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Structure and cohesive energy of dipolar helices

Igor Stanković,*a Miljan Dašića and René Messinab

This paper deals with the investigation of cohesive energy in dipolar helices made up of hard spheres. Such

tubular helical structures are ubiquitous objects in biological systems. We observe a complex dependence of

cohesive energy on surface packing fraction and dipole moment distribution. As far as single helices are

concerned, the lowest cohesive energy is achieved at the highest surface packing fraction. Besides, a striking

non-monotonic behavior is reported for the cohesive energy as a function of the surface packing fraction.

For multiple helices, we discover a new phase, exhibiting markedly higher cohesive energy. This phase is

referred to as ZZ tube consisting of stacked crown rings (reminiscent of a pile of zig-zag rings), resulting in a

local triangular arrangement with densely packed filaments parallel to the tube axis.

1 Introduction

Particles with permanent dipole moments, such as magnetic
particles, are well known for their outstanding self-assembly
properties.1–3 In biology, tubular and helical structures are
relevant self-assembled objects, for instance, found in bacterial
flagella4 and microtubules.5,6 Other instances of such tubular/
helical structures can be found in various materials with specific
building units that can be: carbon atoms,7 coiled carbon nano-
tubes,8 DNA,9 nanoparticles,10 or amphiphilic molecules.11–13 Self
organization of cubic magnetic nanoparticles14 and asymmetric
colloidal magnetic dumbbells15 into helical architectures were
recently reported without the need for pre-existing templates.

On a more theoretical side, hard spherical particles confined in
narrow cylinders spontaneously assemble into helical structures16,17

and this is also seen experimentally.18 Hard-spheres with permanent
moment can be employed as a paradigm for more complex helical
molecular superstructures,19 or microtubules.20,21 The pioneering
theoretical work of Jacobs and Bean22 and later that of de Gennes
and Pincus23 shed some light on the microstructure of self-
assembled unconstrained (spherical) dipoles. More recently, the
paper24 advocated the ground states of self-assembled magnetic
structures. The authors proved that for a sufficiently high number
of particles the ground state is obtained via ring stacking
into tubes.24 On the other hand, Vella et al.25 showed an
illustrative example in which a macroscopic straight portion
of the chain spontaneously wraps itself building a tube. At
larger scales, the Janus chain model was able to reproduce well
the formation of superstructures and double helical conformations

of amphiphilic molecules.26,27 The competition between toroidal
and rod-like conformations, as possible ground states for DNA
condensation, was studied using a polymer chain model function
of stiffness and short range interactions.28,29 Also the recently
introduced polymorphic dynamics model30,31 was able to reproduce
the behavior of the microtubule lattice based on a rough under-
standing of underlying atomic level processes. The general scientific
problem of understanding the processes by which building blocks
(dipoles) self-assemble and obtain their functionality is highly
challenging.32–36

The goal of this paper is to address the intimate link between
microstructure and cohesive energy. Tubular helical structures
can be obtained either (i) through ring stacking or (ii) by rolling
one or multiple helices on a confining cylindrical surface (Section 2).
The dipolar interaction model is introduced and a link between
the dipole distribution and the microstructure is established
in Section 3. In Section 4, starting from the most simple case
corresponding to a single helix, we discuss the relationship
between the surface packing and the resulting macroscopic
properties such as the cohesive energy or overall polarization.
Then, the more complex situation of multiple helices with densely
packed constitutive particles is addressed. There, the degree of
alignment (especially in the ground state) between the dipole
moment orientation and the helix axis is analyzed.

2 Geometry of helices
2.1 Geometry of the single helix

In the framework of this paper, helices are composed of hard
spherical particles and confined to a cylinder’s surface, i.e., the
helices are created by rolling threads on the cylindrical surface
of radius Rcyl. Geometrical parameters that define a single helix
are: the azimuthal angular shift G between the centers of two
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successive particles and the radius of the helix R = Rcyl + d/2,
where d stands for the hard sphere diameter, see Fig. 1. The radius
R represents physically the distance of the closest approach
between the cylinder axis and the center of the spherical particle.

The Cartesian coordinates of particle i in a single helix are
calculated as: xi = Rcos(iG), yi = Rsin(iG), and zi = iDz, where i A Z
and assuming that one particle is at (x,y,z) = (R,0,0). The distance
between the centers of each two successive particles along the
helix axis is labelled Dz, see Fig. 1. When constructing a helix, its
radius R and the azimuthal angular distance G have to be chosen
in a way that ensures non-overlapping of hard spheres. The non-
overlapping constraint is expressed for any two particles i, j as

r ij

�� �� � d. Since the helix thread is connected everywhere, any

two successive particles are touching. We can obtain Dz as a

function of other two variables: Dz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 2ðcosG� 1ÞR2

p
.

Thereby, variables Dz, R and G are not independent. Clearly,
with decreasing Dz (i.e., increasing G) helices become more
compact. Because of the connectivity, every particle in a helix
has at least two neighbors, i.e., the coordination number, nc, is
always greater or equal than two (nc Z 2). The highest packing
density of the particles for the prescribed confinement radius R
will be achieved when the successive helix turns touch. In this
situation of touching turns, the coordination number nc can be
either four or six. Therefore, in general, nc A {2, 4, 6}, where the
case nc = 2 corresponds to non-touching turns. Based on the
coordination number nc, we can classify helices as follows (see
Fig. 2a–c). Examples of helices with two neighbors nc = 2 and
four neighbors nc = 4 at a prescribed cylindrical confinement,
e.g., R/d = 1.78, are sketched in Fig. 2a and b, respectively. For
a number of well-defined radii, as discussed later in this
paper, densely packed helices with six neighbors (nc = 6) can
be formed, see Fig. 2c. In the following sections, we will also
investigate stacked rings forming the so-called tubes, also
depicted in Fig. 2d–f.

2.2 Order parameters for single helices

The surface packing fraction, Z = S/Savail, is defined as the ratio
of the area S = pd2/4 covered by one particle and the area
available for one particle Savail, in an unrolled configuration.

Following the definition of the surface packing density we
obtain:†

Z ¼ d2

8DzR
: (1)

For comparison we are also going to derive the packing fraction
for the tubes:‡
� The surface packing fraction of AA tubes is given by

ZAA = Nringd/8RAA for an AA tube with Nring particles per ring
and the confinement radius RAA/d = 1/[2sin(p/Nring)], see Fig. 2d
for a microstructure with RAA/d = 1.93.

Fig. 1 Illustration of a single helix with the relevant geometrical parameters
(R,G,Dz) labelled. The bold line connecting spherical particle centers
represents the backbone of the helix. In the upper part of the figure, the
azimuthal dipole moment orientation a is defined in a local coordinate
system with its origin corresponding to the particle center. The z0-axis is
parallel to the cylinder axis.

Fig. 2 Illustration of different classes of helices, based on the coordination number nc = 2, 4, and 6. (a) Helix with non-touching turns (nc = 2). (b) Helix
with touching turns (nc = 4). (c) Densely packed helix (nc = 6). The other panels illustrate the so-called (d) AA, (e) AB, and (f) ZZ tubes. The tubes can be
created by strict axial stacking of unit rings. For AA and AB tubes unit rings are flat, whereas, for ZZ tubes the unit ring has a crown shape (reminiscent of
the pile of ‘zig-zag’ rings). The radii of AA and AB tubes are the same R/d = 1.93.
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� Similarly, for AB tubes, the packing fraction is ZAB = Nringd2/
8RABDzAB, with RAB = RAA. Here, the elevation DzAB between two
consecutive rings is:

DzAB ¼ ðd=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2 cosðp=NÞ � cos2ðp=NÞ

q
: (2)

� For ZZ tubes, the packing fraction is ZZZ = Nringd/8RZZ, with the

confinement radius RZZ=d ¼
ffiffiffi
3
p

= 4 sin p=Nring

� �� �
.

To further characterize the helical microstructures, we
introduce an additional geometrical order parameter x which
is valid for nc = 4 and 6. This order parameter connects an
individual reference particle 0 located at -

r0 in the helix with its
two neighbors: its immediate successive particle 1 in the turn
(-r01 = -

r1 �
-
r0) and a neighboring particle 2 from the next turn

(-r02 = -
r2 �

-
r0), see Fig. 3(a).

The angular coordination order parameter is conveniently
defined as:

x ¼ 2
~r01 �~r02j j

d2
: (3)

In the two limiting cases, the angular coordination order
parameter has values: xmin = 0, for a locally square lattice on a
cylinder (e.g., AA tubes, check Fig. 2d) and xmax = 1, for a locally
triangular lattice (e.g. AB tubes, check Fig. 2e). In all other
cases, the value of the angular coordination order parameter x
is between those two extreme values, i.e., 0 o x o 1.

2.3 Multiple helices at high surface packing fraction

The densely packed helices (nc = 6) can be created, in analogy
with carbon nanotubes, by rolling a ribbon of a triangular
lattice on a cylinder surface.37 We deal with cylindrical geometry,
infinite in one direction. We can generate these helical structures
by periodical reproduction of a curved patch (unit cell) along the
helical line with spanning vectors (-a1, -

a2). This curved unit
cell has n1 particles along the -

a1 direction and n2 particles in the
-
a2 direction.§

Since we deal with hard spheres and we aim to build very
dense structures, the parameter space (R,Dz,n1,n2) is significantly
restricted. We are going to find out that only two of these
parameters are independent. There exists a relationship linking
the elevation angle Y = arcsin(Dz/d) and the confinement radius
R, see ref. 37. Bearing in mind that for any pair (n1,n2) or
equivalently (n2,n1), we have a unique corresponding structure

with nc = 6, one arrives at the following two independent
equations:

Y n1; n2ð Þ ¼ arctan

ffiffiffi
3
p

n2

2n1 þ n2

 !
(4)

and

180� ¼ n1 arcsin
d

4R

� 	
2n1 þ n2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n12 þ n22 þ n1n2
p

" #

þ n2 arcsin
d

4R

� 	
2n2 þ n1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n12 þ n22 þ n1n2
p

" #
:

(5)

We have solved those two equations and obtained the sets (Y,R/d)
shown in Fig. 4. For each value of R there are two different values
of Y, symmetric around Y = 301, which correspond to lattice
constant pairs (n1,n2) and (n2,n1), respectively. The (n1,n2) pairs
are actually identical structures with opposite chirality.38 The six-
fold rotational symmetry of the lattice restricts Y A [01,601].

We now look into properties of (n1,n2) pairs in order to
characterize the multi-thread structure of six neighbor helices
(nc = 6). First, we identify the link between nc = 6-tubes and the

Fig. 3 (a) Illustration of a helix made of hard spheres, helix backbone
(solid line), and the vectors connecting a reference particle 0 located at
(x,y,z) = (R,0,0) with its neighbors: an immediate successive particle 1 in the
turn located at (r~01) and a neighboring particle 2 from the next thread turn
at (r~02). (b) An overview of the principal geometrical parameters of nc = 4
and 6 helices: elevation angle Y and azimuthal angular shifts G1 and G2 (see
eqn (7)). In our notation, densely packed directions along the helical
superstructure are called threads. The corresponding elevation distances
of successive particles along helix axes Dz1,2 (see eqn (9)) are also given for
two possibilities for the rolling of the same helix configuration.

† The available area per particle is Savail = 2pRDz, where the distance between
successive particles along the tube axis is Dz. We take for the surface covered by
particle S = pd2/4, i.e., neglecting curvature. This results in a small overestimation
of the packing fraction (less then 2% for large curvatures, e.g., R=d ¼

ffiffiffiffiffiffiffiffi
3=2

p
).

‡ The tubes are obtained via ring stacking. It is convenient to calculate the
surface packing fraction as the ratio of the area covered by the particles in a unit
ring and the available area per ring. The surface covered is S = Nringpd2/4. The
available area per ring is Savail = 2pRDz, where Dz is the distance between
successive rings. The distance between successive rings is Dz = d for AA and ZZ
tubes.
§ The values n1 and n2 can be seen as the two possible widths of the ribbon
generating the same helical structure.
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(n1,n2) pair values. The pairs (0,n2) and (n1,0) leading to Y = 601
and 01, respectively, represent AB tubes, cf. Fig. 4. The pairs
with n1 = n2 corresponding to Y = 301 lead to ZZ tubes that are
characterized by constitutive straight filaments parallel to the
ZZ tube axis, see Fig. 2f. The curve with n1 = 1 (with n2 Z 3)
corresponds to a single helix, n1 = 2 (with n2 Z 3) to a double
helix, n1 = 3 (for any n2 Z 4) to a triple helix, and more generally
an n1-helical structure is obtained when n2 Z n1 + 1.¶

We employ Cartesian coordinates to express positions of
particles in an n-helix similarly to the single helix case, using
two indices, i A Z and j = {1,n}:

xi+jn = Rsin(iG1 + jG2)

yi+jn = Rcos(iG1 + jG2)

zi+jn = iDz1 + jDz2. (6)

In eqn (6), G1 represents the azimuthal angular shift between
each two consecutive particles along a given thread and G2 is
the angular shift between threads, i.e., densely packed directions
in a superstructure, see Fig. 3(b). The azimuthal angle G1 is
merely provided by:

G1 ¼ arccos 1� dffiffiffi
2
p

R
cosY

� 	2
" #

: (7)

The angular shift G2 between threads is more delicate to derive.
Knowing that starting from the reference particle it is possible
to reach the same particle position following two paths along
threads (in -

a1 or -
a2-direction), one can arrive at a relation

linking G1 and G2: 3601 = (n1 + n2)G1 � n2G2.
The dependence of angular parameters G1 and G2 on the

reduced helix radius R/d is displayed in Fig. 5, for Yo 30 in the

single helix (n2 = 1, n1 Z 4), the double helix (n2 = 2, n1 Z n2)
and the quadruple helix (n2 = 4, n1 Z n2).

As the helix radius R/d increases, the value of G1 monotonically
decreases, since additional particles are added to a turn. The
angular parameter G2 monotonically decreases only for n2 = 1.
The scenario becomes qualitatively different at n2 Z 2 where
non-monotonic behavior is found, see Fig. 5. This feature can be
rationalized as follows. The smallest compatible radii R with
n2 Z 2 and Y o 301 are obtained when n1 = n2 (cf. Fig. 4)
corresponding to Z tubes where G2 = 0. Besides that, G2 tends
to zero for the vanishing cylinder curvature (R/d - N). These
are the reasons why the profile of G2(R/d) is non-monotonic
when n2 Z 2.

The surface packing fraction of densely packed multiple
helices is simply obtained by multiplying the surface packing
fraction of a single helix with the number of threads n2 (Zmulti = n2Z,
see eqn (1)):

Zmulti ¼ n2
d2

8Dz1R
; (8)

where the elevation distance Dz1 (shown in Fig. 3b) is given by:

Dz1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 4R2 sin2

G1

2

� 	s
: (9)

The calculated surface packing fraction of single (n2 = 1),
double (n2 = 2), and quadruple (n2 = 4) helices is shown in
Fig. 6. At a given confinement curvature (fixed R/d), adding
threads results in higher surface packing fraction, see Fig. 6.

3 Dipole moments
3.1 Dipolar interaction model

We now want to address the situation where the constitutive
particles are dipolar. Each particle carries an identical dipole
moment in magnitude, m = |-

mi|, where -
mi = (mx

i , my
i , mz

i) defines

Fig. 4 Phase diagram in the (Y,R/d)-plane showing possible unit cells
characterized by (n1,n2) pairs. Solid lines represent unit cells with n2 fixed,
and the dashed ones represent unit cells with n1 fixed. The three horizontal
lines (dot-dashed) correspond to tubes.

Fig. 5 Dependence of azimuthal angular shift parameters G1 and G2

stemming from the corresponding spanning vectors a~1, a~2, respectively,
on a reduced helix radius R/d, for single (n2 = 1), double (n2 = 2), and
quadruple (n2 = 4) helices.

¶ In our notation, multiple helices are named after the smallest unit patch
dimension, i.e., the smallest number of generating threads.
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the dipole moment of particle i, see also Fig. 1. The potential
energy of interaction U(-rij) between two point-like dipoles
whose centers are located at -

ri and -
rj can be written as:

U ~rij
� �

¼ C
1

rij3
~mi � ~mj � 3

~mi �~rij
� �

~mj �~rij
� �

rij2


 �
(10)

for rij Z d or N otherwise, where C represents a constant that
depends on the intervening medium, and rij = |-rij| = |-rj�

-
ri|. It is

convenient to introduce the energy scale defined by Umm � Cm2/d3

that physically represents the repulsive potential value for two
parallel dipoles in contact standing side by side as clearly
suggested by the notation. Therefore, the total potential energy
of interaction in a given structure Utot is given by

Utot ¼
X
i;j
i4 j

U ~rij
� �

: (11)

One can then define the reduced potential energy of interaction
u (per particle) of N magnetic spheres. It reads u = Utot/(UmmN),
which will be referred to as the cohesive energy.

Since we are dealing with infinitely long structures (in one
direction), we shall consider only periodic structures in that
direction that greatly facilitate the calculation of the cohesive
energy. The method of choice is provided by the Lekner sum for
systems with periodicity in one direction.39 The central feature
in the Lekner method is the choice of the periodic cell. For
nc = 2, 4, we can always find helical parameters with a finite
number of particles in the unit cell. The periodicity is achieved
by imposing a condition on the angular shift parameter G that a
helix has to make an integer number of turns within the unit cell.

3.2 Dipole moment orientation prescribed by helix threads

Because of the symmetry it is intuitive to envision dipole moments
following helix threads. In order to have dipole moments tangential
to the helical backbone, we introduce two components of dipole
moments. The parallel component with respect to the helix axis
is given by mz = mDz/d and the orthogonal one is given by

~mxyj j ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðDz=dÞ2

p
. Hence, the dipole moment of particle i

in the single thread helix reads: mx
i = �mxysin(iG), my

i = mxy

cos(iG), and mz
i = mz.

In the multi-thread case, the Cartesian dipole moment
components are given by:

mx
i, j = �mxysin(iG1 + jG2)

my
i, j = mxycos(iG1 + jG2)

mz
i,j = mDz/d, (12)

where i A Z is the internal particle label within a thread and
j = {1,n2} stands for the thread’s label. In dense helices (nc = 4, 6)
dipole moments can follow two directions -

a1 and -
a2. In Fig. 7,

representative dipole moment distributions are shown.

3.3 Energy minimization

In general, the dipole moments do not have to follow thread
structure. To find the dipole moment distribution that yields
minimal energy, we first perform minimization of the cohesive
energy using a constrained minimization algorithm.24,40 A randomly
oriented dipole moment is assigned to every particle of the helical
structure in the following way: dipole moment is defined in the
spherical coordinate system. Two important features stemming
from these energy minimization calculations are:

(i) Dipole moments are tangential to the cylinder’s surface.

Fig. 6 Surface packing fraction Z, see eqn (8) as a function of reduced
helix radius R/d for single (n2 = 1), double (n2 = 2), and quadruple (n2 = 4)
helices.

Fig. 7 The representative structures including dipole moment distributions
are displayed. For AB tubes with patch parameters (n1,n2) = (8,0) dipole
distributions which correspond to spanning unit cell vectors (a) a~1 (oblique to
cylinder’s axis), (b) a~2 (closer to cylinder’s axes), and (c) ground state dipole
distribution. For a single helix (n1,n2) = (9,1) dipole distributions which
correspond to (d) a~1 and (e) a~2 (closer to helix axes) spanning vectors,
and(f) ground state dipole distribution. For a double helix (n1,n2) = (8,2)
dipole distributions which correspond to (g) a~1, (h) a~2 (closer to helix axes)
spanning vectors, and (i) the ground state dipole distribution. In the case of
ZZ tubes (j) a~1 and (k) a~2 dipole distributions are shown. The ground state of
ZZ tubes follows a~2 dipole distribution (parallel to cylinder’s axis).
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(ii) The component of dipole moment in the z-axis direction
mz for a given structure is identical for all particles.8

Therefore we need just one angular parameter to characterize
the dipole moment orientation. We choose the dipole moment
angular parameter, a A [�1801,1801], relative to the z-axis, see
Fig. 1. Doing so we arrive at:

m x
i, j = �msin(a)sin(iG1 + jG2)

m y
i, j = msin(a)cos(iG1 + jG2)

m z
i, j = mcos(a), (13)

where the indices i and j have the same meaning as in eqn (12).
Consequently, the angular parameter a is most of the time a
unique variable, at prescribed helical structures, entering into
the energy minimization routine.

4 Cohesion energy and microstructure
4.1 Compression of a single helix

A simple way to deform a helix is to compress (or extend) it
along its axis, i.e., the z-direction, while ensuring the dipole
moments follow the thread (for details of implementation, see
Section 3.2). Compression of a helix results in a continuous
increase of its surface packing fraction Z. Fig. 8 shows the
evolution of cohesive energy uR with the surface packing fraction
Z for a single helix with reduced radius (R/d C 1.7, chosen in the
vicinity of nc = 6 point). Recalling geometrical considerations in
Section 2.1 the increase of the azimuthal angular shift G at
prescribed curvature results in a continuous decrease of Dz and
compression of the helix. The compression process begins with

a fully extended helix (i.e., Z - d/8R E 0.073) where the chain
stands up with Dz/d = 1, and the cohesive energy of infinite
chain u C �2.404.24 The compression ends when two successive
turns of the helix touch, i.e., the coordination number of particles
in the helix changes from nc = 2 to nc = 4.

We also address the minimal energy of the helix with respect
to the dipole moment distribution (i.e., not necessarily prescribed
by tangentially following the helix). From Fig. 8, we observe that
uR = uR(Z) is non-monotonic. We can identify two regimes:
� At small packing fractions up to Z t 0.4 (with no touching

turns), the compression of the helix requires energy input and
therefore cohesive energy increases. The reason for this is that
two distant consecutive turns of the helix experience weaker
attraction upon increasing Z.
� In the regime of high Z \ 0.4 where successive turns are

allowed to be close or even touching, the cohesive energy starts
to decrease as Z increases, i.e., the helix would compress on its
own without input of energy. This is a consequence of enhanced
attraction caused by the discreteness of the constitutive dipolar
beads, see ref. 41.

The overall polarization order parameter hmzi is also analysed
in Fig. 8. During most of the course of the helix compression,
see Fig. 8, a dipole moment orientation following the helix
corresponds to the ground state structure up to Z E 0.8, cf.
points C and D in Fig. 8 (for details of ground state calculations,
see Section 3.3). Only for very high packing fractions, i.e., Z 4 0.8,
the ground state dipole orientation starts to rapidly deviate from
the helix direction accompanied by a significant reduction in
cohesive energy (see points E and F in Fig. 8). The highest difference
in hmzi occurs for ZE 0.887, where nc = 4 helix with touching turns
is formed, and the energy difference uE

R � uF
R C 0.06.

4.2 From the square to triangular arrangement for a single
helix

Having successfully parameterized helices and introduced dipole
moments, it is natural to ask how cohesive energy depends on
structural changes and especially on curvature. With increasing
curvature the structure will change from the triangular to square
arrangement and vice versa through a continuous series of
rhombic configurations. We first study in detail systems with
dipole moments following the spanning vector that are most
oblique to helix axes, see Fig. 7d. For the sake of comparison
with tubes (AA/AB tubes), we also chose dipole moments that are
building vortices along the rings for them, cf. Fig. 7a. Motivation
for that choice stems from a previous study,24 where we have
shown that finite AB tubular systems are energetically favor-
able, see Fig. 7a (dipole moment orientation is perpendicular to
the tube’s axis).

The surface packing fraction Z (eqn (1)), the angular coordination
order parameter x (see eqn (3)), and the cohesive energy per particle
uR (eqn (11)) are plotted versus the reduced helix radius R/d in Fig. 9.

Fig. 8 Compression of a single helix on a cylindrical confinement with a
fixed radius (R/d C 1.7). Dependence of cohesive energy (upper left panel)
and the overall polarization order parameter, i.e., the axial component of
the dipole moment (in lower left panel), on the packing fraction is shown
for two characteristic dipole moment orientations: one that follows the
helix, i.e., the spanning vector a~1 and the ground state dipole moment
orientation obtained by energy minimization. Comparative microstructures
at different Z values (A–F) are depicted on the right panel. Configurations (A,
B, C and E) correspond to a dipole moment distribution following the helix
whereas configurations D and F correspond to ground state distributions.

8 We have found that under some circumstances the dipole moment orientations
alternate, i.e., antiferromagnetic-like coupling between the neighboring threads.
This actually occurs with any AA tube. Similar behavior is reported for some
moderately dense nc = 4-helical structures.
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Actually, the energy and structural properties change in an
oscillatory quasi-periodic manner and they are enveloped from
both sides with the properties of AA and AB tubes, see Fig. 9. In
Fig. 10 behavior of these observables is depicted within one
period (R/d A [2.09,2.26], arbitrary chosen). In one period, the
number of particles (n) in a constitutive ring of (AA/AB) tubes is
increased for one, i.e., from n-ring to n + 1-ring. Within this
period, the order parameter changes from x = 0, i.e., square
arrangement, to x = 1, i.e., triangular arrangement, via a continuous
rhombic transformation, see Fig. 10a. The radii of densely packed
helices are roughly in the middle between two corresponding
(AB/AA) tube radii, see Fig. 10a. This is a result of the radial
constraint and the excluded volume. Though in a single thread
helical structure we cannot close rings in the plane perpendicular to
the cylinder axis, one can nevertheless realize a full 3601 helix turn
with roughly n + 1/2 particles. We observe discontinuity and strong
asymmetry of the angular coordination order parameter x at the
mid-period (R(13,1)/d E 2.17), see Fig. 10a. This is due to a change in
the number of lateral threads n2, see Fig. 7e for illustration, at the
mid period going from n2 = 9 to n2 = 10, see Fig. 10a.

With decreasing curvature, the surface packing fraction increases
globally, see Fig. 9b. We observe oscillatory behavior as the system
continuously evolves from the square to triangular arrangement and
vice versa. The AA and AB tubes still roughly bound have the values
taken by the surface packing fraction. At the helix radius R/d 4 3.4,
see Fig. 9b, we are already within 3% of the asymptotic expected
values in the planar case. In contrast to the angular coordination
parameter x, the surface packing density Z is continuous every-
where, compare Fig. 10a and b. Moreover, at mid-period the
Z value is slightly (and systematically, see Fig. 9b) above the
interpolated stemming from AB tubes (see Fig. 10b). In Fig. 9b
and c, it can be clearly seen that the profiles of energy oscillations
uR and the surface packing fraction Z are anti-correlated. The
mid-period values uR coincide with interpolated stemming from
AB tube radii (confirmed by Fig. 9c and 10c).

4.3 Looking for the ground state

At this point, we would like to discuss mechanisms which govern
the minimal energy dipole moment orientation near the mid-
period transition point (more details about implementation are
provided in Section 3.3). There are three privileged directions in

Fig. 9 Dependence of (a) the angular coordination order parameter x, (b)
the packing density Z and (c) the cohesive energy uR on the helix radius
R/d, for a~1 dipole orientation. AA and AB tube points are clearly indicated,
they bracket the parameter values of helices, like a kind of envelope (solid
and dashed lines connecting the tube points are power law fits).

Fig. 10 Dependence of (a) the angular coordination order parameter x,
(b) the packing density Z and (c) the cohesive energy uR on the helix radius
R/d, for a segment in the vicinity of R(13,1)/d = 2.17 of Fig. 9. Tubes AA and
AB are represented by discrete points since they can be formed only with a
fixed number of particles in a ring, the fitted (power law) curves serve only
as a guide to the eye. The point which represents the dense helix with
(n1,n2) = (13,1) and R(13,1)/d = 2.17 is marked with a rectangle.
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a helix: two which follow helix spanning vectors (determined by
-
a1, -

a2) and the third one which is the direction of the helix axis.
These privileged directions come into play in two competing
mechanisms:
� The first mechanism is typically dictated by first neighbor

interactions which favor dipole moments following the thread
directions.
� The distant–neighbor interactions favor the distribution of

dipole moments parallel to the helix axis.
We can justify these two mechanisms as follows. It is well

known for a small finite system that rings are formed with dipole
moments building vortices, cf. ref. 24. When a helix turn is projected
along the z-axis, the resulting figure is highly reminiscent of the
vortex discussed above. The head to tail configuration is favored
at long distances, explaining the second advocated mechanism.

The abrupt change in polarization (or magnetization) in the
direction of the axis hmzi, seen in Fig. 11b, is correlated with
the discontinuous change in the angular coordination order
parameter x in the vicinity of transition, see Fig. 10a. At the
mid-period point R(13,1)/d = 2.17 magnetization in the direction
of the axis hmzi is close to one, but not exactly one, see Fig. 11.

For the sake of comparison with tubes (AA/AB tubes), we
choose dipole moments that are parallel with the helix axis, see
Fig. 7c. The fact that the system is able to relax its dipole
moment orientation to the ground state results in more dependence
of energy on confinement curvature around the mid-point. The
degree of asymmetry of uR is stronger around the transition point,
see Fig. 11b, than in the excited state in Fig. 10c. The ground state
calculations confirm the high stability of AB tubes (see Fig. 10c).

4.4 Cohesion energy for multiple helices at high surface
packing fraction

In this part, we consider the high surface packing fraction regime
with nc = 6. Some representative structures including dipole
moment streamlines are displayed in Fig. 7. The streamlines
following spanning unit cell vectors -

a1 (oblique to the helix axis)
and -

a2 (more aligned to the helix axis) are also shown.** Dipole
moment distributions in the ground states are also indicated for
comparison in Fig. 7. In analogy with the study of a single helix
case (see Section 4.2), we start analysis with a dipole moment
distribution prescribed by tangentiality with the thread backbone.
In Fig. 12, cohesive energy for the -

a1-generated dipole moment
distribution is shown for different helical structures.

The cohesive energy in a planar triangular lattice, uNC�2.759,
represents the energy value which will be reached asymptotically
(R/d - N) for all considered structures. As already found for
AB tubes in ref. 24, cohesive energy exhibits the scaling law of
the form uR � uN B R�2, see Fig. 12. The cohesive energies of
all three helices and AB tubes are weakly dependent on the
number of threads for -

a1-generated dipole moment distribution.

Fig. 11 Dependence of (a) cohesive energy uR and (b) the overall polari-
zation order parameter hmzi on the helix radius R/d (in the ground state),
for a chosen segment of Fig. 9. Tubes AA and AB are represented by
discrete points since they can be formed only with a fixed number of
particles in a ring, the fitted (power law) curves serve only as a guide to the
eye. The point which represents the dense helix with (n1,n2) = (13,1) and
R(13,1)/d = 2.17, is marked with a rectangle.

Fig. 12 Dependence of cohesive energy uR on the helix radius R/d, for
single, double, and quadruple helices at high surface packing fraction, and
AB tubes, with a~1 dipole orientation.

** It is possible to polarize the helix by a homogeneous external field parallel to its
axis. For symmetry reasons, a reversal of the magnetic field should result in the
reversal of the dipole orientation. In the case of magnetic dipoles, it should also be
possible to polarize the system to follow a~1 and a~2 spanning vectors by combination
of a curling magnetic field of electric current flowing through the confining cylinder
and the homogeneous external magnetic field parallel to its axis.
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This is in accordance with surface packing fraction behavior
reported in Fig. 6. A comparison with the azimuthal angular shift
parameter G1, see Fig. 5, and the corresponding cohesive energy
(for -

a1-generated dipole moment distribution) clearly reveals a
correlation between these two quantities.

In Fig. 13, cohesive energy for -
a2-generated dipole moment

distribution is compared with ground state energy for a different
number of threads. There exists an analogous correlation (as
discussed for -

a2-dipole distribution) between the azimuthal shift
G2 and the resulting cohesive energy, compare Fig. 5 and 13.

The smallest compatible radius R for multi thread helices
(n2 = 2, 4) is obtained for ZZ tubes (n1 = n2). In Fig. 13, the
corresponding radii read R(2,2)/d = 0.61 and R(4,4)/d = 1.13. In
this case the -

a2 and ground state dipole moment orientations
are the same, see Fig. 7k. Strikingly, ZZ tube ground states
converge very fast to the expected planar value uN at the
smallest accessible radii, i.e., the largest curvature, within less
than 1% of the planar case, see Fig. 13 for R(2,2)/d = 0.61. A
structural similarity of ZZ tubes, with typical experimental
images of microtubules is striking, see Fig. 7k. Structurally,
ZZ tubes can be created by closing the rectangular strip on a
cylinder and decomposition into chains which are analogous to
biological filaments which the microtubules are made of.

5 Conclusions

We have presented a study about cohesive energy of helical
structures composed of hard spheres with permanent dipole
moments. Helices were created by replication of a particle or
patch (of particles) on a confining cylindrical surface. Even for
the most simple situation, namely the single thread helix, a
non-trivial behavior is found when monitoring the cohesive
energy as a function of surface packing (i.e., axial compression).
In particular, we observe a non-monotonic dependence of the

cohesive energy on the packing fraction (or equivalently the
amount of compression) as a result of a delicate interplay of
dipole–dipole interactions and excluded volume effects. The
lowest cohesive energy is achieved at the highest packing fraction
with touching turns. In parallel, the magnetization (or polarization)
order parameter, i.e., the mean dipole moment per particle in hmzi,
also exhibits a striking non-monotonic behavior as a function of
the extent of compression. In the regime of very high surface
packing fraction with local triangular arrangement compatible
with certain cylinder radius (R) vs. particle diameter (d) ratio
(R/d), a pronounced cohesive energy is found. Concomitantly,
the magnetization order parameter indicates a sharp change in
the dipole moment orientation, which tends to be parallel to
the helix axis.

Finally, we compare cohesive energies of dense multiple
(i.e., double or quadruple) helices, as well as, AB and ZZ-tubes
made up of stacking rings that can also be seen as special
multiple helices. A remarkable finding is the enhanced cohesive
energy for the ZZ-tube structure. The latter already emerges at
strong substrate curvature with cohesive energies very close to that
obtained at vanishing curvatures. In these ZZ-tube structures, an
alignment of the helix threads with its axis is a microstructural
signature for this low cohesive energy. As a final note, we would
like to emphasize that our model mimics nicely the geometry and
microstructure of microtubules. It could also provide a possible
clue about the self-assembly mechanisms and cohesion within
microtubular structures.
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Soft Matter, 2014, 10, 2836–2847.

32 D. Tomanek, S. G. Kim, P. Jund, P. Borrmann, H. Stamerjohanns
and E. R. Hilf, Z. Phys. D: At., Mol. Clusters, 1997, 40, 539–541.

33 T. A. Prokopieva, V. A. Danilov, S. S. Kantorovich and C. Holm,
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2009, 80, 031404.

34 G. Pál, F. Kun, I. Varga, D. Sohler and G. Sun, Phys. Rev. E:
Stat., Nonlinear, Soft Matter Phys., 2011, 83, 061504.

35 V. Malik, A. V. Petukhov, L. He, Y. Yin and M. Schmidt,
Langmuir, 2012, 28, 14777–14783.

36 N. Vandewalle and S. Dorbolo, New J. Phys., 2014, 16, 013050.
37 D. A. Wood, C. D. Santangelo and A. D. Dinsmore, Soft Matter,

2013, 9, 10016–10024.
38 W. T. B. Kelvin, The molecular tactics of a crystal, Clarendon

Press, 1894.
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