pV and sets the prior parameters to aα = 〈k〉 and
ai� = ai� = Vi(V − Vi)

〈k〉
V −1 , where Vi is the number of nodes

in module i. We aim to choose the average degree 〈k〉 such
that the prior prevents the map equation from overfitting in the
undersampled network, but also enables the map equation to
detect well-formed communities. Since the random network
experiences a phase transition from disconnected to connected
at 〈k〉 = ln(V ) [29], for 〈k〉 � ln(V ) the random network has
isolated components and the prior cannot prevent overfitting,
while for 〈k〉 � ln(V ) well-formed communities can merge
such that the map equation underfits. At the phase transi-
tion between these extremes, a ∼ ln(V ) forms a principled
prior.

Because there are no modular regularities in an Erdős-
Rényi network, this choice of prior induces positive bias
in the code length estimation [Fig. 2(a)]. When observing
fewer links in a network, the prior network influences the
posterior link distribution more such that the code length
increases for the planted partition. Eventually, for severely
undersampled networks, the Bayesian estimate of the map
equation prefers the one-module solution and thereby avoids
overfitting [Fig. 2(b)].

This Bayesian estimate of the map equation extends to
weighted networks where complete information about link
weights is missing. If the link weights represent flows such
that no flow modeling is necessary, then the method also
works for directed networks.

We have implemented the Bayesian estimate of the map
equation in Infomap, available for anyone to use [30]. While
we restrict our paper to the two-level formulation of the map
equation for the sake of simplicity, the code also handles
the Bayesian estimate of the multilevel map equation (see
Appendix B).

B. The map equation with Grassberger entropy estimation

An informative comparison between the standard map
equation and a map equation with corrected entropy terms
must take into account the structural properties of the detected
communities. When possible, we can compare detected com-
munities with planted communities; however, this approach
does not work for real networks without known communities.
To test for under- or overfitting in any network, we use cross-
validation.

We first split the network data into training and test sets
and apply Infomap to identify the partition that maximally
compresses the description length of the training network.
If Infomap successfully recovers a significant partition of
the training network, then the partition with maximal mod-
ular code length savings over the one-level code length will
also successfully compress the description length of the test
network. The opposite happens when there is not enough
evidence in the data. Then Infomap overfits and detects a parti-
tion in the training network without code length savings in the
test network. Thus, if Infomap detects a significant partition M
without overfitting, the relative code length savings in the test
network should be positive, l test = 1 − Ltest(M)/Ltest(1) > 0
and close to the relative code length savings of the training
network, l test ∼ l train. Conversely, if Infomap overfits we ex-
pect l test < 0.

However, the fact that the description length and the
relative code length savings vary with the fraction of
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observed links limits the choice of training and test networks
(Fig. 2). Only with equal-sized training and test networks
will the standard map equation underestimate their true de-
scription lengths to the same degree. But since equal splits
waste half of the links on the test network, the training
network of already sparse networks will be severely un-
dersampled and possibly below the detectability limit. To
reduce the description length’s dependency on the fraction
of observed links and enable effective cross-validation, we
incorporate Grassberger entropy estimation [20] into the map
equation.

For effective cross-validation, Grassberger entropy esti-
mation enables the use of most of the links in the training
network. We construct a test network by randomly removing
a fraction r of links from the network. The remaining links
form a training network. With E for the total number of links
in the network and kα for the degree of node α, the probability
that k′

α links of node α remain in the training network after
removing E − E ′ = rE links follows the hypergeometric dis-
tribution:

P(k′
α ) =

(kα

k′
α

)(E−kα

E ′−k′
α

)
(E

E ′
) . (15)

If E , E ′, and kα are sufficiently large, then the hypergeometric
distribution converges toward the Poisson distribution,

P(k′
α ) = λk′

α

k′
α!

e−λ, (16)

where the parameter λ = E ′kα

E = (1 − r)kα such that 〈k′
α〉 =

(1 − r)kα .
For a given incomplete set of observations

(n1, n2, . . . , nm), Grassberger entropy estimation assumes
that they come from Poisson distributions with mean values
(z1, z2, . . . , zm) and aims to construct a function φ(n) that
minimizes the error |zi ln(zi) − E [niφ(ni )]| across all values
of zi [20]. The solution that minimizes the error is a recursive
function φ(n) = Gn defined as

G1 = −γ − ln(2), G2 = 2 − γ − ln(2),

G2n+1 = G2n, G2n+2 = G2n + 2

2n + 1
, (17)

where γ is Euler’s constant [20].
While we cannot use Grassberger entropy estimation for

weighted or directed networks, where visit rates correspond
to the PageRank of the nodes [6], it does work for unweighted
and undirected networks, where node visit and module tran-
sition rate estimates are given by link counts, Eqs. (8)–
(10). Assuming incomplete observations, we can incorporate
Grassberger entropy estimation into the map equation such
that Eq. (13) takes the form

L̂G(M) = 1

ln(2)

1∑V
α=1 kα

×
[
−

V∑
α=1

kαGkα
−

m∑
i=1

ki�Gki�

+
m∑

i=1

(
ki� +

∑
α∈i

kα

)
Gki�+∑

α∈i kα

−
m∑

i=1

ki�Gki� +
(

m∑
i=1

ki�

)
G∑m

i=1 ki�

]
. (18)

Grassberger entropy estimation also works for the multilevel
formulation of the map equation [31].

Grassberger entropy estimation has high variance and low
bias [32]. Due to its high variance in the undersampled regime
(Fig. 2) and its lack of prior that can deal with underestimating
the transition rates between communities, the map equation
with Grassberger entropy estimation paired with Infomap
does not perform better than the standard map equation on
sparse networks with missing links. However, thanks to its low
bias, the map equation with Grassberger entropy estimation
applied to cross-validation with averaged code length over
several network samplings can dramatically reduce the code
length dependency on network density [Fig. 2(a)]. Also, for
planted partitions, the average relative code length savings
is practically independent of network density [Fig. 2(b)].
Consequently, we can use most links in the training network
to reliably detect communities with Infomap.

IV. RESULTS AND DISCUSSION

We first analyze a synthetic network with planted com-
munity structure and a real-world Jazz collaboration net-
work [33]. We generate the synthetic network with the
Lancichinetti-Fortunato-Radicchi (LFR) method [34]. It has
V = 1000 nodes, average node degree 〈k〉 = 16, and nodes
partitioned into M = 35 communities. The mixing parameter
μ = 0.3 is the probability that a randomly chosen link will
connect nodes from different communities. In the Jazz collab-
oration network, each node represents a band and two nodes
are connected if there is at least one musician who has played
in both bands. For this network with 198 nodes and 2742 links,
there is no information about ground-truth communities and
no consensus about an optimal community partition [35,36].
To generate sparse networks with missing links, we randomly
remove a fraction r of links from the networks, and average
the results for each value of r over 100 samplings.

Using these two networks, we compare the performance of
the standard map equation, the Bayesian estimate of the map
equation with different values of Dirichlet prior parameter aα ,
and the degree-corrected stochastic block model [21,22]. We
are interested in the number of communities, the partition
similarities measured with the adjusted mutual information
(AMI), and the predictive accuracy with cross-validation.
Since the map equation and the degree-corrected stochastic
block model use stochastic search algorithms to detect com-
munities, we average the results over ten searches for each of
the 100 network samplings.

We analyze the Bayesian approach for prior a ∼ ln(V ).
For the node degree, therefore, we use aα = C ln(V ), where
α = 1 . . .V and C is a constant that we need to specify. For
the module degree, we use ai� = ai� = νiC ln(V ), where
νi = Vi

V −Vi
V −1 for i = 1 . . . M and Vi is the number of nodes in

module i.
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FIG. 3. Mean number of communities obtained by the standard
map equation, the Bayesian estimate of the map equation with
different values of Dirichlet prior parameter a, and the degree-
corrected stochastic block model (DC-SBM). The Bayesian estimate
of the map equation with prior aα = ln(V ) provides the best solution:
when sufficient network data are available it distinguishes significant
communities from mere noise, while in the undersampled regime
it detects no community structure. Results are averaged over 100
network samplings and ten algorithm searches. The standard error
of the mean is never higher than 0.58.

A. Number of communities

Applied to the synthetic network, the standard map equa-
tion favors the planted partition until we remove more than
approximately 55% of the links [Fig. 3(a)]. As we remove
more links, the network also becomes sparse within com-
munities. In the undersampled regime below the detectability
limit where it is not possible to recover the planted partition,
the map equation overfits to random fluctuations and favors
more, smaller communities. The Bayesian estimate of the map
equation behaves differently. For C = 0.5, the random prior
network is weakly connected and cannot prevent overfitting
when we remove 70–95% of the links. In contrast, for C = 2,
the random prior network is densely connected and hides the
communities in the noise induced by the prior such that the
Bayesian estimate of the map equation underfits even when
sufficient network data are available. In between, at the critical
point where the random prior network becomes connected,
the prior constant C = 1 balances over- and underfitting and
prevents the detection of spurious communities. Moreover, the
amount of noise that this prior network induces in the original
network is so low that it does not wash out any significant
community structure. While prior parameter C between 0.5
and 1 performs best for some analyzed networks, C = 1
remains a robust choice in general (Appendix C).

The degree-corrected stochastic block model detects the
planted partition until we remove more than 40% of the
links from the synthetic network. Compared to the Bayesian
estimate of the map equation with the prior constant C = 1,
the degree-corrected stochastic block model starts to underfit
the planted partition earlier. For r > 40%, the number of
communities decreases continuously and when r > 80%, the
degree-corrected stochastic block model detects no commu-
nity structure.

Similar behaviors appear accentuated when we apply
the methods to the real-world Jazz collaboration network
[Fig. 3(b)]. For the standard map equation, the number of
detected communities increases with the number of missing
links, whereas the degree-corrected stochastic block model

(a) (b)

0.0 0.3 0.5 0.7 0.0 0.3 0.5 0.7
Fraction of removed links, r Fraction of removed links, r

FIG. 4. Alluvial diagrams of the Jazz collaboration network
show changes in community structure with missing links for (a) the
standard map equation and (b) the Bayesian estimate of the map
equation with prior aα = ln(V ). Compared to the standard map
equation, the communities detected using the Bayesian estimate of
the map equation are more robust to missing links.

shows the opposite trend. Unlike when applied to the synthetic
network, the various map equation variants already favor dif-
ferent partitions before removing any links. The Bayesian esti-
mate of the map equation detects fewer communities than the
standard map equation, and its performance depends on the
choice of the prior. For C = 0.5, the average number of com-
munities is relatively stable when more than 50% of the links
remain. However, if we remove more than 50% of the links,
the number of communities increases because the prior pa-
rameter is too low. As for the synthetic network, the prior pa-
rameter C = 2 is too high and causes underfit: the method de-
tects no community structure when we remove more than 10%
of the links. Again, C = 1 offers a good tradeoff. The number
of communities is approximately constant as long as at least
50% of the links remain and then decreases to 1 when fewer
than 40% of the links remain, where the method deduces that
there no longer exists any significant community structure.

We illustrate differences in the community structure of the
Jazz collaboration network induced by missing links for the
standard and Bayesian map equation with alluvial diagrams
[37]. The standard map equation identifies more and smaller
communities with sparser networks, whereas its Bayesian
estimate keeps similar communities with few changes before
collapsing into one community when only 30% of the links
remain. The Bayesian estimate’s prior assumption of missing
links prevents the map equation from splitting communities
when the networks lose links (Fig. 4).

B. Adjusted mutual information

AMI is a standard measure used to compare two differ-
ent partitions [38]. For the synthetic network, we compare
identified partitions with the planted partition. The standard
map equation successfully recovers the planted partition when
more than 60% of the links are available (AMI = 1). When we
remove more links, the accuracy decreases [Fig. 5(a)]. The
Bayesian estimate of the map equation with prior constant
C = 0.5 has almost the same accuracy. If we use C = 1
instead, then the method performs slightly better when we re-
move 40–60% of the links. Again, when we remove more than
65% of the links, the Bayesian estimate of the map equation
with prior constant C = 1 deduces that there no longer exists
any significant community structure and AMI = 0.
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FIG. 5. Performance tests of the community-detection algo-
rithms using AMI. (a) AMI scores with the planted partition of
the synthetic network as reference. (b) AMI scores with a partition
obtained for the complete Jazz collaboration network as reference.
The Bayesian estimate of the map equation with prior aα = ln(V )
gives the most robust results when it is possible to detect significant
communities. Results are averaged over 100 network samplings and
ten algorithm searches. The standard error of the mean is never
higher than 0.01.

To measure the AMI for the Jazz collaboration network,
which has no planted partition, we compare the partitions
that the community detection methods return for networks
with different fractions of missing links to the partitions they
return for the complete network. For the complete network,
we measure the average AMI over ten searches. The Bayesian
estimate of the map equation with prior aα = ln(V ) is the most
consistent method when it is possible to detect significant
communities [Fig. 5(b)].

In both synthetic and real-world networks when 〈k〉 >

ln(V ), the Bayesian estimate of the map equation with prior
constant C = 1 shows robust performance. However, when
C = 2 it can fail to detect their community structure due to
the high level of noise induced by the prior. To understand
how the noise induced by the prior in the Bayesian estimate
of the map equation affects community detection in sparse
networks with 〈k〉 ∼ ln(V ) and weak community structure,
we test the performance on a range of different networks. We
generate LFR networks with various values of average degree
and mixing parameter, randomly remove a fraction of links,
detect communities using the standard map equation and its
Bayesian estimate with prior aα = 0.5 ln(V ) and ln(V ), and
classify the community detection as successful when the AMI
between the planted partition and the identified partition is
0.9 or higher. Even if the random prior network has higher
density than the original network, the Bayesian estimate of the
map equation achieves the same performance as the standard
map equation when the community structure is well defined
(μ < 0.5). However, if the community structure is weak (μ =
0.5), then the prior aα = ln(V ) can cause underfit before
the standard map equation starts to overfit to noise induced
by missing links (Fig. 6). These results rely on the cost
of overfitting and underfitting implied by the AMI. Specific
networks or research questions may require other penalties for
many or few communities.

C. Cross-validation

Cross-validation allows us to compare model-selection
performance without planted or known partitions. We validate
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FIG. 6. Impact of network structure on the performance of the
standard map equation and its Bayesian estimate. Prior parameter
C = 0.5 in (a) and C = 1 in (b). For LFR networks with V =
1000 nodes and various densities 〈k〉 and mixing parameters μ,
we show the critical fraction of removed links r(〈k〉, μ) where the
AMI between the planted partition and the identified partition falls
below 0.9. Except for weak community structures (μ = 0.5), where
the Bayesian estimate with prior constant C = 1 underfits for lower
fraction of removed links than the standard map equation overfits, the
methods are on par. Results are averaged over ten network samplings
and ten algorithm searches.

the significance of network partitions returned by Infomap
for training networks with a fraction 1 − r of links using the
standard map equation and its Bayesian estimate (Fig. 7).

As the link density of the training network decreases below
the detectability limit, the standard map equation mistakes
noisy substructures in the sparse training networks for actual
communities. As a result, the relative code length savings in
the training and test networks diverge, and partitions obtained
with the standard map equation give negative code length
savings in the test network. In contrast, the Bayesian estimate
of the map equation with prior constant C = 1 prevents over-
fitting in the sparse training network, implying that there is no
significant community structure.

To complement with results for other networks, we pro-
vide summary statistics for six real-world networks often
used to evaluate the performance of community detection
algorithms (Table I). The networks include a collaboration
network in Astrophysics extracted from the arXiv (AstroPh)
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FIG. 7. Performance tests of the map equation with and without
Bayesian estimates using cross-validation. The Bayesian estimate
of the map equation with prior aα = ln(V ) prevents overfitting in
the undersampled regime. Results are averaged over 100 network
samplings and ten algorithm searches. The code length is measured
with Grassberger entropy estimation. The standard error of the mean
is never higher than 0.38.
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TABLE I. Comparison between partitions detected by the stan-
dard map equation and the Bayesian estimate of the map equation
for six real-world networks. The notations m0.25 and m1.0 refer to
the number of communities in the network with 25% removed links
and the complete network, respectively. The last two columns report
the code length savings of test and training networks for partitions
detected in the training networks with 25% removed links

Network Nodes Links Method m0 m0.25 l train
0.25 (%) l test

0.25(%)

AstroPh 17,903 197,031 Bayes 707 771 24 18
Standard 663 1,080 24 18

Email 1,133 5,451 Bayes 34 1 0 0
Standard 50 104 16 2

Erdős N1 466 1,600 Bayes 1 1 0 0
Standard 38 67 17 −9

Football 115 613 Bayes 9 9 18 15
Standard 10 11 20 16

PGP 10,680 24,316 Bayes 956 1,057 49 19
Standard 897 2,210 49 16

Polblogs 1,222 16,717 Bayes 24 23 6 5
Standard 33 80 6 5

[39], the network of e-mails exchanged between members of
the University Rovira i Virgili (Email) [40], a collaboration
network of authors with Erdős number 1 (Erdős N1) [41],
the American College Football network (Football) [42], the
PGP social network of trust (PGP) [43], and the network of
political weblogs (Polblogs) [44]. In all networks, the standard
map equation returns partitions with a higher number of
communities when links are missing. Except for the Football
network, the number of detected communities increases by
60% or more compared with the number of communities
detected in the complete network. In contrast, except for the
AstroPh and PGP networks, the Bayesian estimate of the map
equation with prior constant C = 1 identifies partitions with
fewer communities. Nevertheless, the different community
structures detected by the two methods result in similar rel-
ative code length savings in all networks but the Email and
Erdős N1 networks. They are sparse with 〈k〉 < ln(V ). In the
complete Email network, the Bayesian estimate of the map
equation detects 34 communities but underfits and detects no
community structure after removing 25% of the links. After
removing links in the Erdős N1 network, the standard map
equation overfits and detects communities that, when applied
to the test network, gives worse compression than the one-
module solution. The Bayesian estimate of the map equation
prevents this overfitting by preferring the one-module solution
over any non-trivial solution.

Overall, the model-accuracy results quantified by number
of communities, AMI scores, and code length savings in
cross-validation on synthetic and real-world networks suggest
that the analyzed network and research question should deter-
mine whether to use the standard map equation or its Bayesian
estimate. Choose the standard map equation when the network
data are complete or when extra communities caused by
missing links are not a problem. Choose its Bayesian estimate
when spurious communities can harm the analysis.

V. CONCLUSION

We have derived a Bayesian approach of the map equation
that imposes prior information about the network structure
to reduce overfitting for sparse networks with missing links.
Using an uninformative Dirichlet prior, we show that the
Bayesian estimate of the map equation avoids finding spuri-
ous communities in sparse synthetic and real-world networks
with missing links. With a properly chosen prior constant,
the proposed method successfully balances the impact of
the imposed prior against the observed network data: The
Bayesian estimate of the map equation provides a principled
approach to reducing overfitting and detecting significant
communities in two or more levels. We also show how to
asses whether communities are significant using more ef-
fective cross-validation with Grassberger entropy estimation,
which enables larger training networks. The computational
overhead of the methods compared with the standard map
equation is low. We anticipate that more reliable flow-based
community detection of undersampled networks will be useful
in many applications, including better prediction of missing
links.
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APPENDIX A: NORMALIZED TRANSITION RATES

Proposition. The map equation,

L(M) = −
V∑

α=1

pα log2(pα ) −
m∑

i=1

qi� log2(qi�)

+
m∑

i=1

(
qi� +

∑
α∈i

pα

)
log2

(
qi� +

∑
α∈i

pα

)

−
m∑

i=1

qi� log2(qi�) +
(

m∑
i=1

qi�

)
log2

(
m∑

i=1

qi�

)
,

(A1)

is a scale invariant function.
Proof. If we scale the transition rates pα, qi� and qi� by

a constant K , where K > 0, and change L(M) to

L′
M = −

V∑
α=1

K pα log2(K pα ) −
m∑

i=1

Kqi� log2(Kqi�)

+
m∑

i=1

(
Kqi� +

∑
α∈i

K pα

)
log2

(
Kqi� +

∑
α∈i

K pα

)

−
m∑

i=1

Kqi� log2(Kqi�)

+
(

m∑
i=1

Kqi�

)
log2

(
m∑

i=1

Kqi�

)
,
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then

L′
M = −

��������

K
V∑

α=1

pα log2(K ) − K
V∑

α=1

pα log2(pα )

−
��������

K
m∑

i=1

qi� log2(K ) − K
m∑

i=1

qi� log2(qi�)

−
��������

K
m∑

i=1

qi� log2(K ) − K
m∑

i=1

qi� log2(qi�)

+
��������

K
m∑

i=1

qi� log2(K ) +
��������

K
V∑

α=1

pα log2(K )

+ K
m∑

i=1

(
qi� +

∑
α∈i

pα

)
log2

(
qi� +

∑
α∈i

pα

)

+
���������
K

(
m∑

i=1

qi�

)
log2(K )

+ K

(
m∑

i=1

qi�

)
log2

(
m∑

i=1

qi�

)

= KL(M).

If we choose �

K =
∑V

α=1 kα∑V
α=1 kα + ∑m

i=1 ki� + ∑m
i=1 ki�

, (A2)

such that

p′
α = K pα = kα∑V

α=1 kα + ∑m
i=1 ki� + ∑m

i=1 ki�

, (A3)

q′
i� = Kqi� = ki�∑V

α=1 kα + ∑m
i=1 ki� + ∑m

i=1 ki�

, (A4)

q′
i� = Kqi� = ki�∑V

α=1 kα + ∑m
i=1 ki� + ∑m

i=1 ki�

, (A5)

then we will have

V∑
α=1

p′
α +

m∑
i=1

q′
i� +

m∑
i=1

q′
i� = 1. (A6)

Now we can use

L(M) = 1

K

⎡
⎣−

V∑
α=1

p′
α log2(p′

α ) −
m∑

i=1

q′
i� log2(q′

i�)

+
m∑

i=1

(
q′

i� +
∑
α∈i

p′
α

)
log2

(
q′

i� +
∑
α∈i

p′
α

)

−
m∑

i=1

q′
i� log2(q′

i�)+
(

m∑
i=1

q′
i�

)
log2

(
m∑

i=1

q′
i�

)⎤
⎦

(A7)

to calculate the posterior average of the map equation

L̂B(M) = E [L(M)|k, a]

=
∫

L(M)P(p′, q′
�

, q′
�

|k, a)d p′dq′
�

dq′
�

, (A8)

where posterior probability distribution equals

P(p′, q′
�

, q′
�

|k, a)

∝
V∏

α=1

(p′
α )kα+aα−1

m∏
i=1

[(q′
i�)ki�+ai�−1(q′

i�)ki�+ai�−1].

(A9)

As a result, we obtain

L̂B(M) = 1

ln(2)

1∑V
α=1 uα

×
⎡
⎣−

V∑
α=1

uαψ (uα + 1) −
m∑

i=1

ui�ψ (ui� + 1)

+
m∑

i=1

(
ui� +

∑
α∈i

uα

)
ψ

(
ui� +

∑
α∈i

uα + 1

)

−
m∑

i=1

ui�ψ (ui� + 1)

+
(

m∑
i=1

ui�

)
ψ

(
m∑

i=1

ui� + 1

)⎤
⎦, (A10)

where ux = kx + ax and ψ is digamma function, ψ (x) =
d
dx ln[�(x)].

APPENDIX B: THE BAYESIAN ESTIMATE
OF THE MULTILEVEL MAP EQUATION

The multilevel formulation of the map equation [6,31]
measures the minimum average description length given a
multilevel map M of V nodes clustered into m communities,
for which each community i has a submap Mi with mi sub-
communities, for which each subcommunity i j has a submap
Mi j with mi j subcommunities, and so on. It uses hierarchically
nested code structures,

L(M) = q�H (Q) +
m∑

i=1

L(Mi ), (B1)

where the average per-step code length needed to describe ran-
dom walker transitions between communities at the coarsest
level is the same as in the case of two-level clusterings,

H (Q) = −
m∑

i=1

qi�

q�
log2

qi�

q�
, (B2)

and the average per-step code word length of the module
codebook i recursively takes into account contributions of the
description lengths of communities at finer levels,

L(Mi) = q�
i H (Qi ) +

mi∑
i=1

L(Mi j ). (B3)
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FIG. 8. Mean number of communities obtained by the Bayesian
estimate of the map equation with different values of the prior
constant C. Smaller prior constants give more communities when
many links are missing. Results are averaged over 100 network
samplings and ten algorithm searches.

Here, the average per-step code length needed to describe the
random walker at intermediate level i exiting to a coarser
level or entering the mi subcommunities Mi j at a finer
level is

H (Qi ) = −qi�

q�
i

log2
qi�

q�
i

−
mi∑
j=1

qi j�

q�
i

log2
qi j�

q�
i

, (B4)

where

q�
i = qi� +

mi∑
j=1

qi j� (B5)

is the total code rate use in subcommunity i. We add the
description lengths of codebooks for subcommunities at finer
levels in a recursive fashion down to the finest level,

L(Mi j...l ) = p�i j...lH (Pi j...l ), (B6)

where

H (Pi j...l ) = − qi j...l�

p�i j...l

log2
qi j...l�

p�i j...l

−
∑

α∈Mi j...l

πα

p�i j...l

log2
πα

p�i j...l

(B7)

and

p�i j...l = qi j...l� +
∑

α∈Mi j...l

πα (B8)

is the total code word use rate of module codebook i j . . . l .
To obtain the Bayesian estimate of the multilevel map

equation, we use Eq. (B1) to calculate the posterior average
according to Eq. (4). Following the same procedure described
in Sec. III A, we obtain a formula for the Bayesian estimate of
the multilevel map equation,

L̂B(M) = 1

ln(2)

1∑V
α=1 uα

⎡
⎣−

m∑
i=1

ui�ψ (ui� + 1) +
(

m∑
i=1

ui�

)
ψ

(
m∑

i=1

ui� + 1

)⎤
⎦ +

m∑
i=1

L̂B(Mi ), (B9)

where

L̂B(Mi ) = 1

ln(2)

1∑V
α=1 uα

⎡
⎣−ui�ψ (ui� + 1) −

mi∑
j=1

ui j�ψ (ui j� + 1)

+
⎛
⎝ui� +

mi∑
j=1

ui j�

⎞
⎠ψ

⎛
⎝ui� +

mi∑
j=1

ui j� + 1

⎞
⎠

⎤
⎦ +

mi∑
j=1

L̂B(Mi j ) (B10)

and at the finest level

L̂B(Mi j...l )= 1

ln(2)

1∑V
α=1 uα

⎡
⎣ − ui j...l�ψ (ui j...l�+1)−

∑
α∈Mi j...l

uαψ (uα + 1)

+
⎛
⎝ui j...l�+

∑
α∈Mi j...l

uα

⎞
⎠ψ

⎛
⎝ui j...l�+

∑
α∈Mi j...l

uα+1

⎞
⎠

⎤
⎦. (B11)

APPENDIX C: RESULTS FOR DIFFERENT VALUES
OF THE PRIOR PARAMETER

The number of communities obtained by the Bayesian
estimate of the map equation varies for different values of
the prior constant C between 0.5 and 1 (Fig. 8). For the
synthetic network in the undersampled regime, C < 0.8 can
lead to severe overfitting before removing so many links that
it becomes evident that there is no significant community
structure. For the Jazz collaboration network, the number of

detected communities is similar for prior constant C > 0.6 but
is higher for all values of r when C � 0.6.

To compare the performance for different prior parameters,
we also compute the AMI for C between 0.5 and 1 (Fig. 9).
For the synthetic network, the AMI results confirm that the
detected communities become sensitive to the choice of prior
when we remove more than 65% of the links. For example,
for C � 0.8, the detected communities have AMI down to
0.65 before dropping to 0. For C < 0.8, the method can detect
communities in sparser networks but these communities have
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FIG. 9. Performance tests of the Bayesian estimate of the map
equation with different values of the prior constant C using AMI.
(a) AMI scores with the planted partition of the synthetic network as
reference. (b) AMI scores with a partition obtained for the complete
Jazz collaboration network as reference. Smaller prior constants give
communities with non-zero AMI scores when many links are missing
at the cost of overall lower AMI-scores in the Jazz network. Results
are averaged over 100 network samplings and ten algorithm searches.

AMI scores below 0.5. For the Jazz collaboration network, the
AMI results confirm that the detected communities are more
robust when C > 0.6.

Cross-validation further confirms these results for different
prior parameters. For the synthetic network, the Bayesian
estimate of the map equation is more robust to overfitting
with prior constant C � 0.8 (Fig. 10). With C < 0.8 and more
than 75% of the links removed, the communities detected
in the training network applied to the test network give
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FIG. 10. Performance tests of the Bayesian estimate of the map
equation with different values of the prior constant C using cross-
validation. Smaller prior constants give higher compression in a
narrow range of missing links at the cost of lower compression for
more missing links. We show relative code length savings for the
test network compared to the one-community partition. The code
length is measured with Grassberger entropy estimation. Results are
averaged over 100 network samplings and ten algorithm searches.

worse compression than with a single community. For the
Jazz collaboration network, a prior with C � 0.6 prevents the
detection of communities in the training network that, when
applied to the test network, give negative relative code length
savings.

These results for different values of the prior parameter
indicate that there is no single prior C ln(V ) that achieves
optimal performance for all networks. We suggest using ln(V )
as a prior because it is robust to overfitting and has good
overall performance. If desired for specific networks, then C
can be optimized between 0.5 and 1 with cross-validation.
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