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Abstract – The self-assembly in two dimensions of spherical magnets is addressed theoretically.
Minimal energy structures are obtained by optimization procedures as well as Monte Carlo com-
puter simulations. For a small number of constitutive magnets N ≤ 17, ring-like structures are
found to be stable. In the regime of larger N ≥ 18, the magnets form touching concentric rings
that are reminiscent of the onion-like structures. At sufficiently large N , the (edgy) shells are
hexagonal where dipole moments tend to align to the edge direction. All these relevant predicted
shapes are experimentally reproduced by manipulating millimetric magnets.

Copyright c© EPLA, 2015

Introduction. – Magnetic interactions and especially
assembly of magnetic objects have always intrigued the
human being [1]. The usage of magnets in the everyday
life and also in the industry is ubiquitous. In nanotechnol-
ogy, self-assembled mixtures of magnetic nanoparticles can
lead to very strong magnets [2]. In the biological world,
so-called magnetotactic bacteria own a permanent mag-
netic moment and they are able to orient and move in
the direction of the magnetic field [3]. Under an external
magnetic field, the latter form chain-like structures [4].
In a more physical perspective, magnetic colloidal parti-
cles [5–7], that can be envisioned as mesoscopic magnets,
constitute an ideal model system to mimic and understand
the phase behavior in classical molecular systems.

From a theoretical viewpoint, understanding magnetic
self-assembly originating from dipolar interactions is very
challenging due to the long-range and strong anisotropy
involved there. The pioneering theoretical work of Jacobs
and Bean [8] and later that of de Gennes and Pincus [9]
shed some light on the structure shape of self-assembled
spherical magnets. More recently, microstructures of dipo-
lar fluids have been thoroughly studied by computer sim-
ulations [10,11] and a key feature is the formation of

(a)E-mail: rene.messina@univ-lorraine.fr
(b)E-mail: igor.stankovic@ipb.ac.rs

chains at finite temperature. The relevance of ring forma-
tions, confirmed by simulations, was advocated by Wen
et al. [12] in magnetic microspheres and by Prokopieva
et al. [13] in ferrofluid monolayers. In close connection to
our system of interest, Vella et al. [14] looked at the me-
chanical properties of assemblies (chains, rings, and chi-
ral cylinders) of ferromagnetic spheres. Vandewalle and
Dorbolo observed a monopole-like field around V-shape
junctions1 of magnetic chains [17]. Schönke et al. reported
an infinitely degenerate ground state for a cubic dipole
cluster [18]. In previous publications [19–21], the self-
assembly at zero temperature of magnetic spheres in three
dimensions (3D) have been investigated. The formation of
stacked rings leading to tubular structures was the major
finding [19].

In this letter, we predict the ground-state microstruc-
tures of spherical magnets as a function of the num-
ber of constitutive magnets N in two dimensions (2D).
Besides, commercial millimeter-sized magnets (commonly
called Buckyballs or Neodyme spheres), see inset in fig. 1,
are employed to exemplify some calculated ground-state
structures.

1Note that the existence and importance of similar Y-junctions in
dipolar systems have been pioneered by Tlusty and Safran [15] and
investigated later by computer simulations by Ilg and Del Gado [16].
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Fig. 1: (Colour on-line) Scheme of two interacting spherical
magnets. For commodity one magnet is placed at the origin
so that �r1 = 0. The polar and azimuthal angles (θ, φ) are
explicitly shown for �m1. The inset (top left corner) of a 1 ruler
centimeter exemplifies the millimeter-sized magnets utilized in
our experiments.

Model. – The length scale of the system is given by
the diameter d of the spherical magnet, see fig. 1, and
its dipole moment strength is m = |�m|. The potential
of interaction U(�r12) between two such magnets whose
centers are located at �r1 = (x1, y1) and �r2 = (x2, y2), see
fig. 1, can be written as

U(�r12) = C
1

r3
12

[

�m1 · �m2 − 3
(�m1 · �r12)(�m2 · �r12)

r2
12

]

(1)

for r12 ≥ d or infinite otherwise, where C represents a
constant that depends on the intervening medium, and
r12 = |�r12| = |�r2 − �r1|. Like in [19], the energy scale is set

by U↑↑ ≡ Cm2

d3 corresponding to the repulsive potential
value for two parallel dipoles at contact standing side by
side as clearly suggested by the notation. Thereby the
reduced potential energy of interaction per magnet, uN ,
for an assembly of N magnetic spheres reads

uN =
1

N

N−1
∑

i=1

N
∑

j=i+1

U(�rij)

U↑↑

(rij ≥ d). (2)

For the particular head-to-tail configuration (i.e., →→)
we get u2 = −2.

Method. – It is specifically the function appearing in
eq. (2) that has to be minimized by carefully taking into
account the non-overlapping conditions. Note that upon
searching the minimal energy, four variables per magnet
are involved, see also fig. 1: two Cartesian coordinates

(x, y) for the center, and two angular parameters (θ, φ)
for the unit vector defining the direction of the dipole
moment. Two fully different numerical routes were car-
ried out to calculate the energy minimum of the sys-
tem: i) standard minimization routines (e.g. penalty
method [22]) and ii) Monte Carlo (MC) simulations [23].
In the latter case, a gentle quench from finite to zero tem-
perature is applied so as to avoid an early trapping in
local minima. Single-particle moves have been performed
consisting of i) translational trial displacements for the
particle centers as well as ii) angular ones for the dipoles.
When zero temperature is attained, only trial moves lead-
ing to lower energies are accepted. In order to increase
the chance of finding the global minimum, typically 103 to
104 starting configurations were considered. The winning
structure is then the one possessing the lowest energy.

Results. – Our main result can be found in fig. 2
where the reduced energy uN as a function of N is
depicted. Typical relevant structures are also provided
there, so that fig. 2 serves as a phase diagram as well.
We are going to analyze and discuss this energy-phase
diagram.

As a general preliminary remark, we want to point out
that the minimization procedure always finds dipole mo-
ments lying in the same plane containing the particles.
This feature can be easily demonstrated by inspecting the
pair potential (1). Clearly, we have to deal with magnets
living in the (x, y)-plane as sketched in fig. 1, with dipole
moments of the form �mi = (mix, miy, miz) verifying the
constraints m2 = m2

ix+m2
iy+m2

iz (i = 1, . . . , N). Thereby,
we are asked to minimize the pair potential U(�r12) with
respect to m1z and m2z taking into account the con-
straint functions Ψ1 = m2

1x + m2
1y + m2

1z − m2 = 0 and
Ψ2 = m2

2x +m2
2y +m2

2z −m2 = 0. Hence, we now consider
the auxiliary constrained function

G = U + λ1Ψ1 + λ2Ψ2, (3)

where λ1 and λ2 stand for the Lagrange multipliers [24].
Doing so, the required conditions for minima, ∂G

∂m1z

= 0

and ∂G
∂m2z

= 0, straightforwardly yield m1z = m2z = 0

(see footnote 2). As a consequence and thanks to the
superposition principle, an assembly of dipole moments
must always be coplanar with the flat substrate in the
(2D) ground state.

In the regime of very small N ≤ 3, short straight chains
are found as ground states (not shown here) as already
discussed in the literature [8,19]. Then, up to N = 17,
rings with energy

u
(ring)
N = −

1

4
sin3

( π

N

)

N−1
∑

k=1

3 + cos
(

2πk
N

)

sin3
(

πk
N

) (4)

2It is a trivial task to show that the minimization of the uncon-

strained function U with respect to m1z and m2z leads to the very
same conclusion (m1z = m2z = 0).
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Fig. 2: (Colour on-line) Reduced energy profiles uN as a function of the number of magnets N . Relevant microstructures are
shown for certain values of N . The dashed line corresponds to the energy of an ideal ring as given by eq. (4).

are found as ground states (4 ≤ N ≤ 17). The experi-
mental case, N = 17, is illustrated in fig. 3(a)3. This type
of structure was already found and discussed for the un-
confined 3D situation [19]. All the same, in 3D, rings are
energetically favorable only up to N = 13, where stacking
of rings win when N ≥ 14 [19]. The first remarkable and
crucial transition occurs at N = 18, where two (perfect)
touching concentric hexagonal rings are the lowest-energy
states, see fig. 2. The experimental realization of this ar-
rangement is provided in fig. 3(b). In that situation, the
microstructure significantly densifies, when compared to
the single-ring situation (N = 17), into a two-shell onion
compact structure. This feature explains the strong en-
ergy drop, see fig. 2, when passing from N = 17 (ring
structure) to N = 18 (onion structure). It turns out that
the regular polygonal onion-shell arrangement is a key fea-
ture in the 2D self-assembly of magnetic spheres and can
be seen as a defect-free ground-state reference. As a mat-
ter of fact, all the ground-state structures found so far
(1 ≤ N ≤ 18) are defect free.

The appearance of the first structural defect occurs at
N = 19, see fig. 2. Thereby a local “buckling” of the
outer shell occurs due to the frustration of being able to

3Note that in our model we deal with point-like dipoles, whereas
in the experimental situation the magnets are millimetric. Hence,
when comparing theory vs. experiments, one has to bear in mind
that higher multipolar contributions are neglected, which is a good
approximation for the level of comparison (i.e., particle arrange-
ment) in the present work. Dipoles with finite extension have been
studied by molecular dynamics in the context of colloidal suspensions
in the past, see, e.g., Blaak et al. [25].

build concentric touching rings4. Interestingly, this defect
is perfectly experimentally reproduced by manipulating
millimetric magnetic balls, see fig. 3(c). This feature ex-
plains also the observed energy jump when passing from
N = 18 to N = 19, see fig. 2, leading to a local maximum.
More generally, the rough nature of the energy landscape
(from N > 19) revealed in fig. 2 is a consequence of this
kind of frustration. Two-shell structures are energetically
favorable for 18 ≤ N ≤ 28. Clearly, structures with voids
within two shells as found for N = 19 exhibit local max-
ima, see fig. 2 with N = 21, 23, 25, and 27. On the other
hand, two-shell structures with touching shells (not neces-
sarily hexagonal or regular) lead to local minima, see fig. 2
with N = 18, 20, 22, 24 and 26. An example of experimen-
tal realization for N = 24 is provided in fig. 3(d).

Upon further increasing N (here N ≥ 29) structures
involving more than two shells set in. Depending on the
value of N , the winning microstructure can possess more
or less symmetry, as can be seen in fig. 2. For special
magic numbers Nhex following

Nhex = 3p2 − 3p (5)

with p denoting the number of particles per outer edge
for a perfect hexagonal shell ordering, the structures have
then the highest symmetry (here N = 36 with p = 4

4From a purely geometric point of view, a compact defect-free
structure could be obtained with N = 19 when filling the central
void present at N = 18. However, introducing there a dipole in an
environment of zero global magnetization is energetically unfavor-
able when the system is small.
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Fig. 3: (Colour on-line) Some illustrative configurations of mil-
limetric commercial magnetic beads obtained in our experi-
ments. The diameter of a bead is about 5mm. (a) N = 17
showing a regular polygonal ring structure. (b) N = 18 show-
ing the regular two-shell hexagonal structure. (c) N = 19
showing the defect where a void appears between two shells.
(d) N = 24 showing a regular triangle-based two-shell struc-
ture. (e) N = 30 showing a regular lozenge-based two-shell
structure. (f) N = 36 showing the regular three-shell hexago-
nal structure.

in eq. (5)) leading to a deep local minimum, see fig. 25.
Comparative experimental examples of high symmetrical
three-shell ordering are provided for N = 30 and N = 36
in fig. 3(e) and (f), respectively.

To gain further understanding of the ordering at larger
N we will solely consider perfect hexagonal shells. Typi-
cally, two scenarios emerge:

– There is no void in the core so that the hexagonal
basis is filled with one particle in its center as illus-
trated for N = 37 and N = 169 in fig. 4(a) and (b),
respectively.

– There is a void in the core corresponding exactly to
one missing particle as already found for N = 18 and
N = 36, see fig. 2. The case of larger N is illustrated
for N = 168 in fig. 4(c).

5The very same high symmetry is evidently also vivid for two-
shell structures at N = 18 with p = 3 in eq. (5).

Fig. 4: (Colour on-line) (a) Relative reduced energy profiles

uN − u
(plane)
∞ as a function of the number of magnets N for

hexagonally shaped onions with filled cores (N = 3p2
− 3p+ 1,

compare with eq. (5)). For convenience, only some values of N

are shown (circles) covering roughly three decades. The full line
represents a power law of the form N−0.55 which corresponds
to the best fit. The microstructure for N = 37 is provided,
to be compared with that for N = 36 in fig. 2. Comparative
microstructures for a larger number of shells are depicted for
(b) N = 169 and (c) N = 168

It is insightful to introduce the limit of an infinite pla-
nar triangular lattice with parallel dipole moments corre-

sponding to u
(plane)
∞ ≃ −2.759 [19]. Thereby, the profile

of uN −u
(plane)
∞ for several decades is depicted in fig. 4 for

hexagonally shaped onions with filled cores. For N = 37,
there is an energy deviation of about 10% from the infi-
nite case, see fig. 4(a). This is essentially due to finite-
size effects that are still non-negligible there. A closer
visual inspection of the corresponding microstructure, see
fig. 4(a), reveals a pretty strong asymmetry in the dipole
arrangement within the first shell surrounding the filled
core. This asymmetry gradually vanishes upon getting
further away from the core, see fig. 4(a). When N is large
enough, already with N = 169, the energy deviation from
the infinite case drops to about 4%. The situation with
perfectly aligned dipole moments within parallel edges is
virtually recovered from four shells away from the core,
see fig. 4(b). The situation is qualitatively the same with
an empty core (N = 168), see fig. 4(c) leading to nearly

46003-p4
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the same reduced energy u168 = −2.668 as that obtained
for a filled core u169 = −2.664.

Concluding remarks. – In summary, we have inves-
tigated the self-assembly of N magnetic spheres in two di-
mensions. The essential finding is the formation of shells,
reminiscent of onion ones, that possess more or less sym-
metry depending on the value of N . A general result is
the tendency to produce zero or small global magneti-
zation �M ≡ 1

N

∑

i �mi owing to dipole moments forming
(edgy) vortices. This feature at finite N is consistent with
the idea that the magnetic energy density w is propor-
tional to the square of the local generated magnetic field
(w ∝ B2) anywhere in the space, and that in the far-field
limit B ∝ M .

In the regime of a small number of magnets 4 ≤ N ≤ 18,
the single ring (regular polygon) is the lowest-energy
structure, as also found in the unconfined 3D case but
for 4 ≤ N ≤ 13 [19]. Deep local minima are then obtained
for hexagonally shaped onions structures in the regime of
larger N .

In contrast to the unconfined 3D situation where empty
tubes are energetically favorable for moderate N , it turns
out that only dense structures are stable in 2D for N ≥ 18.
All these predicted structure classes are reproduced exper-
imentally with millimetric magnetic balls as demonstrated
in this paper. An interesting future study will deal with
the effect of an external applied magnetic field where the
role of chain aggregation is crucial [26].
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