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A platform for nanomagnetism – assembled
ferromagnetic and antiferromagnetic dipolar
tubes†

Igor Stanković, *a Miljan Dašić,a Jorge A. Otálorab and Carlos García c

We report an interesting case where magnetic phenomena can transcend mesoscopic scales. Our system

consists of tubes created by the assembly of dipolar spheres. The cylindrical topology results in the

breakup of degeneracy observed in planar square and triangular packings. As far as the ground state is

concerned, the tubes switch from circular to axial magnetization with increasing tube length. All magne-

tostatic properties found in magnetic nanotubes, in which the dipolar interaction is comparable to or

dominant over the exchange interaction, are reproduced by the dipolar tubes including an intermediary

helically magnetized state. Besides, we discuss the antiferromagnetic phase resulting from the square

arrangement of the dipolar spheres and its interesting vortex state.

1. Introduction

Whether a system behaves as classical or quantum is usually
determined by the ratio between its spatial dimension and
quantum coherence length. Even so, there are cases where the
actual size dependent behavior seems to be an illusion and
transcending the scales is possible, thus allowing the study of
fundamental aspects hardly accessible at the original size.
Spin-ice frustration1–4 is an example, wherein the micro- and
mesoscopic rules that govern the spin orientation of such
systems can become very subtle and hard to understand.
Nevertheless, Venderbos et al.5 and Mellado et al.6 have shown
that similar frustrated states can also arise in arrangements of
macroscopic dipolar rotors via classical magnetic interactions,
furthermore, showing phenomena that are not visible in their
microscopic counterpart. In this paper, we present a similar
scenario of scale transcendence, relating magnetic nanotubes
(MNTs) to self-assembled dipolar magnetic spheres arranged
in tubular structures, named here dipolar tubes. The spheres
can have radii from 10 nm to macroscopic neodymium balls. A
peculiar feature of this comparison is that the tubular geome-

try of dipolar tubes breaks-up the continuous degeneracy of
the ground states in the two dimensional (2D) lattices of
dipolar spheres.7,8 As a result, we expect a number of new
stable states in the tubular geometry. The curvature-induced
feature opens the inquiry on its impact on the energy barriers
that separate and stabilize the novel magnetic states, which
will be addressed in this manuscript.

Given the lack of exchange interaction in dipolar tubes, it is
most reasonable to compare them with dipolar interaction
dominated MNTs where the exchange interaction is negligible.
Since in MNTs the dipolar interaction dominated state is circular
(magnetization polarized azimuthally), it can be expected that
transcendence exists only with a similar circular state in
dipolar tubes. As we show in the manuscript, it is found that
the scale transcendence strikingly goes beyond this trivializa-
tion. In a ground state, the stray field created by MNTs should
be minimal. This condition stems from micromagnetic
considerations9–11 wherein the magnetostatic energy is
minimized due to the dipolar part of the energy. Apart from
the circular state, axial and helical ground states in MNTs
have been predicted theoretically12,13 ‡ and confirmed
experimentally.14–18 In the axial state, the magnetization is par-
allel to the nanotube’s axis in the center of the tube and gradu-
ally turns into circular magnetization at the nanotube ends. In
the helical state, the magnetization is never completely aligned
with the tube’s axis resulting in a circulating component of the
magnetization.12,13 The helical and axial states spontaneously
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emerge when the dipolar interaction is comparable to the
exchange interaction. Both states occur when nanotube’s
radius is a few tens of times larger than the exchange length.
The axial state appears when the MNT length is around two to
three orders of magnitude larger than its diameter, whereas
the helical state is a transition configuration to the circular state
that appears when the length of the tube is further reduced.
Most of the previous studies on magnetic nanotubes have
focused on magnetic configurations as a function of geometry
for specific material parameters. Only recently Salinas et al.19

applied a generic model to discover that helical phases possess
a high level of metastability relevant to magnetization reversal
modes. Still, the origin of small energy differences between the
states remained unclear. The axial and helical states create a
small stray field13 or exponential decaying in the case of infinite
structures, and therefore they could also exist in dipolar tubes.20

The cylindrical magnetic geometry of MNTs has advantages
for applications despite evident fabrication problems. In fact,
the elongated geometry, azimuthal symmetry, and curvature of
nanotubes bring reproducibility, robustness, and extra stability
to nanotube’s equilibrium states and magnetization
dynamics,12,13,21–25 which makes MNTs attractive for
buffering, transport and processing information using their
equilibrium states, and domain wall dynamic and spin-wave
excitations. In this sense, the proper understanding and
characterization of equilibrium states in MNTs is, thus, a man-
datory task. Under this scenario, mimicking the magnetic
equilibrium features of nanotubes with dipolar tubes can
facilitate and encourage developments towards alternative
techniques intended to reduce the complexity of experiments.
The minimal energy structures of dipolar particles have been
investigated in recent theoretical studies.26,27 The tubular form
of the ground state together with outstanding self-assembly
properties of dipolar particles28,29 present motivation for their
application as a platform for testing concepts with MNTs. For
instance in experiments, tubular and helical architectures with
dipolar particles were obtained via DNA ligations,30,31

confinement,32–34 bulk interactions – magnetic Janus col-
loids,35 and asymmetric colloidal magnetic dumbbells.36

Another interesting system with respect to magnetic order is
the two dimensional self-assembled super lattices of magnetic
cubes. The magnetic cubes are synthesized with two most
probable orientations: axial [001]37 and along the principal
diagonal of the crystal, i.e., cube, [111],38 but the possibility of
less trivial orientations should not be discounted. As a result
of the interplay of square packing and magnetization defined
by their crystal structure, we find axially magnetized anti-ferro-
magnetic states in the case of [001] and vortex in the case of
[111] magnetized cubes.39,40 At this point, we would like to
draw attention to two recently developed techniques with
which dipolar tubes could be realised: (i) two-photon lithogra-
phy41 nano-printers can fabricate complex three-dimensional
structures with the resolution of up to 300 nm. The two-photon
lithography technique was used to fabricate nanostructures
out of polymer, metallic,42 and recently magnetic43 materials.
Such printed structures could be used as a template for the

self-assembly of magnetic particles with rhombic and square
lattices. (ii) The second technique comes from micro-fluidics.
The tubular structures of magnetic particles can be created by
the conformal covering of the cylindrical conductive wire
surface by assisting the self-ordering process of magnetic micro-
spheres44 via the application of a circular electromagnetic field
induced by an injected electrical current along the wire.

With the aim of addressing our results, linking self-assem-
bly, geometry, and magnetization states in dipolar tubes, this
paper is organized as follows: section 2 introduces the dipolar
interaction model and methods used. We discuss self-organiz-
ation on cylindrical confinement in section 3, and in silico

hierarchical degeneracy breakup of the infinite square and tri-
angular lattices with an introduction of curvature in section
4. We also present a systematic study of the ground state con-
figurations and energies resulting from the interplay between
the tube’s length and curvature for triangular and square
arrangements in section 4. The final section, section 5, gives
the conclusion and outlook.

2. Models and methods
2.1. Magnetic interaction model

Magnetic nanoparticles can have complex coupling involving
both dipolar and exchange interactions. The atomic exchange
interaction is relevant up to a length scale of 10 nm.45 Thus,
dipolar coupling dominates in the formation of the structures
on the length scales 10 nm–100 μm, with many potential
applications.30–35 We characterize the system using dipole–dipole
interaction potential: it is assumed that each particle carries
identical dipolar (magnetic) moment with magnitude m ¼ ~mij j,
where ~mi ¼ ðmi

x;mi
y;mi

zÞ defines the dipolar moment of particle i.
The potential energy of interaction Uð~rijÞ between two point-
like dipoles with centers located at~ri and~rj can be written as:

Uð~rijÞ ¼
μ0

4π

~mi � ~mj

rij3
� 3

ð~mi �~rijÞð~mj �~rijÞ
rij5

� �

; ð1Þ

for rij ≥ d or ∞ otherwise, where rij ¼ j~rijj ¼ j~rj �~rij and d is
particle’s diameter. It is convenient to introduce the energy
scale defined by U↑↑ ≡ μ0m

2/4πd3 that physically represents the
repulsive potential value for two parallel dipoles in contact
standing side by side, as clearly suggested by the notation.
Thereby, the total potential energy of interaction in a given
structure Utot is given by

Utot ¼
X

i>j

Uð~rijÞ: ð2Þ

One can then define the reduced potential energy of inter-
action u (per particle) of N magnetic spheres. It reads:

uN ¼ Utot

U""N
; ð3Þ

which will be referred to as the cohesive energy. The cohesive
energy of a particle is directly related to the energy required to
take it out from the structure. Lower cohesive energy means it
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takes more energy to disintegrate the structure. The higher is
the absolute value of cohesive energy the more stable is the
structure. For a particular two particle head-to-tail configur-
ation (i.e., →→), we get u2 = −1 per particle.

There is significant flexibility in tuning the physical and
chemical properties of magnetic particles. In particular, col-
loids can be synthesized either from a pure magnetic material
like hematite with a small spontaneous magnetization (IsFeO ≈

2.2 kA m−1), or large in the case of magnetite or cobalt ferrite
(IsCoFe ≈ 480 kA m−1).46,47 In the case of core–shell particles, a
design freedom is obtained by the adjustable core to shell
ratio. Here, in particular, we consider that all magnetic par-
ticles have the same magnetic moment. We assume that the
particles are silica–hematite core–shell particles with outer dia-
meter d = 50 μm and hematite core dcore = 10 μm.48 Assuming
a single domain particle behavior, the magnetic moment m is
expressed as m = IsFeOv = 1.15 A μm2, where v ≈ 500 μm3 is the
volume of the magnetic part of the particle. The result in this
work should be independent on the particle material or size.
To facilitate comparison, we present results in the scaled units
with the reference magnetic interaction energy U↑↑ = 10−18 J
calculated for hematite core/shell particles. For reference
energy we take the minimum of magnetic cohesive energy of
two particles in contact. The reference magnetic energy U↑↑ is
therefore equal to 256kBT, where T = 300 K is the temperature
and kB is the Boltzmann’s constant. The maximal magnetic
field generated by one particle at the center of the mass of the
other particle (placed side by side) is B0 = μ0m/(2πd3) = 1 μT.
The size of the magnetic core has a strong influence on the
energy scale: for dcore = 20 μm, we would obtain magnetic
moment m = IsFeOv = 9.2 A μm2, and magnetic energy depends
on the square of magnetic moment U↑↑ = 67 × 10−18 J, i.e., 1.6
× 104kBT. As a result, one could tune the level of degeneracy
described in latter sections with the size of the core. Also, by
changing the core to shell ratio we tune the balance of inter-
action between particles and of particles with the field created
by a conducting wire.

2.2. Isotropic interaction

When the dipolar coupling is strong, such as in nanocrystals,
the particle assembly is determined unequivocally by the
dipolar coupling and the particle shape. Here, we are interested
in moderately interacting magnetic particles since we want to
avoid the spontaneous formation of the clusters. Self-assembly
requires to take advantage of forces that dominate on the
micron scale and below (magnetic, contact, and van der Waals),
resulting in different device designs and functionalities.49

We describe the effect of isotropic contact and van der
Waals interactions between the spherical particles using a
minimal model, i.e., as soft-core beads, that interact isotropi-
cally by means of a truncated and shifted Lennard-Jones
potential. The interaction is defined as: Ucut

LJ (r) = ULJ(r) −

ULJ(rcut), r < rcut and Ucut = 0, r ≥ rcut, where rcut is the distance
at which the potential is truncated, and ULJ(r) is the convention-
al Lennard-Jones (LJ) potential, i.e., ULJ(r) = −4ε[(σ/r)12 − (σ/r)6].
The parameter ε corresponds to the energy scale of the

interaction and σ is related to the characteristic diameter of
the beads d, i.e., σ = d/21/6 and d = 50 μm. The choice of the rcut
value determines the nature of the potential Ucut

LJ (r): repulsive,
which is also known as Weeks–Chandler–Andersen (WCA)
potential for truncated Lennard-Jones potential in minimum
rcut = 21/6σ, and attractive for a commonly chosen rcut = 2.5σ.
The presence of attractive interactions between particles is
reminiscent of a Stockmayer fluid, a simple and convenient
model for representing ferrofluids50,51 or lattice of particles
stabilized by dipolar coupling.52

The colloidal structures analyzed here are modeled to rep-
resent the colloidal magnetic particles that have iron oxide
inclusions inside the silica shell: attractive part of isotropic
interaction; we choose a weak interaction between particles,52

εa = 3.5 × 10−19 J (εa = 0.3U↑↑ for dcore = 10 μm) and rcut = 125 μm
for particles with diameter d = 50 μm. The value of the sphere
repulsive contact potential is taken as εr = 7 × 10−16 J for par-
ticles with the same diameter d = 50 μm (i.e., εr = 10U↑↑). The
magnitude of the attractive part of potential and interaction
range can be varied by controlling the colloidal charge number
or surface composition.53

We study the system by means of Langevin molecular
dynamics computer simulations (described in the following
subsection): our spheres are represented by WCA potential,
and carry a magnetic point dipole in their centers. A weak iso-
tropic van der Waals (vdW) attraction between the spheres is
included for a more realist approach to an experimental solu-
tion of colloidal particles. In the experiment, the colloidal par-
ticles are stabilized against irreversible agglomeration by vdW
forces, either by polymers grafted to the surface, or manipulat-
ing the ionic content of the fluid. The vdW attraction between
the spheres provides additional stability to the lattice com-
posed of assembled tubes after the electromagnetic field has
been switched-off. As such, our results can be scaled to
different shell materials, i.e., polystyrene and silica oxide, but
the conclusions of this minimal model should be generic.

2.3. Interaction with conductive wire

We place the conductive wire in a suspension of spherical
magnetic particles. The conductive wire is an elegant way to
cover the cylindrical surface with magnetic particles. Such a
system has been recently implemented by Bécu et al. with
paramagnetic particles.44 When replacing paramagnetic par-
ticles with magnetic particles, the magnetic fields of the ferro-
magnetic particles and the electromagnetic field generated by
the conductive wire become independent. As a result, we
obtain an additional tuning parameter – a ratio between mag-
netization of the particle and electromagnetic field or current
of the wire. Still, the system parameters should be carefully
selected to avoid the formation of kinetically trapped clusters
or arcs of particles attached to the wire.

We consider a situation in which colloidal suspension is
placed in the vicinity of the current conducting wire. A wire
with outer diameter 2Rw = 50–100 μm is connected along the
z-direction. In order to generate an electromagnetic field able
to attract particles at the surface of the wire, significant cur-
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rents must go through the wire, giving rise to fields of several
mT at the wire surface. Recent similar experiments with para-
magnetic particles indicate that a 50 μm wire can support cur-
rents of up to 0.5 A for several minutes and up to 0.8 A for a
short time, creating electromagnetic fields up to B = 3.2 mT,44

i.e., Bw = μI/π(2Rw + d ) for dw = 50 μm wire and d = 50 μm
particle.§ We will show how the interactions between the par-
ticles and of particles with the wire can be balanced to obtain
single wall tubes. Our design based on ferromagnetic particles
has a freedom of tuning the ratio between two magnetic forces:
interparticle magnetic force Fmm and electromagnetic force
between ferromagnetic particles and the conductive wire FmI,
i.e., magnitude of magnetic force between two particles
depends on the square of their magnetic moments and the
force between particles and conducting wire depends linearly
on the magnetic moment. At the same time, magnetic moment
is proportional to the cube of the core’s diameter allowing the
variation of the ratio for up to three orders of magnitude, there-
fore this ratio can be anywhere between FmI/Fmm = 1–1000 (the
single wall tubes will be created only at the higher ratios).

2.4. Langevin molecular dynamics

Langevin molecular dynamics (MD)54 was used to study the
self-assembly in the vicinity of the wire under the influence of
an electromagnetic field of uninsulated conductive wire. The
total force of implicit solvent on each particle has the form:
~f ¼~fc þ~ff þ~fr, where fc is the conservative force of inter-
particle interactions and of particles with the wire, ff = −(m/ξ)v
is a frictional drag or viscous damping term proportional to

the particle’s velocity, and h fri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBTm=ξ
p

is the random
Brownian force of the solvent. The random force term is
treated as a Gaussian process that adheres to the fluctuation–
dissipation theorem. The rotational degrees of freedom are, of
course, governed by the equations of motion for the torque
and angular velocity of a sphere. Since evolution in time is not
of primary concern in this study, the values of mass, inertia
and translational/rotation friction coefficients are physically
inconsequential to the final state of the system. An estimate of
time, per MD step, can be obtained for 50 μm-sized colloidal

particles with dcore = 20 μm as t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mspd2=U""
p

¼ 80 ms (mass
of the core–shell hematite/silica particle M = 10 μg). The total
length of the MD simulation was thus estimated to be of the
order of 15 minutes (i.e., about 1000 s).

2.5. Energy minimization

The energies of finite tubes were independently computed
using 10–103 initial configurations with random magnetiza-

tion (depending on the size of the system). The procedure
included two steps: in the first step ‘overdamped’ equations of
rotational motion of each particle were integrated with respect
to the torque excreted on a particle (same equation as in
Langevin molecular dynamics equations as in the previous
section). The parameters used correspond to motion in a
highly viscous fluid where angular velocity is proportional to
torque, i.e., in the limit where no acceleration takes place, in
order to avoid any oscillations. In the second step, the result-
ing configurations were used as the input to a rigorous conju-
gate gradient minimization algorithm.55 The second step was
required since ‘overdamped’ rotational motion converges
slowly towards the ground state¶ for a prescribed geometry.
The energies of the resulting configurations were compared –

about 10% of configurations had the same energy, in the limit
of numerical precision of about δu/u = 10−7, corresponding to
the ground state. The minimization procedure always finds
dipole moments tangential to the cylindrical surface, cf. ref. 20.

2.6. Geometry of tubes

We refer to tubes made by stacking of rings.∥ In AA-tubes all
constitutive rings are exactly aligned, cf. Fig. 1(a), and in AB-
tubes every ring is shifted by half of the particle’s diameter, in
respect to its preceding ring, cf. Fig. 1(b). Alternatively, AA- or
AB-tubes could be generated by rolling square or triangular
lattices with cylindrical confinement, respectively.

Particle i-positions in AA tubes are calculated as: xi =
R cos(2πi/N), yi = R sin(2πi/N), and zi = ⌊i/N⌋d, where ⌊x⌋ is the
greatest integer function and gives the largest integer less than
or equal to x, while N is the number of particles in a constitu-
tive ring. To simplify the discussion, we refer to N also as
curvature since there is a correspondence with the tube’s
geometrical curvature R/d = 1/2 sin(π/N), e.g., we obtain

R=d ¼
ffiffiffi

2
p

=ð
ffiffiffi

3
p

� 1Þ � 1:3 for N = 8 ring.
One of the ways to obtain AB tubes is stacking of a pair of

two successive rings.** In both rings particle positions are cal-
culated based on their index i: xi = R cos(2πi/N + θi), yi =
R sin(2πi/N + θi), and zi = ⌊i/N⌋Δz, where θi is the angular
displacement of rings θi = πmod(⌊i/N⌋,2)/N and

§To favor the comparison with previous research on paramagnetic particles, we

present here results for wires with 2Rw = 100 and 130 μm and particles with

50 μm diameter. Ohmic heating limits the current through wire and is pro-

portional to the square of the current and wire radius. Since the electromagnetic

field B is linearly proportional to the current and inversely proportional to the

distance of centers of the particle and wire, the power is P ∝ B2(1 + d\Rw)
2.

Therefore, we should note that the increase of the wire diameter allows higher

electromagnetic field for similar dissipation.

¶A simple example of a discrete ground state is two dipole cases: put two dipoles

next to each other and let them orient freely in three dimensional space, they

will align their moments in a head to tail configuration (coaxially).

∥Apart from self assembly on the micro-scale, it is possible to construct tubes

described in this subsection manually on the macroscopic (millimetre) scale.

The neodymium magnetic spheres are widely available and applicable for build-

ing model systems.56 Neodymium magnets are made of a sintered alloy of iron,

neodymium, and boron (Nd2Fe14B). The coercive field strength is about

106 A m−1. Thus, the neodymium magnets can withstand high external magnetic

fields. The remanence of 1 to 1.5T is at the same time not larger than that in

other magnetic materials. All tubes constructed in this section can be therefore

built with neodymium magnets.

**The tubes can also be created, in analogy to carbon nanotubes, by rolling a

ribbon of a triangular lattice on a cylinder surface.20 The cylindrical geometry is

infinite in one direction and we can, in analogy with crystal lattices, generate

tubes by periodical reproduction of a curved patch (unit cell) along the helical

backbone with spanning vectors ð~a1;~a2Þ. This curved unit cell has n1 particles

along the~a1 direction and n2 particles in the~a2 direction.
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Δz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 � 2R2½1� cosðπ=NÞ�
p

is the displacement between
successive rings along AB tube’s axis and i = 1,Ntube. The total
number of particles in the tube Ntube is a multiple of the
number of particles in ring N and the number of rings Nrings,
i.e., Ntube = Nrings.

In addition to stacking of the rings, the tubes can be
created by rolling a ribbon with a square or triangular lattice
on a cylindrical surface. The right side panel in Fig. 1(b) shows
an edge of the ribbon creating exactly the same structure as
that by stacking of rings (see also ESI movies 1–4†). In fact,
every ordered tubular structure can be generated by reproduc-
tion of a curved unit cell along the helical lines defined
through curved spanning vectors in analogy to crystals in two
dimensions. This curved unit cell has n1 and n2 particles along
two spanning directions.20

Still, there are geometrical limits for a ribbon with a
defined structure (i.e., square, rhombic or triangular). Like in
carbon nanotubes, ribbons of assembled particles can be
rolled at specific and discrete (“chiral”) angles. The chiral
angle can take values 0 < Θ < 30° for triangular lattices and 0 <
Θ < 45° for square lattices, where Θ is the angle between the
thread of particles and tangent to the cylinder radius57 (in
Fig. 1). Here, we will demonstrate how combination of the
rolling angle and radius decides the tube’s properties with
respect to magnetic state energies. We show AB and ZZ tubes
which have different chiralities, Θ = 0° and 30°, in Fig. 1(b)
and (c), respectively. The circular arrangement of the AB tube
corresponds to, the so called, armchair carbon nanotube equi-
valent. The curvature of the two structures is also similar
RAB/d = 1.932 and RZZ/d = 1.945, while the number of particles

in a constitutive ring is different, N = 12 and 14 for AB and ZZ
tubes, respectively. An arrangement, circular or helical in the
AB tube and axial or helical in the ZZ tube, corresponds to a
possible choice of magnetization of tubes that is aligned with
their lattice structure.

3. Ampère force driven assembly

The central mechanism driving the adhesion of particles on a
conductive wire is an interplay between dipolar forces between
particles and radial attractive Ampère force. The electro-
magnetic field of the conducting wire is strong enough to
determine the orientation of all dipole moments. In order to
obtain a single layer of magnetic particles, the Ampère force
should dominate inter-particle dipolar forces. Here, we should
point out that the Ampère force generated by the current in
the wire depends linearly on the magnetic moment of the par-
ticles while magnetic dipolar interactions scale quadratically.
Besides, there are symmetric and short-range forces between
colloidal particles due to their surface design. We base our
analysis on a simplest analytically tractable model for constitu-
tive ring rearrangement and comparison with the MD
simulations.

In the following two sections, we first give analytical results
for Ampère force driven processes. After that, we compare
these analytical results with the ones obtained by computer
simulation for moderate and strong currents. We will show
that only sufficiently strong current is able to pull and attach
all particles to the wire’s surface.

3.1. From self-assembled chain to ring

The first agglomeration phenomenon analyzed analytically is
the strength of the curved electromagnetic field needed to
reduce the radius of an arc built by magnetic particles. An
elongated chain (or cluster of chains) should overcome the
elastic barrier preventing its bending into the ring under the
influence of a circular electromagnetic field. The origin of the
resistance to deformation can be understood in terms of a
transition from local (chain) to global energy minima, corres-
ponding to a ring or stacking of the rings.26,58 For simplicity,
we assume that the magnetic spheres have a magnetization
that follows the curvature of the arc (i.e., part of the ring) and
that the arc backbone follows electromagnetic field stream-
lines (i.e., co-centered with wire).

To do so, we consider a thin wire (rdist/Rwire > 1). An arc with
curvature d/R can be obtained by calculating the particle posi-
tions based on their index i in Euclidian space: xi = rdist cos(θi),
yi = rdist sin(θi), and respective magnetization mi

x = cos(θi + π/2),
mi

y = sin(θi + π/2), where θ is the angular displacement of
particles θ = 2arcsin(d/2rdist) and d the particle diameter. The
combined resistive magnetoelastic force tries to straighten the
chain and reduce its curvature d/rdist, see dashed lines for N =
4,6,12 particles in Fig. 2(a). Due to the circular nature of the
electromagnetic field, the curvature d/rdist of the arc is inverse
of its distance from the wire rdist. The magneto-elastic force F

Fig. 1 Illustration of (a) AA, (b) AB, and (c) ZZ tubes. The tubes are

wrapped around the confinement cylinder. Tubes can be created via

ring stacking (highlighted). A single ring is enough in the case of AA and

ZZ tubes. We show that AB tubes can be created in two ways. The first

way is by a pair of successive rings in the case of the AB tube (left panel,

see ESI movie 1†). The second way is by wrapping of the ribbon with a

triangular lattice on cylindrical confinement (right panel, see ESI movie

2†). In the right panel of the AB tube, the edge of the ribbon with 12

threads is denoted. The ZZ tube can be created in three ways, stack-

ing of zig-zag rings (pictured), wrapping 14 filaments parallel to the

tube’s long axis, or 14 thread ribbons oblique to the axis (see ESI movies

3 and 4†). The AB tube has a chiral angle Θ = 0°. The lattice structure of

the ZZ tube is triangular, like one of the AB tubes, while chirality is

different, i.e., Θ = 30°.
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increases up to the point when the arc ends start to attract
each other, cf., bold black line connecting maxima of force
curves for different arcs in Fig. 2(a). The critical force for the
chain with N = 4 particles has a maximum F = 30 pN at distance
rdist = 50 μm and N = 6 particles has F = 15 pN at rdist = 70 μm.
Thereafter, the deformation of the chain becomes irreversible.
The magneto-elastic force decreases with increasing curvature
d/rdist and changes the sign. The negative force means that
after that point the arc closes on its own. Also, one can observe
that while the critical force diminishes with distance – the
highest necessary critical current is for thin wire and short
arcs (i.e. for three particle arc). The critical force is inversely

proportional to the distance, i.e., F ∼ 1/rdist. The current
needed to generate sufficient electromagnetic field, I ≈ 0.02 A,
is therefore independent of the chain length.

3.2. Attaching particles to the surface of the wire

We also observe that for a moderate current the long arc closes
into a ring with a radius larger than the radius of the wire
(Rwire). How does this ring finally attach to the surface of the
wire? What is the critical force and current required to break
the rings by spiral deformation? The transformation from a
large ring to the adapted wire diameter involves a destabilizing
field able to tear apart a ring by pulling a part of it inwards to
the surface of the wire (rdist > Rwire). The energy per particle of
the single ring is:

urðNÞ ¼ � 1
4
sin3 π

N

� �

X

N�1

k¼1

cos
2πk
N

� �

þ 3

sin3 πk

N

� � : ð4Þ

Similarly, the approximate expression for the force required
to break the ring is given by (see also Fig. 2(a)),

FsðNÞ ¼ � 3
8
sin3 π

N

� �

X

N�1

k¼1

k

cos
2πk
N

� �

þ 3

sin3 πk

N

� � : ð5Þ

Since the Ampère force reaches its strongest value in the
wire surface, the ring will break in the vicinity at this position.
We can therefore estimate the critical current to be I =
2π(d + Rwire)

2F/μ0m, as shown in Fig. 2(b). The current required
to break a ring is more than three times higher than the current
needed to close an arc and increases with the wire radius. Still,
the increase is slow (I ∼ Rα

wire, where α < 1) and is compensated
without the increase in current density through the wire.

The magnetic particles stick (or diffuse) on top of the tri-
angular lattice formed on the cylindrical surfaces. Following
compaction, the remaining beads coming from solvent try to
pop-in between the constitutive rings of the tube. In numerical
analysis, we use the fact that a ring configuration compensates
for the dipole moment and the total dipole moment is zero
within the ring. In far field, the electromagnetic field of the
ring resembles a multipole, i.e., the electromagnetic field
drops with the distance as 1/rN+2, where N is the number of
particles in the ring. The self-screening of inter-ring dipolar
interactions takes place as soon as the rings are separated by
more than one particle size. Therefore, the change in total
energy depends dominantly on the distance of the touching
rings, i.e., the change in their interaction energy,

uirðNÞ ¼ � 1
8
sin3 π

N

� �

�
X

N�1

k¼0

2 3þ cos
πð2k þ 1Þ

N

� �	 


sin2 π 2k þ 1ð Þ
2N

� �

þ dz2Sk

dz2 sin2 π 2k þ 1ð Þ
2N

� �

þ sin2 π

N

� �

	 
5=2

ð6Þ

Fig. 2 Critical (a) force and (b) current required to bend and close an

arc of particles and form a ring, break the ring, or insert particle

between the two rings. The dependence of the forces on distance from

the center of the wire rdist is shown. The ring is broken when Ampère’s

force pushes one side of the ring inside (spirally deforming ring). The

evolution of the force with the distance from wire rdistance is also shown

in figure (a) with dotted line for N = 4,6, and 12 particles. The critical

current depends on wire radius Rwire since particles become further

away from the center. The magnetic moment of the particle is

1.15 A μm2.
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where dz is the distance between touching rings and

Sk ¼
X

i¼0;1;2

ð�1Þi 2
i

� �

cos½πð2ðk þ iÞ � 1Þ=N�. We estimate the

force FiðNÞ ¼ 6=
ffiffiffi

2
p� �

@uir Nð Þ=@dz needed to push the particle

between the two rings in contact, i.e., at a distance:

dzcN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The resulting critical force and current depend on the wire
radius as shown in Fig. 2(a) and (b), respectively. For wire of
Rwire = 65 μm, on which 8 particles of d = 50 μm could form a
ring, the critical current is I = 0.4 A.

3.3. Dynamics of assembly

We simulate the Ampère force driven assembly of colloidal
magnetic particles on a cylindrical confinement. The snap-
shots of evolution of the configuration with time are given in
Fig. 3 and animations are given in the ESI as movies 5–7.† We
model the dynamics of assembled particles with dipolar coup-
ling in the presence of the circular electromagnetic field gener-
ated by the electrical current going through a conductive
cylindrical wire which, at the same time, serves as a geometrical
constraint.

In MD simulations at moderate currents, cf. the inset in
Fig. 3(a), we observe the formation of chains composed of an
oriented collection of magnetic dipoles, increasingly curved by
the electromagnetic field as they approach, and eventually

attach to the wire. This process is schematically given in
Fig. 2(a). The resistance to bending increases as the particles
approach the wire. The chain finally bends due to the fact that
the dipoles cannot align with both, the electromagnetic field
lines and with each other’s magnetic axis. In this frustrated
configuration, the magnetic field of each dipole exerts a torque
on all other dipoles.

At sufficiently high currents we observe that the system
becomes rapidly compact, see Fig. 3(b). We also observe,
between t = 185 s and t = 190 s in Fig. 3(b),†† how the last par-
ticle coming from solvent pushes the already formed triangu-
lar lattice structure forming a metastable single stranded helix.
In this metastable state, the helix backbone and electromag-
netic field are not aligned, resulting in mechanical strain on
the whole structure. At t = 350 s, we observe that the system
shears back into a stable state (tube) with constitutive rings
aligned with the electromagnetic field.

Finally, we should note that a square lattice can only be
obtained by self assembly on a square patterned surface. This
corresponds also to the state-of-the-art in the literature.41 The
latter one is limited to the self assembly of finite sized struc-
tures. Nano-scale printing allows realization of curved conduc-
tors with a complex surface geometry and opens an interesting
playground for generating different packings of magnetic
spheres. The Joule heating limits the current through a

Fig. 3 Snapshots of MD simulations at moderate (a) IRw
2/m = 1 and strong (b) IRw

2/m = 50 currents are shown. (a) For IRw
2/m = 1, we observe

chains form as an oriented collection of magnetic dipoles, increasingly curved by the electromagnetic field as they approach, and eventually attach

to the wire. The particles in contact with wire at t = 1000 s are colored differently. The animation is given as ESI movies 5 and 6† (top and side

views). (b) At strong currents, IRw
2/m = 50, Ampère force inserts particles into the triangular lattice. Insets between t = 53 s and 54 s show particles

while entering moving (shear) tube’s structure turning it into a quasi-stable single stranded helix. The particles belonging to successive rings are

colored differently at t = 185 s to visualize this process. After some time, t = 190 s, the helix shears back into a tube with rings of magnetic particles

conforming electromagnetic field lines. The animation is given as ESI movie 7.† The magnetic moment of the particle is 1.15 A μm2, the wire radius is

(a) Rw = d = 50 μm and (b) Rw = 1.3d = 65 μm, and the current is (a) I = 0.46 mA and (b) I = 23 mA.

††The particles are colored differently to visualize the movement.
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100 μm wire to 0.5 A.44 Therefore, the magnetic moment of the
particle is limited by the total magnetic moment of the particle
and should be m < IRw

2/50 = 25 A μm2, taking into account the
whole size of the particle. The total magnetic moment of the
particle is controlled by the volume of the ferromagnetic core
and choice of the magnetic material. Once the dipolar tube
had been formed, the particles would stay in place after the
wire is removed. The tubular structures are mechanically
stable also at finite temperatures (see movie 8 in the ESI†). We
should highlight that the wire is not only a confinement struc-
ture but an efficient way to control the magnetic configuration
of these tubes.

4. Magnetization of dipolar tubes

In this section, we analyze the implication of curvature and
size effects on the energy landscape of triangular and square
lattices. The isotropic interaction between the particles and
the particles with the wire, which now serves only as a rigid
cylindrical confinement, does not have influence on magnetic
dipole orientation.

4.1. Characteristics of triangular and square lattices

First, we investigate the dependence of ground state energy on
magnetization. All dipoles in the triangular lattice are parallel
and allowed to rotate only around a fixed axis orthogonal to the
plane, see Fig. 4(a), for numerical details cf. ref. 59. There is a
continuous ground state for any in-plane angle θ with cohesive
energy value uAB ≃ −2.7586,‡‡ see also ref. 7 and 8. For a
square two dimensional lattice, similarly, there is a continuous
degeneracy of its ground state, described in Fig. 4(b) and (c). A
continuous state, in this case, involves a unit cell of four par-
ticles. The moments in a unit cell are synchronously coupled
and in our notation take directions θ, π − θ, π + θ, and −θ, in
the anti-clockwise direction as shown in Fig. 4(b). The ground
states found are obviously antiferromagnetic, with the total
dipole moment within the cell conserved and equal to zero.
The most striking is the so-called vortex state for θ = π/4 with a
fully enclosed circulation of the magnetic dipole moment
within the unit cell. The ground state cohesive energy value is
uAA ≃ −2.5494.§§ We will use the calculated ground state
energy value as an absolute point for comparison of energies of
different states in tubes with square or triangular lattice struc-
tures. We should note that both antiferromagnetic states are
observed in systems of square particles as a result of the inter-
play between the magnetization defined by crystallinity of the
cubes and the structure of the two dimensional super lattice. Commonly, magnetic cubes are represented by single dipoles

placed in the center. While this is a good approximation for
many systems, it only takes into account about 50% of the total
volume of the cube and is neglecting the effect of the corners.
Therefore one could expect degeneracy breakup due to asym-
metry of the shape of the cubes. Still, the cubes are synthesized
very often with curved edges, i.e., as superballs, exhibiting a
continuous transformation of shape from an ideal cube to a
sphere60 and they are expected to self assemble in structures

Fig. 4 Visualization of degenerate states in infinite (a) triangular and (b)

square lattices, i.e., respectively AB and AA packings. The dipoles are

depicted as arrows located in the center of the spheres. In the case of

the triangular lattice the unit cell consists of a single particle and in the

case of the square lattice it consists of four particles (gray). (c) An energy

landscape for the square lattice is shown with respect to two θ1 and θ2

out of four magnetic moments in the unit cell. Other two moments

were oriented so the energy of the system is minimal. One can observe

a flat valley of degenerate ground state, θ2 = −θ1, with energy uAA ≃

−2.5494. The saddle point which represents a uniformly magnetized

square plane with energy u
sdd
AA = −2.26 is also marked. The curves are

drawn through the discrete points and are smooth. The results are in

principle scale independent. The reference magnetic energies are U↑↑ =

10−18 J and 67 × 10−18 J, i.e., 256kBT and 1.6 × 104
kBT, for particles with

magnetic moments m = 1.15 A μm2 and 9.2A μm2, respectively, where

T = 300 K is the temperature and kB is the Boltzmann’s constant.

‡‡The energy of the continuous ground state of the

triangular lattice independent of the in-plane angle θ is

uAB ¼ �2ζð3Þ þ 16π2
X

1

k¼1

X

1

l¼1

cosðklπÞK0ðkl
ffiffiffi

3
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πÞ ’ �2:7586.

§§The energy of the continuous ground state of the square lattice is
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X
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with a square symmetry.61 An extent of degeneracy breakup
remains to be analyzed during this shape-shift.

4.2. Degeneracy break-up with curvature

Wrapping of the plane around the confinement cylinder will
make the system quasi one-dimensional and break degeneracy.
We will discuss repercussions of degeneracy breakup on cohe-
sive energy for different dipole orientations. We analyze first
the degeneracy breakup in infinite tubes: according to tube’s
cylindrical geometry, we represent the dipole moment of the
i-th particle in cylindrical coordinates like:

~mi ¼ miϕ~eϕ þmiz~ez; ð8Þ

with constraints m2 = miϕ
2 + miz

2 (i = 1,…N). The parallel com-
ponent with respect to tube’s axis is given by mz and the
orthogonal component is mϕ (i.e., mϕ is tangential to cylinder’s
circumstance). In Fig. 5, we follow the dependence of energy
on angular parameter θ, miz = m sin(θ). We find that the axial
magnetization (i.e., θ = π/2) of dipole moments represents the
ground state for both AA- and AB-tubes, and circular magneti-
zation (i.e., θ = 0) is the most unfavorable as seen in Fig. 5.

Between circular and axial magnetization (i.e., 0 < θ < π/2),
we observe a continuous increase of energy with increasing cir-

cular alignment of magnetization. These transition states, we
call vortex in the case of square AA tubes and helical in the
case of triangular AB tubes, e.g., θ = π/4 in Fig. 5(a) and (b),
respectively. The cohesive energy, of different configurations
shown in Fig. 5, converges to a continuously degenerate state
with increasing curvature N, following the power law, uN −

u∞ ∼ N−2, cf. the inset in Fig. 5.
Configurations (A1), (B1), (C1), (D1), and (E1) are shown in

Fig. 7. The results are in principle scale independent. In this
work, we have used in all examples length scale d = 50 μm.

4.3. Magnetization states in finite tubes

We will go one step further and consider finite tubes which
consist of Nrings stacked rings. Tube’s length influences
ground state dipole orientation on both global and local levels.
The competition between the two geometrical parameters, (i)
curvature N and (ii) tube length Nrings, leads to different poss-
ible magnetic states of the tube. The energies of ground states,
at a prescribed number of rings Nrings and for two curvatures
N = 8, 12, are given in Fig. 6 for AA and AB tubes (i.e. square
and triangular tubular structures).

Points (A2), (B2), (C2), (D2) and (E2) from the state diagram
are chosen as illustrative examples in Fig. 9. The results are in
principle scale independent. We used length scale d = 50 μm.

Finite AA tubes. For square AA stacked tubes with N = 12 cur-
vature, the circular magnetization state is stable for (2 ≤

Fig. 5 Dipolar cohesive energy spectrum of configurations for dipole

orientations shown in Fig. 4 on a curved surface of the infinitely long

tube with (a) square AA and (b) triangular AB tubes. Breaking of degener-

acy with respect to angle θ due to the curvature, i.e., proportional to the

number of particles in the constitutive ring N, is shown. The axial mag-

netization corresponds to θ = π/2. The inset shows convergence of

dipolar cohesive energies for θ = 0, and π/4 to infinite two dimensional

plane value u (for square lattice uAA = −2.5494 and for triangular lattice

uAB = −2.7586). The reference magnetic energies are U↑↑ = 10−18 J and

67 × 10−18 J, i.e., 256kBT and 1.6 × 104
kBT, for particles with magnetic

moments m = 1.15 A μm2 and 9.2A μm2, respectively, where T = 300 K is

the temperature and kB is Boltzmann’s constant.

Fig. 6 Reduced cohesive energy profiles u as a function of the number

of rings Nrings for AA and AB tubes with curvatures N = 8 and 12.

Configurations for points (A1), (B1), (C1), and (E1) are shown in Fig. 7 and

(A2), (B2), (C2), (D2) and (E2) in Fig. 9. The curves are plotted through the

discrete points and serve as guide to the eye, all points lie on the curves,

and only a few listed and analysed points are shown. Before points (A1)

and (B2) the magnetization is ideally circular and the energy decrease is

only driven by the addition of new rings. The results are in principle

scale independent. Two possible choices for reference magnetic energy

could be U↑↑ = 10−18 J and 67 × 10−18 J, i.e., 256kBT and 1.6 × 104
kBT, for

particles with magnetic moments m = 1.15 A μm2 and 9.2A μm2,

respectively, where T = 300 K is the temperature and kB is Boltzmann’s

constant.
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Nrings ≤ 9) rings. It turns out that circular magnetization is the
ground state of short tubes, relative to their constitutive ring
size N. The circular magnetization case Nrings = 9 is illustrated
in Fig. 7(A1). The change in magnetization towards axial is
abrupt for Nrings = 10 and curvature N = 12, see Fig. 7(B1). We
observe a local antiferromagnetic circulation formed almost
over the whole length except in terminal rings. The dipoles in
the middle of the tube are only slightly misaligned with tube’s
axis (i.e., for angle 0.12π). As a result of change in the magnetic
order we observe, Fig. 6, that the slope of cohesive energy
changes from Nrings = 9 to 10, i.e., between points (A1) uAA

12,9 =
−2.4534 and (B1) uAA

12,10 = −2.4589. Extending further the
tube length Nrings ≥ 13, we observe a well formed axial anti-
ferromagnetic state with chains of alternating magnetization
parallel to the tube axis.

The state diagram of AA tubes is given in Fig. 8. The calcu-
lated equilibrium states are given for different curvatures and
lengths of AA. The coloring method in the state diagram is
based on the local order parameter, conveniently defined as:

χL=2 ¼ j2hðmz=mÞ2iL=2 � 1j; ð9Þ

where (mz/m)2 is the scaled intensity of local magnetization in
the axial direction and 〈 〉L/2 is the average in the middle of the
tube (z = L/2).¶¶ The idea of the order parameter is to visualize
transition states (between axial and circular). Magnetic states
which do not match with axial nor circular states in the
middle of the tube are also referred to as vortex states in AA
tubes. The order parameter measures the misalignment of ~m

from the geometry of the tube, it is χL/2 = 1 in circular, i.e.,
(mz/m)2 = 0, and axial states, i.e., (mz/m)2 = 1, i.e., white areas
comprising points (A1) and (E1) in Fig. 8 (cf. also Fig. 7). The

state diagram contains three regions corresponding to the
three classes of equilibrium states. We observe pure circular
magnetization with no axial dipole component for short tubes.
In the transition state, there is a change from the dominantly
axial orientation of dipoles in the middle of the tube (z = L/2)
to a vortex-like orientation at tube’s ends (z = 0,L). We observe
that a transition from a vortex to an axial state follows roughly
a linear trend for 4 ≤ N ≤ 14. For N = 16 this trend is broken
and the transition occurs earlier (after a single additional ring
and not two). The resulting local order parameter is very small,
χL/2 ≈ 0. This is all a result of a strong local circulation, i.e.,
θ ¼ π=4; mϕ ¼ mz ¼ m=

ffiffiffi

2
p

, cf. value of χL/2 at point (D1) in
Fig. 8 and also visualization in Fig. 7.

Finite AB tubes. In the case of AB stacked tubes (triangular
lattice), for N = 12 curvature, the circular state is stable for (2 ≤

Nrings ≲ 70) rings. After that, only dipoles in the middle of the
tube significantly start to change magnetization, cf. Fig. 9(A2)
and (B2). Only when the local order parameter, χL/2 ≈ 0, we
observe a change in the dependence of cohesive energy on
tube’s length Nrings, cf. Fig. 9(C2) and Fig. 6 for Nrings = 85. The
energy for configuration (C2) is uAB

12,85 = −2.6895. The simi-
larity of observed state transitions with increasing length of
the dipolar tube to state transitions observed in solid magnetic
nanotubes is striking.13,18 This is surprising due to the
absence of the exchange interaction in dipolar tubes. We call
the transition state χL/2 ≈ 0 the helical state. The helical state,
both in solid and dipolar tubes, is a result of the interplay
between tube’s curvature and length. We find three equivalent

Fig. 7 Illustrative examples of characteristic ground state magnetization

for tubes with AA stacking. Configurations (A1), (B1), (C1) and (E1) are

obtained with curvature N = 12, and (D1) with N = 16. Fig. 8 State diagram of AA tubes. It is shown in 2D tube length-curva-

ture parameter space, i.e., L(R) or Nrings(N), with clear indication of axial,

circular and transitional vortex magnetization states. The coloring

method based on order parameter χL/2, defined in eqn (9), is applied.

The order parameter χL/2 is zero in axial and circular magnetic states, i.e.,

when the magnetic texture is parallel to tube geometry, and equal to

unity when the magnetic structure is turned by 45° (i.e. equidistant from

axial and circular magnetization).

¶¶ In the case of even number of rings, i.e., Ntot = 2k, we take two rings above/

below z = L/2.
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states: clockwise, anti-clockwise and symmetric, within
numerical accuracy, as a result of broken symmetry.

There are three clear differences between transitions from
circular to axial states in AA and AB tubes, as seen in Fig. 8
and 10:

• The transition occurs at smaller tube lengths in the case
of AA tubes, i.e., in AA-tubes for curvature N = 12 transition is
at Nrings ≈ 10 while for AB-tubes it will occur at Nrings ≈ 80;

• For AA tubes, the circular state sharply changes into the
transitional vortex state when the threshold length is reached.
In the case of AB tubes, the transition through the helical state
is gradual with increasing length;

• Edge effects at tube’s ends, i.e., in the vicinity of z = (0,L),
are much stronger in AB tubes than in the case of AA tubes,
i.e., in AB-tubes for curvature N = 12 they extend over ΔNrings =
30 rings on each side of the tube, compared to only up to
ΔNrings = 3 rings.

It is insightful to compare the energies of obtained finite
tubular magnetizations with the limits of an infinite planar tri-
angular and square lattice. In the case of AB tubes for N = 12,
Nrings = 200, we obtain uAB

12,200 = −2.7203 and an energy devi-
ation of about 15% from the infinite triangular plane case.
This is essentially due to the edge effects that are still non-neg-
ligible. For much shorter AA tubes, i.e., N = 12, Nrings = 35, we
are with uAB

12,35 = −2.5233 within 10% from the infinite plane
case.

At this point we would like to draw a comparison with
solid-state MNTs. In MNTs the magnetic properties are mainly
defined by dipole–dipole and exchange interactions, wherein
the latter stems from quantum mechanical considerations.
Exchange is a short-range interaction that, in micromagnetic
approximation, is typically characterized by the exchange
length (lex) that is not larger than a few tens of nanometers.
The quantum mechanics signature in magnetic states of nano-
tubes can be neglected whether by choosing curvature R ≫ lex
or reducing the exchange length to zero. The magnetic equili-

brium states of MNTs are mostly defined according to the ratio
between MNT dimensions, such as their length L and radius
R. The radii RF ∼ ηlex and RV ≈ γlex are critical transition radii
with η = 1–10 and γ = 10–50. In MNTs with L ≥ R and R < RF
uniform axial states are the preferred ground states. At RF < R < RV
and L ≫ R the magnetization is in the axial state (i.e., only
the center of the tube is axially magnetized), and if the length
is reduced to L ≈ R magnetization turns into the circular state.
The helical state appears as a transition state between the axial
and circular states as a result of a reduction of the tube’s length.
All these states have been predicted theoretically12,13 and
measured experimentally just recently.14–18 Thus, solid state
MNTs with weak or comparable exchange interaction regard-
ing the dipolar interaction will exhibit a circular magnetic
order. This is not the case in dipolar tubes, consisting of dis-
crete (nano- or even micro-particles), where exchange inter-
action is not present. And still, we could find all states seen in
MNTs (circular, helical, and axial). We also observe similar
tendencies with respect to the tube’s size. We find the circular
state in short, the helical intermediary state in medium, and
the axial state in long dipolar tubes.

The principal difference between the AA- and AB-tubes is
the total magnetic moment. For AA-tubes the total magnetic
moment is zero. In the case of AB-tubes, the axial and helical
states have a finite total magnetic moment, just like MNT
counterparts. Fig. 11 shows the dependence of magnetic field
intensity on radial distance from the center of AA and AB
tubes. The magnetic field at the closest approach of the probe
particle Δr/d = 1 is always smaller than the magnetic field of a
single constitutive particle B/B0 = 1 in side by side ↑↓ configur-

Fig. 9 Illustrative examples of characteristic ground state magnetiza-

tion for tubes with AB stacking. Fig. 10 State diagram of AB tubes. It is shown in 2D tube length-curva-

ture parameter space, i.e., L(R) or Nrings(N), with clear indication of axial,

circular and transition helical states. The coloring method χL/2, defined

in eqn (9), is applied. The order parameter χL/2 is zero in axial and circular

magnetic states, i.e., when the magnetic texture is parallel to tube geo-

metry, and equal to unity when the magnetic structure is turned by 45°

(i.e. equidistant from axial and circular magnetization).
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ation. The vortex state in the AA tube results in a BD1(1)/B0 =
0.09, while in the case of AB tubes BE2(1)/B0 = 0.19. The smal-
lest structure shown in Fig. 11 has more than 200 constitutive
particles, i.e., the (D1) AA tube in the vortex state. In all three
cases of the finite tubes, the intensity of magnetic field far
from the tube follows the power law on distance, i.e., B ∼ Δr−3

for Δr/L ≫ 1. Only in axially magnetized infinite AB tubes the
magnetic field exponentially decays with distance Δr/d and
therefore fulfills flux closure, cf. also ref. 62. This result is not
surprising from the micromagnetic point of view since in a
finite object a singularity-free solution cannot exist for topolo-
gical reasons.63 Only if the system is infinite at least in one
dimension, micromagnetic solutions may be constructed. As a
result, magnetostatic energy is minimized, leading to similar
ground states in finite MNTs and dipolar tubes, that tend to
reduce the stray field but cannot make it negligible.

4.4. Chirality and degeneracy breakup

In this section, we would like to point out, how chirality of the
structure influences the energy barriers between different
states in dipolar tubes. The ribbons of assembled particles can
be rolled at different (“chiral”) angles Θ. In our self assembly
experiment, combination of the magnetic field along the wire
and the circular electromagnetic field will result in creating
ferromagnetic tubes with a specific chiral angle. We will only
briefly analyse limiting cases which are actually the most
interesting ones from the point of the metastability (i.e.,
energy differences between different states). Antiferromagnetic
tubes need to be created on a cylindrical structure with a tilted

pattern. The radius of these tubes will depend on the lattice
structure (i.e., square or triangular) and chiral angle. Here, we
will demonstrate how the combination of the rolling angle and
radius decides the tube’s energy. In the previous section, we
have calculated energies of different states for tubes obtained
by stacking of the rings. In the following text, we will follow
energy gains and losses due to change in the chirality (orien-
tation) of tube’s lattice with its axis Θ = 30° in triangular and
Θ = 45° in square lattices.

First, we will compare the energy of the infinite AB tube
shown in Fig. 5(b) and the ZZ tube shown in Fig. 1(c). While
the ZZ-tube is aligned with the tube’s axis, the ribbon generat-
ing AB tube is rolled under a 60° angle, see Fig. 1(b). The
energy of the circular state in Fig. 5(b) is ucircularAB = −2.694 for
the unit ring of N = 12 particles and θ = 0. The helical state (θ =
π/3), in Fig. 5(a), is more energetically favorable, uhelicalAB =
−2.7315. The axially magnetized state has energy uaxialAB =
−2.7441 for θ = π/2. The difference between circular and axial
state energies is small, i.e., less than 2% of the total energy.
Already at moderate curvatures, i.e., R/d = 1.932, the difference
in the infinite triangular plane value (uAB

∞) is small, uaxialAB −

uAB
∞

≈ 0.015 or roughly 0.5% of the total energy value. If we
chose chirality to align the tube’s structure with its axis, as in
ZZ tubes shown in Fig. 1(c),∥∥ the energy converges faster to
the infinite triangular plane value. The energy difference, for
the system shown in Fig. 1(c), is uaxialZZ − uAB

∞
≈ 0.001.

Improved convergence of the axial state comes with a marginal
increase of energy difference to circular and helical states of
less than 3% of the total energy value. The energies of circular
and helical states, for the ZZ tube in Fig. 1(c), are u2

circular =
−2.618 and u2

helical = −2.7, respectively. We can conclude that
by changing chirality we can manipulate energy differences
between different states.

The AA tube’s square lattice is aligned with the tube’s axis,
see Fig. 5(a). What will happen if we turn the tube’s lattice
structure by 45°? We show the configurations and results of
energy calculations in Fig. 12. To demonstrate the stability of
the structure it is also realized with neodymium magnetic
spheres. The striking feature is a comparably small energy
increase of u∞

helical
− u∞

vortex = 1.8 × 10−4, cf. Fig. 12(c). This
means that in realization with a finite temperature this system
would be degenerate. Since an infinite tube can never be rea-
lized, one could ask how significant is the influence of the
edges? In this context we calculate energies of finite tubes con-
sisting of N = 208 particles, i.e., which correspond exactly to
the helical and vortex configurations shown in Fig. 12(A) and
(B), and obtain values u208

vortex = −2.4527 and u208
helical =

−2.4495, respectively. Therefore, at least in these two finite con-
figurations the energy is relatively close to each other (within
2%) and to that of infinite tubes (i.e., within 5%). In contrast
to AA tubes in the previous section, the local magnetic order of
finite and infinite tubes shown in Fig. 12 is quite similar. The

Fig. 11 Dependence of the intensity of the magnetic field B from radial

distance Δr = r − R from the center of dipolar tubes, where R is the tube

radius. The magnetic field is given for the (D1) AA tube in the vortex

state L/d = 13 long and with curvature N = 16, (A2) the circularly magne-

tized AB tube with L/d ≈ 53 and N = 12, (E2) the axially magnetized AB

tube with L/d ≈ 98 and N = 12, and the uniformly axially magnetized

infinite AB tube with the same curvature (N = 12). The distance Δr/d = 1

is the distance of the closest approach of the particle to the tube. The

configurations of AA and AB tubes are shown in Fig. 7 and 9, respect-

ively. We used length scale d = 50 μm. Reference magnetic field is B0 =

1 μT for two particles with magnetic moments 1.15 A μm2.

∥∥ In the ZZ tube, particles form chains (so called, filaments) parallel to the

tube’s axis.
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reason is that the tubes finish the crown (zig-zag) ring which
prevents formation of a continuous head–tail magnetic order.

5. Conclusion and outlook

In the first part of the paper, we demonstrate that using mag-
netic particles with a permanent dipolar moment gives

additional design freedom for an experiment recently pro-
posed. Injection of an electrical current into a conductor wire
induces an electromagnetic field. The radial gradient of this
field owns the ability to attract magnetic beads. The particles,
therefore, assemble on the wire surface. We explored the inten-
sity of the electromagnetic field that leads to a transformation
of the clusters attached to the wire into a single layer tubular
structure. We further analyse the limits on the injected cur-
rents to minimize the Joule heating and steer the particle
assembly. In this regard, we have found a realistic range of cur-
rents and resulting electromagnetic fields at which the assem-
bly of spheres and its magnetic orientation are stable and con-
trollable. Our results are generic and can be scaled to many
different systems. Once the current is switched off, the circular
electromagnetic field disappears, and the particles stay
assembled held by interparticle interactions. From this point
on, the magnetization of colloidal particles turns and relaxes
to the equilibrium configuration.

In the second part of the paper, we studied the curvature-
induced breakup of the continuously degenerated state when a
two-dimensional ribbon of spheres is curved and transferred
to the cylinder. We show that different ferromagnetic states,
observed previously,20,26 are a result of curvature induced
energy barriers that lift the continuous degeneracy in the tri-
angular lattice. We performed a systematic investigation of the
degeneracy break-up as a function of the tube length and
packing symmetry (square or triangular), which lead to a
number of equilibrium magnetic states of dipolar tubes. For
triangular packing, we show that dipolar tubes transcend the
scale. Their equilibrium states mimic the ground magnetiza-
tion of magnetic nanotubes where the dipolar interaction is
either comparable or dominate over the exchange interaction.
Indeed, we found the circular state in short tubes, the axial
state in long tubes, and the helical state in between. This is an
important conclusion since it shows that all these states could
exist in magnetic nanotubes also without exchange inter-
actions. We find that the planar square lattice has a continu-
ously degenerate antiferromagnetic state. In tubes with the
square lattice, we have found remarkable magnetic vortex con-
figurations formed spontaneously. Such a configuration was
observed previously only in a system of magnetic cubes due to
intricate relation between the crystallinity of the cubes and
packing. Antiferromagnetic states have no analogous in the set
of magnetic ground states in continuum magnetic nano-
tubes13,21 and are remarkable due to their curvature-induced
stability and non-colinear texture. Indeed, these non-colinear
states can be very attractive for further research on magnetiza-
tion dynamics (reversal processes mediated by domain wall
propagation and spin-waves) due to the macroscopic scale of
dipolar tubes, and therefore less complexity in experiments.

In the context of curvilinear nanomagnetism,13,25 the
present theoretical result could represent a departure point
and alternative means to test and explore equilibrium and
dynamic magnetic properties at macroscopic scales. The
dipolar tubes present an alternative technique to reduce the
complexity of experiments and a platform to prove concepts

Fig. 12 The helical (a) and vortex (b) anti-ferromagnetic states realized

with neodymium magnets (in upper panels) and magnetization pattern.

The energy spectrum of configurations (c) for the same infinite

configuration with respect to angle θ, where θ1 = θ, θ2 = −θ, θ3 = π + θ,

and θ4 = π − θ. The case θ = π/4 corresponds to helical and θ = 0, π/2

vortex state. The chiral angle, i.e., the angle between thread of particles

and tangent to cylinder radius, is θ = 45° and is also marked in the planar

scheme of the system in panel (c). To convert results in real units, for

example the reference magnetic energies U↑↑ = 10−18 J or 67 × 10−18 J

could be used that correspond to 256kBT or 1.6 × 104
kBT, in cases of

particles with magnetic moments m = 1.15 A μm2 or 9.2A μm2, respect-

ively, where T = 300 K is the temperature and kB is Boltzmann’s

constant.
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for applications in magnonics at more accessible parameters
(reduced frequencies and macroscopic wavelengths). The
experimental realization of cylindrical magnetic objects is very
demanding since curvature effects might be overshadowed by
wall pinning on imperfections, such as grain boundaries and
edges.21 The realization of presented quasi-one-dimensional
or edge free ferromagnets and antiferromagnets would create
an accessible platform for testing concepts of spin-based elec-
tronics (e.g., Cherenkov-like spin wave emission22,64 or curva-
ture induced non-reciprocities in magnonics25,65) and infor-
mation technologies by getting around a requirement of
robust magnetic uniformity at temperatures of technological
relevance. An additional application of the tubular assemblies
of dipoles could be modeling of the ordered planar systems
due to the absence of the lateral edges in curved geometry and
low energy barriers. Macroscopic dipoles were, for instance,
successfully used to study frustrated states in spin glasses.6

Although the previous approach cannot be applied straight-
forwardly to ordered planar structures, since edge effects could
overshadow properties like the response to magnetization
reversal, it can motivate further studies on this topic.
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