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Abstract. We study high-density traffic of information packets on sparse modular networks with scale-free
subgraphs. With different statistical measures we distinguish between the free flow and congested regime
and point out the role of modules in the jamming transition. We further consider correlations between traffic
signals collected at each node in the network. The correlation matrix between pairs of signals reflects the
network modularity in the eigenvalue spectrum and the structure of eigenvectors. The internal structure
of the modules has an important role in the diffusion dynamics, leading to enhanced correlations between
the modular hubs, which can not be filtered out by standard methods. Implications for the analysis of real
networks with unknown modular structure are discussed.

PACS. 89.75.Hc Networks and genealogical trees — 05.40.Ca Noise — 02.70.-c Computational techniques;

simulations

1 Introduction

In recent years network research has been intensified
alming at quantitative representation and study of the
interactions in complex dynamical systems [1]. These net-
works often exhibit hidden structures and inhomogene-
ity at mesoscopic scales. Subgraphs of different sizes and
topological consistency often appear in real networks, such
as modules or motifs in gene networks [2], community
structure in social networks [3], topological clusters or dy-
namical aggregation on the Internet [4], and others. It
has been recognized that in the evolving networks func-
tional units have emerged, and that in different functional
networks they may be represented by topologically char-
acteristic subgraphs, e.g., communities, modules, paths,
trees, etc. Subgraphs on modular networks can be recog-
nized topologically by better or tighter connected group
of nodes [3]. Sparseness of real networks is another feature
which is tightly connected with the network dynamic sta-
bility: large connectivity may induce a chaotic behavior
(positive Lyapunov exponent) in networks even for sim-
ple dynamics of its unites [5]. This might be a part of
the reason why most of the networks in nature (except
perhaps brain) are sparsely connected [1,6-8]. For these
reasons it is of great importance to understand the inter-
relationships between dynamics and structure in sparse
modular networks [9]. This question is also in the focus of
the present work. We study transport processes on net-
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works with sparsely connected modules by means of the
numerical simulations of dense traffic, and spectral analy-
sis of the Laplacian matrix and matrices generated by the
correlations between the traffic time series.

Spectral analysis. Important information about complex
network structure and dynamical processes is contained
in the eigenvalue spectra and corresponding eigenvec-
tors of the adjacency matrix and of other, e.g., Lapla-
clan matrices related to its structure [1,9-11]. Recent
studies of the synchronization of phase-coupled oscilla-
tors [1,3,12,13] in modular networks have revealed strict
relationship between the synchronization and smallest
nonzero eigenvalues of the Laplacian matrix [14]. Fur-
thermore, positive/negative components of the corre-
sponding eigenvectors appear to be well localized on
the modules [1,15]. Other types of diffusive dynamics,
like spreading of disease [16] and traffic or navigated
walks [17-20] are often studied on different networks.
The relationship between the autocorrelator of the ran-
dom walk on networks and the spectral properties of the
respective Laplacian matrix has been derived theoreti-
cally [10] for the tree graphs. Numerical results for the
related return-times distribution of random-walk on trees
and cyclic modular graph are obtained in [9]. Furthermore,
in [9] the Laplacian spectra have been studied in detail for
a wide class of sparse and modular networks.

Time series correlations. In studies of complex networks
much effort has been invested in understanding how the
structure of a network is manifested in network function.
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Beside its theoretical meaning, this question has a great
practical importance. For instance, in bio-engineering [21]
and neuro-sciences [22], one faces the problem to design a
network with given function, or to reconstruct a network
from its measured dynamical output. Often the empirical
data are available as time series collected at different nodes
and within specified time windows, for instance in the
market dynamics [23] or gene expressions [24], and other.
Different methods have been employed in different sys-
tems, for instance, the correlation matrix reconstruction
of neural or antigene interaction network [25,26], the gene
network reconstruction with algorithms based on SVD and
assumed gene dynamics model [21,27], etc. The goal of the
reversed engineering is to unravel interactions between the
nodes which are the cause of the observed dynamical out-
put (time series). In addition to often limited information,
this is a hard problem to which both the network struc-
tural complexity and nonlinearity of the dynamics con-
tribute. The complexity of the problem may increase even
more in the presence of modules and other mesoscopic
inhomogeneities representing functional groups of nodes.
In principle, the inherent consistency of these approaches
may rely on certain robustness of the inter-dependences
between the network structural elements and the proper-
ties of the time series, occurring for a given type of the
dynamics. The time series from the diffusion processes,
e.g. synchronization in neural networks, are considerably
different from the auto-catalytic regulation in gene net-
works. On the other hand, the diversity in the activity of
nodes in the case of random-walk dynamics on structured
networks is directly related to the node connectivity. One
of the goals in this paper is to examine the efficiency and
limitations of the network reconstruction form the traffic
time series on modular network. For this purpose we run
known dynamics (traffic of information packets with queu-
ing [17]) on known network structure and record the traffic
time series at all nodes. Then we construct the correlation
matrix of these time series and use the standard filtering
methods to uncover the structure behind the correlations.
The degree of similarity between the filtered correlation
matrix and the original adjacency matrix, as well as be-
tween their eigenvalue spectra is quantified. The paper
is organize as follows: the modular network structures are
introduced and results of simulations of traffic of informa-
tion packets on these networks are presented in Section 2.
Traffic properties near the jamming are studied in detail
by statistical means. In Section 3 we present the construc-
tion and filtering of the correlation matrix from the traffic
time series and a detailed spectral analysis of the Lapla-
cian matrices of the original networks and the correlation
networks. A short summary and the discussion of the re-
sults are presented Section 4.

2 Traffic jamming on modular networks
2.1 Network structures

For simulations of the information traffic we use two types
of modular networks shown in Figure 1, in particular: (a)
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Fig. 1. (Color online) Top: Original clustered modular net-
work (CMNet) with large interconnected scale-free modules;
Bottom: Scale-free tree structure with attached scale-free mod-
ules. Colors indicate membership of nodes to topological sub-
graphs.

the network composed of few large modules with random
connections between them, and (b) network consisting of
a large number of smaller modules linked through a scale-
free tree graph. These networks are grown using the algo-
rithms which are introduced in [9]. The structural proper-
ties of these networks are controlled by three parameters:
the average connectivity M, the probability of new module
Py, and the attractivity of node v which controls rewiring
process during the module growth. By the numerical im-
plementation and choosing the values of these parameters
the internal structure of groups (modules) as well as the
structure of the network connecting different modules can
be varied in a desired manner (see Ref. [9] for details).
Specifically, the networks shown in Figure 1 consist of
N = 1000 nodes and the values of the control parameters
are as follows: M = 2, 10% of rewired links (o = 0.9) and
Py = 0.006 for Figure 1 (top), referred as CMNet. In dif-
ferent structure, shown in Figure 1 (bottom), we combine
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scale free tree (M =1, @ = 1) with a number of smaller
modules, where each module is grown taking the same
parameters M = 2, a = 0.9. The modules are attached
to ending nodes of the scale free tree Figure 1 (bottom).
Note that the internal structure of these modules is sta-
tistically the same as in case of CMNet, however their
size varies between 20 and 50 nodes and their number is
chosen in such a way that approximately half of total num-
ber of nodes are members of the modules, while the other
half of nodes belong to the underlying tree structure. It
should be stressed that, in contrast to the CMNet in Fig-
ure 1 (top), which can be fully partitioned into modules
(communities), the modular network in Figure 1 (bottom)
consists of modules and the underlying tree, which is an-
other structured network. In the following we will show
how these two components of the modular networks affect
the traffic and study the patterns of correlations in the
traffic signals.

2.2 Traffic of information packets

In this Section we simulate dense traffic of information
packets on the network structures presented above. We use
our traffic model introduced earlier (see review article [17]
for details). We describe in short the main features of the
traffic model and the relevant parameters (details of the
numerical implementation are given in [28]):

— Clreation and assignment. At each time step each node
creates a packet with a given rate R and assigns it a
randomly selected recipient node (delivery address).

— Navigation. Each node processes a packet from top
of its queue (LIFO-queue) towards one of its neigh-
bours. The neighbour node is selected according to
nnn-navigation rule [17,29], in which the node searches
for the packet’s recipient address in its neighbourhood
within two-layer depth. If the recipient node is not
found in the searched area, the packet is sent to a ran-
dom neighbour, who repeats the search in its neigh-
bourhood, and so on.

— Queuing. When more than one packet is found at the
same node, the packets make a queue in the buffer
at that node, waiting to be processed. We use a fixed
maximum buffer size H = 1000 packets for each node.
If the buffer of a selected node is full, i.e., as at the
jamming threshold, the packet can not be transfered
to that node and waits for a further possibility to be
forwarded. One packet per time step is processed.

— Delivery. When the packet arrives to its destination
(recipient node) it is delivered and removed from the
network.

Simulations reveal that the statistical properties of traf-
fic depend on the parameters, i.e., posting rate R, maxi-
mum queue length H, the queuing discipline (LIFO), and
the search depth (d = 2 in the case of nnn-search), as
well as on the structure of the underlying network. Note
that the transport of packets with the nnn-search differs
from the random diffusion (random-walk dynamics) in the

633

sense that, when the recipient node is found within next-
neighbourhood of a processing node, the packet goes di-
rectly to the recipient node. Otherwise, the packet per-
forms a random walk. In this way, the traffic on networks
with structure which is more suitable for the nnn-search
is much more efficient. In particular, it was shown in ref-
erences [30] that the clustered scale-free network of the
structure of Webgraph (i.e., with two hub nodes and a
large number of triangles) is most suitable for the rout-
ing with the next-neighbourhood search. The statistical
features of the traffic on the Webgraph structure (with
parameter o = 0.25) compared to the scale-free tree (see
details in [29]) show, among other measures, shorter travel
and waiting times of packets, and up to 40 times larger
packet density before the jamming point is reached. These
features are important for understanding the traffic on
our modular networks shown in Figure 1, where, as ex-
plained above, the internal structure of each module in
CMNet Figure 1 (top) has the Webgraph structure (with
a = 0.9) and the supporting network in Figure 1 (bottom)
is a scale-free tree.

In Figure 2a bottom panel, we show several results
of the traffic on the modular network CMNet. Measured
are local and global statistical properties for fixed post-
ing rate R = 0.8. The probability distributions of travel
times of packets P(Tr) between creation and delivery
and the distribution of waiting times of packets at differ-
ent nodes along the path, P(t,,) are broad distributions,
which are characteristic for the networks structure and
given packet density below the jamming point. Specifi-
cally, the waiting time distribution shows the power-law
decay P(t,) ~ t,,™, with slope 7, ~ 2.1, indicating that
that at this posting rate R the network operates close to
the threshold of jamming. Note that divergence of the av-
erage waiting time, which is compatible with 7, < 2, is
one of the striking features of traffic jamming. The distri-
bution of travel times P(Tr) appears to be affected with
the network modularity. In contrast to the Levy-type dis-
tribution on the Webgraph (see [29]), the modules of the
same structure interconnected as in Figure 1 (top), lead
to a distribution with weak power-law at small times. In
addition, the tail of the distribution can be fitted with a
g-exponential (see recent work [31] and references therein)
form, leading to

P(X)= AX"7 <1+(1q)))§0) o (1)

with 7 ~ 0.33 and ¢ = 1.29. A similar expression with
two slopes (1 ~ 1 and ¢ ~ 1.21) can fit the distribu-
tion P(At) of time intervals between successive events at
a node (fit is not shown). Note that in the case of dense
traffic that we simulate here, the distribution P(At) refers
to the return of activity (not a packet) to the same node,
and thus it is different from more familiar autocorrelator
and the return time of random walk to the origin [9]. The
appearance of two different slopes in the distribution of
the return of activity to the node P(At) in Figure 2a,
suggests uneven role of different nodes in the traffic pro-
cess. This is further studied in terms of number of packets
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(Color online) (a) Distributions of the travel times (Ptt) and waiting times (Ptw) of packets, (bottom panel), and

the distribution of time intervals between successive activity of a node averaged over the network, (top panel). (b) Scatter plot
dispersion o; vs. average (h;) of the time series of all nodes, (bottom), and the ranking distribution of nodes according to the
average number of packets (h;) (¢) and the distribution of node occupation within time window Twrn = 10% steps (x). All
data are for the traffic on the CMNet (Fig. 1 top) for posting rate R = 0.8.

{hi(tr)} processed by each node within a given time win-
dow Twiny = 1000 time steps, shown in Figure 2b. The
signal {h;(tx)}, where ¢ stands for the index of succes-
sive time windows, is recorded at each node of the network
1 =1,2,...N. For the quantitative analysis of these time
series we define the average number of packets processed
by node i:

)= "3 hate), (2)

n
t

and the standard deviation of the time signal at node i,

i o D () — hafta)?

(3)

where n; is the number of time windows considered. The
dispersion of each of these time series, 0;, i = 1,2... N,
is plotted in Figure 2b bottom panel, against its average
value (h;) for each node in the network. In this scatter
plot each point stands for one node of the network. The
plot shows the scaling behavior

o; = const- (h;)* (4)
and p ~ 0.64 £ 0.01. Such scaling behavior with p €
[1/2,1] is characteristic of many real dynamical systems
(see recent review [32]).

The origin of such scaling in traffic models on complex
networks has been attributed [33] to node groupings ac-
cording to their role in the traffic, which, in turn, is related
to their topological or dynamical centrality. At the tip of
the plot in Figure 2b bottom, one can distinguish a group

of 10 most active nodes. The same group is also separated
in the ranking plot (flat part at the beginning of the curve
in the upper panel) from the rest of nodes. The ranking
plot exhibits a power-law decay (Zipf’s law) according to

(5)

with v ~ 1, where rank r; of eachnode i = 1,2,... N is de-
termined according to the average number of packets (h;)
processed by that node. Furthermore, uneven role of nodes
is demonstrated in the probability distribution of the num-
ber of packets processed within the time window (h;) (or
the “occupation probability” of a node p; = (h;)/Twin)-
The distribution is also shown in Figure 2b top panel.
The central peak appears resembling the “ergodic” sys-
tem behavior [34], however, at the side of large occupancy
additional peaks are present representing the activity of
modular hubs and other highly active nodes within the
modules. Note that for this traffic density (posting rate
R) some nodes may have maximum occupancy p = 1,
which is another signature of the pre-jamming behavior
in the network.

The activity of different nodes and their role in the
traffic process on the modular network CMNet are shown
comparatively in Figure 3a. The most active nodes (red)
are modular hubs. Gradually lesser activity is visible at
nodes within each module, according to their reduced cen-
trality (scale-freeness of the internal module structure).
For comparison, the 3-dimensional plot of the time series
of all nodes in the scale-free tree with the attached mod-
ules is given in Figure 3b. Jamming on the tree graph
(indicated in red color) is visible at the place of modules.
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Fig. 3. (Color online) Three-dimensional plot of the time series of the number of packets processed by a node within a time
window Twrn = 10% steps, {hi(tx)}, for all nodes in the network i = 1,2,...1000 and for 132 time windows for clustered
modular network CMNet (a) and for tree-with-attached modules (b). Color map: dark-blue corresponds to low, while dark-red

to highest recorded value.

This indicates that packets often get confined within a
module due to ineffective search mechanism on the under-
lying tree graph.

3 Correlations and spectra

In this section we analyze the correlations between the
traffic time series {h;(tx)},7 = 1,2... N, introduced above
and the spectrum of their correlation matrix.

3.1 Correlation of traffic time series

The elements of the correlation matrix C;; are obtained by
calculating the Pearson’s correlation coefficient between
time signals h; () for each pair i,j of nodes in the net-
work, given by:

Ciy 2or, [ha(te) = (halhy (te) = (hg)] (©)

0i0;

Here h;(ty) is the activity of node i in time-window t,
(h;) is the average activity during the whole time period,
defined in equation (2), and o; is the standard deviation
of the time signal at node ¢, defined above in equation (3).

The Pearson correlation coefficient takes values from
—1 (strong anti-correlations) to +1 (strong correlations
between nodes). Using equation (6) we obtain the cor-
relations between nodes in modular networks from the
time signals obtained in simulations of traffic, presented
in Figure 3. For this kind of time signals, the distribution

of the correlation coefficients P(C;;) strongly depends on
the overall traffic density (or posting rate R), and for the
posting rate approaching the jamming threshold used in
this simulations, the peak of the distribution is moved
towards right edge. Specifically, for the signals shown in
Figure 3, the values of correlations are centered around
¢ = 0.2 (CMNet) and to ¢ = 0.35 (tree with attached
modules), with a negligible density of the negative cor-
relations. Nodes connected in the original network have
high positive correlation coefficient which is a result of
their similar activities during the measurement time. The
3-dimensional plot of the correlation matrix for the traf-
fic signals on the modular network CMNet is shown in
Figure 4a. Similarly, the correlation matrix of the signals
recorded on the tree network with attached modules is
shown in Figure 5 (top). It is clear that in both networks,
the most active nodes in each module (module hubs) have
a high correlation coefficient with each other and with the
rest of the nodes (cf. Figs. 4 and 5), although topological
connections between them might not be present.

In order to extract the information about network
structure from the correlation matrix, we first observe that
only correlations above certain threshold C,, i.e., C;; > C,
might be relevant. In this way one attempts to separate
the values of potentially relevant correlations from those
which arise accidentally (and are normally distributed
around the central peak). Although many weak correla-
tions are filtered out in this way, the remaining matrix
still contains many spurious links, compared with the orig-
inal adjacency matrix of the CMNet. This is demonstrated
graphically in Figure 4a, where the correlation matrix of
the traffic signals is shown with the threshold C, = 0.4.
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Fig. 4. (Color online) Correlation matrix of the traffic signals on (a) CMNet and (b) on same network with randomized links
inside the modules. (c¢) and (d): corresponding filtered correlation matrices. In all cases shown are links above the threshold

value Cy = 0.4.

Note that with this threshold value the remaining cor-
relation matrix contains a single connected component.
Higher threshold values may result in fragmentation.

As the Figure 4a shows, the correlation matrix contains
already information about modules (diagonal blocks) and
their size. The picture is much less clear in the case of small
modules on the scale-free tree (cf. Fig. 5 top). Generally,
the hub of the scale-free tree has strong correlations with
other nodes, because of the large signal (large number of
packets processed) on the hub: first row and first column
in the matrix. Similarly, the correlations are enhanced be-
tween the hubs of the large modules in Figure 4a, since the
hubs inside the modules carry the largest traffic. For small
modules on the tree, the walker gets trapped inside the
module for longer time, since the module is linked to the
rest of the network via a single node. Hence, enhanced cor-
relations between the modules remain above the threshold
and are seen as the off-diagonal blocks in Figures 4 and 5.
Generally, more sophisticated methods are necessary in
order to reduce the number of such spurious correlations,

which are not related with the occurrence of a direct link
between the nodes in the adjacency matrix [25,35]. Here
we apply one of the filtering methods which utilizes the
affinity transformation [25,26].

The idea is to multiply each element Cj; of the cor-
relation matrix with a factor M;; which is constructed
from the elements of rows ¢ and j in the correlation
matrix in the following way: excluding the diagonal el-
ements Cj;; and Cj; the remaining matrix elements of
the correlation matrix are first reordered to form the
n = (N — 1)-dimensional vectors {C;;,Ci1, ..., Cin} and
{C}i,Cj1,...,Cjy }. Then M;; is computed as the Pearson’s
coefficient of the components of these vectors. The matrix
element C’gf of the filtered correlation matrix is given by
the product

Cl = M;;Cy;. (7)
In this way, the correlation between the nodes i and
7 is enhanced if the corresponding meta-correlation ele-
ment M;; is large (i.e., the nodes ¢ and j see the rest
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of the network in a similar way), and reduced otherwise.
If two nodes are linked on the network, it is expected
that their correlations with other nodes are similar, re-
sulting in value of their meta-correlation coeflicient close
to one, otherwise coefficient M is closer to zero. Hence,
the multiplication of the elements of the correlation ma-
trix with meta-correlations should increase the difference
between true and random correlations. For the filtering
procedure we use the whole correlation matrix without
any threshold. Note also that, in contrast to most gen-
eral case where a shift of the interval [—1,1] to [0,1] is
performed before the filtering, our correlation matrix of
traffic signals is naturally shifted to the positive side. The
filtered correlation matrix is also shown in Figure 4c, only
the links stronger than the threshold are shown. In com-
parison with the unfiltered correlation matrix, the number
of matrix elements is considerably reduced relative to the
same threshold value. The effects are much more promi-
nent in the case of the tree with small modules, shown in
Figure 5 (bottom).

We further notice that the internal structure of the
(large) modules play a role in the dynamics and the corre-
lation patterns. The occurrence of hubs, better connected
nodes which carry most of the traffic inside the modules,
leads to strong correlations of the traffic signals with other
nodes within the module and between different modules.
Some of these correlations can not be filtered out, as seen
in Figure 4c. In order to support this conclusion, we made
random rewiring of the links inside each module by keep-
ing the total number of links and links between the mod-
ules unchanged. Then we run the traffic on the randomized
network and construct the correlation matrix of the traf-
fic signals. The results are shown in Figure 4b and d: the
correlation matrix of the randomized network and the cor-
responding filtered correlation matrix (lower panel), sug-
gesting that the filtering procedure is much more effective
in the case of randomized structure of the modules.

By applying the threshold in the filtered correlation
matrix one can visualize the graph structure (shown in
Fig. 6, top) for both original and randomized version of
the modules. Compared to the original adjacency matrix,
these structures contain many spurious links, although the
number of such links is considerably smaller in the ran-
domized version. It is interesting to note that the associ-
ation of the nodes with given modules is almost entirely
preserved as in the original network. In Figure 6 the links
represent the filtered correlation matrices, but each node
carry the color which indicates its membership to a mod-
ule in the original network CMNet. Again, the random-
ized connection inside the modules lead to the correlation
network with clear modular structure. Only few nodes ap-
pear to be attributed incorrectly compared to their origi-
nal modules.

3.2 Spectral analysis
Further details of the interdependences between the diffu-

sion on networks and their structure are obtained through
the spectral analysis of the Laplacian operator. The
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Fig. 5. (Color online) Correlation matrix (top) and filtered
correlation matrix (bottom) obtained from the traffic time se-
ries on tree with attached modules. Shown are the links above
the threshold value Cy = 0.4.

detailed spectral analysis of the normalized Laplacian re-
lated to the modular networks has been reported in refer-
ence [9]. The spectral density and the structure of the cor-
responding eigenvectors show specific features which are
related to the modularity and other properties (clustering,
average connectivity, etc.) of the networks.

Here we perform spectral analysis of the normalized
Laplacian related to the correlation matrices C and CM
for both types of the modular network structures discussed
above. In order to exclude self-edges, all elements on the
diagonal are set to zero value. The normalized Laplacian
related to random-walk type dynamics is given by [9,10]

_ Ay
Vi’
where A;; are the elements of adjacency matrix of the

graph, and ¢; and ¢; are the degrees of nodes i and j.
The Laplacian (8) has the eigenvalue spectrum limited

Lij = b;; (8)
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(Color online) Weighted networks obtained from filtered correlation matrices for traffic on CMNet (a) and on the

network with randomized module structure (b). Shown are links above the threshold Co = 0.4. Colors indicate the original
membership of nodes to different modules of CMNet. Ranking of eigenvalues of the Laplacian matrix for networks obtained
from correlation matrix and filtered correlation matrix compared to the ones obtained from the original (¢) and randomized

network (d).

within the range [0,2] and an orthogonal set of eigen-
vectors, which makes it suitable for numerical study and
comparisons of different structures. For the networks ex-
tracted from the correlation matrix C and filtered correla-
tion matrix CM the Laplacian is obtained by constructing
the binary graph A in equation (8) with the elements of
the matrix C or CM, where C;; > Cj are set to unity,
and zero otherwise. As we show in our previous work [9],
the spectral properties of the Laplacian (8) depend on the
network topology, and can be used for the identification
of its mesoscopic structure.

The spectrum of the Laplacian related to the origi-
nal CMNet has six lowest nonzero eigenvalues, Figure 6c¢,
which are separated from the rest of the spectrum, and
the largest eigenvalue is A4 < 2. The number of the
small eigenvalues (A > 0) are correlated with the num-
ber of well separated subgraphs in the network, while the
number of eigenvalues A\ = 0 corresponds to the num-
ber of disconnected components [9]. The spectrum of the

networks obtained from C, also shown in Figure 6¢, has
15 zero eigenvalues or disconnected components for the
applied threshold Cy. The maximal value AY¢ = 2 also
indicate that a subgraph with tree-like structure (or chain
of nodes) [9,36] occurs, in contrast to the original net-
work CMNet. The number of single nodes or disjointed
subgraphs containing a few nodes in the network increase
after filtering, see Figure 6. Furthermore, meta-correlation
network has continuous spectrum up to zero, although the
network exhibits modular structure. The absence of the
gap between the lowest eigenvalues and the rest of the
spectrum, which is characteristic for modular networks, is
due to many spurious links between hubs which increase
connectivity between modules, as also seen in Figure 4a.
The high density of links, and thus higher average con-
nectivity in correlation networks, affects the spectrum in
the middle part around A\* = 1, shown in Figure 6c. In
the case of the network with randomized links in the mod-
ules, shown in Figure 6b, the situation is more clear: the
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spectra with the filtered correlation matrix and the real
adjacency matrix coincide at both ends, which is com-
patible with the precise structure of the modules in the
top panel of the same figure. In the intermediate part,
however, the deviation between the filtered and real ad-
jacency matrix are large, suggesting that this part of the
spectrum can not be effectively used for the identification
of the true network structure. In the case of the scale-free
tree with attached small modules the analysis of the spec-
tra of the filtered correlation matrix is entirely ineffective
(not shown), suggesting that other methods are necessary
for the identification of their modular structure from the
dynamical time series.

4 Conclusion

We have simulated high density traffic of information
packets with local search and queuing at nodes [17] on two
types of networks with higher structures-modules of differ-
ent sizes and scale-free internal structure. One of the goals
was to emphasize the role of modular structure against
the structure of the underlying network connecting these
modules. Our results suggest, in agreement with some pre-
vious findings [37], that the network composed of several
modules with clustered scale-free structure can bear much
larger traffic density before jamming occurs, compared to
the network of the same size but with a single module of
the same structure. However, the traffic efficiency, mea-
sured with the statistical parameters and the scaling ex-
ponents, is reduced and strongly dependent on the way
the modules are interconnected. Particularly, the slope of
the travel time distribution is reflecting the structure of
the connective network. Whereas, the traffic jamming first
occurs in the modules due to the trapping of the packets
within a module away from their destinations. Another
aspect of this work concerns the reversed problem: re-
covering the network structure from the correlations be-
tween the traffic time series. In our approach we gener-
ate the network-wide time series (traffic signals at each
node) on pre-defined network structures, and have demon-
strated how some standard filtering procedures works in
the presence of modules. Particularly, the internal struc-
ture of the modules (presence of hubs and hierarchy be-
tween the nodes) induces spurious correlations which are
elusive for the filtering methods. Our results indicated
that additional input about how the modules might be
structured is necessary in order to increase the validity of
the filtering methods. Two cases should be differentiated:
one, when the network is fully partitioned into subgraphs
(modules) of similar structure, like our CMNet, and the
other, when the modules are immersed into connecting
network which has a nontrivial structure by itself. Our
findings are corroborated with the analysis of the eigen-
value spectra of Laplacian for both the original and the
correlation (filtered) matrices. Specifically, we have con-
sidered the spectra of the normalized Laplacian of these
matrices, which has the bounded spectrum in the range
[0,2] and it is suitable for the comparison: When the fil-
tering is improved, the spectra of the filtered correlation
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matrix converge towards the spectra of the real connec-
tivity matrix. The convergence first occurs in the edges of
the spectrum, and the eigenvectors related with the low-
est nonzero eigenvalues localize on the modules, although
the number of links between these modules can still be
unrealistically large. We have shown that the efficiency
of the procedure is strongly dependent on internal homo-
geneity of these modules. More homogeneous modules can
be detected with higher accuracy. These results may have
implications for the real complex systems, such as gene ex-
pressions [21,24,26], or stock market data [38], where the
time series are used to reconstruct the (unknown) under-
lying network structure. Our message is that, in contrast
to local node connectivity, the mesoscopic structure (func-
tional modules) can be identified with better accuracy.
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