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Abstract: Collective emotional behavior of users is frequently observed on various Web

portals; however, its complexity and the role of emotions in the acting mechanisms

are still not thoroughly understood. In this work, using the empirical data and

agent-based modeling, a parallel analysis is performed of two archetypal systems—Blogs

and Internet-Relayed-Chats—both of which maintain self-organized dynamics but not the

same communication rules and time scales. The emphasis is on quantifying the collective

emotions by means of fractal analysis of the underlying processes as well as topology of

social networks, which arise and co-evolve in these stochastic processes. The results reveal

that two distinct mechanisms, which are based on different use of emotions (an emotion

is characterized by two components, arousal and valence), are intrinsically associated with

two classes of emergent social graphs. Their hallmarks are the evolution of communities

in accordance with the excess of the negative emotions on popular Blogs, on one side, and

smooth spreading of the Bot’s emotional impact over the entire hierarchical network of chats,

on the other. Another emphasis of this work is on the understanding of nonextensivity of the

emotion dynamics; it was found that, in its own way, each mechanism leads to a reduced

phase space of the emotion components when the collective dynamics takes place. That a

non-additive entropy describes emotion dynamics, is further confirmed by computing the
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q-generalized Kolmogorov-Sinai entropy rate in the empirical data of chats as well as in the

simulations of interacting emotional agents and Bots.

Keywords: online social dynamics; complex networks; emotional Bots; detrended time

series; Kolmogorov-Sinai entropy rate; nonextensivity; agent-based modeling

1. Introduction

In statistical mechanics, the principle of maximum entropy is originally introduced as a fundamental

concept that relates the equilibrium state of a thermodynamical system with the number of its microstates.

Over the years, the concept has been standardly accepted in the field of information theory. In recent

research, the entropy maximization is often practiced in other areas of science and technology [1].

For instance, in the case of model inference from the stochastic data, the maximum entropy principle

provides coherence and self-consistency of the approach. Furthermore, beyond equilibrium statistical

mechanics, the entropy maximization is a framework for understanding the dynamics. Recent progress in

statistical physics of complex dynamical systems and its applications in multidisciplinary areas including

social dynamics, have pointed out that generalized entropies must be considered, such as Tsallis entropy

Sq, q 6= 1 [2–5]. The most general form of the entropy S(c,d) was derived in [6]; the available range of the

exponents (c, d) allows for a full classification of the systems in which generalized entropies apply [6,7].

One of the prominent features of these systems is the nonlinear rate for the entropy generation or

nonextensivity [3,8,9]. In the present work, the concept of generalized entropy is related to the dynamics

of emotions, studied in online social systems.

Communications between users on different Web portals provides a wealth of data, which contains

rich information about human dynamics online. Recently, intensive research based on these empirical

data, seen as examples of complex dynamical systems in the physics laboratory, has been performed:

this research contributed to quantitative study of social phenomena on Blogs [10,11], Diggs [12],

Forums [13], online games [14,15], online social networks MySpace [16], Facebook [17],

Twitter [18], online chats [19] and other online communication systems. By using different

machine-learning methods of text analysis (a recent review of methods can be found in [20]), one can

infer contents that are communicated in the text messages exchanged between users. For example,

concepts as units of information carried by the message can be inferred by suitable algorithms [21].

Furthermore, by lexicon-based methods [22,23] more components of emotion can be measured, i.e., by

coordinating the emotional words in the text of a message with their values in the lexicon of affective

words. In this way, an emotion [24] as it is known in common life can be identified. According to

Russel’s circumplex model of emotion [25], different emotions are distributed in a two-dimensional

circular space, representing two emotion components—arousal (degree of reactivity) and valence

(intrinsic attractiveness or aversiveness of an object, event or situation). Thus, a neutral valence and

a medium arousal correspond to the emotion at the center of the circle. The empirical data about user

communications, enriched by these additional attributes, make a good source for research into the role

of emotion and information in online social dynamics.



Entropy 2013, 15 5086

While the human dynamics online can be severly influenced by real world events, it can not be

considered as a mere reflection of the offline social phenomena. Statistically robust regularities have been

observed that characterize online social dynamics across different communication systems. Specifically,

the following features are pertinent to the present work:

• Networks emerge dynamically via user communications. Depending on the interaction mode

among users, a specific type of network architecture may appear [10,14–16,26–30]; most of the

emergent networks exhibit prevailing characteristics of a social structure;

• Nonlinear dynamics underlies user activity. Beside ubiquitous circadian cycles [31], which are

immediately related with user’s real life, the action-delay (or interactivity time) is another key

property of human activity that, in an intricate way, combines offline and online events. In the

empirical data, regularly a broad distribution of interactivity times is found, being one of the

typical features of a given Web portal [10,32]; Furthermore, several prominent characteristics of

stochastic point processes [33]—long-range correlations, self-organization, clustering of events or

avalanching as well as the effects of (exogenous and endogenous) driving [34–36]—have been

studied using the high-resolution empirical data [12,37,38];

• Contents exchanged in (text) messages, i.e., information and emotion, play a role in social

dynamics. Each individual user with its online activity contributes to building up a social network,

which then propagates the contents of future messages, information and emotion; consequently,

often collective phenomena can be observed, e.g., bursts of emotional messages that involve many

users [10,12,13,19,39–43].

How do these contents contribute to the social dynamics and networking? Are various rules,

constraints and time scales which are imposed to user activity, relevant to the structure of emergent

networks and the use of emotions? These and other open questions are currently subject of intense

research activity across different science disciplines. In order to uncover possible mechanisms of

emotional interactions in online communications, recently we have developed several agent-based

models on networks; in particular, the interacting emotional agents on Blogs [44,45], in online social

networks [46] and chats between agents and Bots [38,47] have been studied.

In this work, we present a synthesis of our recent research with a number of new results, which

are based on the analysis of empirical data and agent-based simulations of Internet-Relayed-Chats

(IRC) and Blogs. With a parallel analysis of the underlying dynamics in these systems, our primary

focus is on distinguishing two key mechanisms of emotional connections which, presumably, apply

more generally in association with two specified classes of co-evolving social networks. We also give

quantitative analysis of pertinent fractal processes which support these mechanisms. This analysis

unveils how the dominance of negative emotions in self-organized processes defines the evolution and

lifetime of social communities on Blogs. With the simulations of chats between agents and the emotional

Bots, we demonstrate how these features of the self-organized stochastic process and the evolution of

network enable smooth propagation of the Bot’s emotional impact over the entire network. Furthermore,

investigation of the dynamic trajectories of users and agents in the phase space of two emotion variables

(arousal and valence), exhibits nonextensive dynamics of emotions and non-additive entropy in these
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systems; a detailed study is given for the dynamics of chats, both in the empirical data and in the data

simulated by the agent-based model with emotional Bots.

2. Collective Behavior of Users on Blogs and IRC Channels

2.1. The Structure of Empirical Data of Chats and Blogs

Here, we give a comparative analysis of the empirical data from two archetype systems:

Internet-Relayed-Chat channels, on one side, and Blogs, on the other. Similarity in these online

communication systems is found in that they share the following features: (a) Users post text messages

(comments, posts), which can be perceived by other users, who, in turn, may respond to the contents of

the posted matter; (b) Unlike prevailing social networks, users have no a priori relationship; (c) During

the process, user interaction via text messages (posts, comments), leads to new associations—emergence

of a network—which affects future communications. In this work, we consider three sets of empirical

data gathered from: (1) Ubuntu chats; data are annotated for emotional arousal and valence, which

are described in [29]; (2) BBCblogs; collection method, as well as inference of the emotion valence

of the data can be found in [27]; (3) discussion-driven popular posts ddDiggs, a subset of data from

digg.com, described in [12].

On top of the above described features, the Chat channels and Blogs differ from each other in time

scales of the underlying processes as well as in the rules and constraints that are imposed on users.

Specifically,

• the dynamics of chats is fast. A user can post a message on the channel, where it can be viewed

by all currently active users; alternatively, the message can be directed to another named user

or to a Bot, whose response also may arrive either directly or via the channel. On the channel

new messages posted within the current time window t − T0 are exposed, where T0 = 2min

corresponds to around 10 recently posted messages. Due to a quick progression of events, search

for old messages is not common. The data that we consider here contain information about the user

who posted a message and the user to whom the message was directed, as well as the posting time

and annotated emotional content (arousal and valence) of each message. Temporal resolution is at

one minute. Apart from the common subject of the channel, the contents and linguistic categories

of the messages are not limited by the system. Note that these are often short messages.

• in Blogs, the pace of events is much lower than in the dynamics of chats. A limited number of users

can insert main posts, whose subject categories are predetermined by the general policy. Then, a

user can read the post, as well as currently existing comments on that post, and subsequently,

may insert their own comment, relating it with the post itself or with a specific comment on that

post. Recent posts appearing within the current time window are exposed, where T0 ≈ 2 days.

However, search for older posts (and comments on them) is available and commonly occurs. Note

that posts and comments often contain longer texts. In this work, we use a set of data collected

from BBCblogs and Diggs. The data are annotated for emotional valence in the text of each

message [12].
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A systematic analysis of the emotion-annotated data suggests that the emotional contents play a

significant role in building connections among users in both types of communication systems. However,

the use of emotions is strikingly different. In particular, the analysis of data revealed [12,27] excessive

use of negative emotions on Blogs and Diggs, which usually appears within groups of users gathered

around certain popular posts. On the other hand, the data from IRC channels contain emotional messages

where the negative valence in user messages appears to be well balanced with the positive valence

(see also below). However, the network architecture was shown [19] to exhibit the resilience tightly

correlated with the arousal of the messages exchanged along the links. In the remaining part of this

section, we focus on two aspects of these communication systems: the nature of the underlying stochastic

process and the structure of co-evolving social network that is associated with that process.

2.2. Two Classes of Online Social Networks from the Empirical Data

In recent years, suitable mapping of data about objects and their mutual relations onto a complex

network, and subsequently using the graph theory methods has proved as advantageous for the

quantitative study of complexity in physical systems; the studied examples are ranging from the

cosmology [48,49], on one end, to nanonetworks involving different nanoscale objects [50,51], on the

other. Within this approach in the analysis of online social dynamics data, a variety of social networks

were observed in relation with different online activities of users [12,15,16,27,30,52–56]. Here, we use

the accepted methods to construct and analyse the networks from the empirical data from Blogs and

Chats; we demonstrate that, although in both systems no a priori associations among users exists and

the networks grow starting from scratch, the networks that eventually emerge in these processes belong

to two entirely different classes of social structures.

On Blogs (and Diggs), interactions among users are mediated by posts and comments-on-posts.

Such indirect interactions are appropriately mapped onto [10,28] bipartite networks with directed and

weighted links. Specifically, users, as one partition, are mutually separated via posts-and-comments,

as the other partition, such that no direct link between the nodes of the same partition exists. Similar

bipartite graphs are obtained in mapping the movie data [26]. In the considered data from digg.com,

mapping the subset of data with discussion-driven posts, where comment-on-comment are in majority,

(ddDiggs) [12], we obtain the bipartite network which is shown in Figure 1a. In this network, users

group around certain popular posts, while many other posts are gradually less commented. The grouping

of users around popular posts leads to the formation of dense subgraphs, which are recognized as

topological communities in the network [10,27,28]. The presence of communities can be also seen

by the branched structure of the maximum-flow spanning tree of the bipartite network. By definition, in

this type of spanning tree, each node is connected to the remaining part of the tree by its strongest link.

In the case of our bipartite graph, the strength of a link between a user-node and a post-node is determined

by the number of comments of the user posted on that post. Considering the strength of the links in our

bipartite network, but disregarding their directions, we obtain the maximum-flow spanning tree which is

shown Figure 1b. The network flow among the nodes on the same branch is markedly larger compared

with the flow between the branches (different branches roughly correspond to the weighted communities

on the network).
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By projection of the bipartite network onto user partition, a pair of users linked to the same post

or comment become connected to each other in the projected monopartite network. Multiplicity of

the link reflects the number of comments that they posted to that post (or to comments on it). The

resulting (monopartite) network is symmetrical, weighted and strongly clustered; a number of such

networks obtained from Blogs data and projected onto either user or post partition, have been studied

in [10,27,28]. The community structure of the user-projected networks can be readily detected by the

eigenvalue spectral analysis [57]; the occurrence of communities is strongly related with the weights

of the links. By identifying all users within a given community, and then filtering out their actions and

texts of their comments from the original data, one can find two prevailing patterns of activity [10,12,27].

Namely, in the case of less popular posts, users grouping is driven by preference towards specific subjects

of the posts. On the other hand, on the popular posts with a large variety of subjects, the activity of users

is dominated by emotion; users mostly express their critique of the posts and comments, which results

in prevailing negative emotion valence by text analysis. By analysis of the community structure through

a sequence of time windows, it has been shown [12] that in the ddDiggs data the size of a given

community evolves in a strong correlation with the excess of negative comments on the related posts.

The underlying mechanisms of emotional interactions will be further studied within agent-based model

in the following section.

Figure 1. Top row: From ddDiggs dataset, (a) view of the bipartite network of users,

represented by red circles, and posts-and-comments, blue squares and (b) its maximum-flow

spanning tree. Bottom row: From Ubuntu chat channel, (c) the chat network of users and

(d) maximum-flow spanning tree of the chat network.

(a) (b)

(c) (d)

In the case of IRC channels, a user exchanges messages with another user or with Bot; in addition,

some messages are posted on the channel. Thus, the selected subset of data where user-to-user

communication is clearly marked, is suitably mapped onto a monopartite directed weighted network
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of users. The weight of each directed links between a pair of users represents the number of messages

passed along that link. An example of an emergent network, obtained from Ubuntu chats after the

first seven days (with respect to the beginning of dataset) is shown in Figure 1c. The network exhibits a

hierarchical organization with a strong central core. The core represents almost a full graph, consisting

of a Bot and about 40 knowledgeable users (moderators), who often respond to other user’s messages

posted onto channel or directed to them, and employ the Bot. A detailed analysis of the network

structure, the role that the types of messages exchanged among users play in building the network,

as well as the arousal-related resilience, have been recently studied in [19,29,30]. Unlike Blogs and

conventional online social networks [16], where communications mostly occur within a community, in

the online chat networks, the exchange of messages almost inevitably involves the nodes within the

central core. Consequently, the maximum-flow spanning tree with an almost linear structure is obtained,

see Figure 1d.

For the purpose of the present work, it should be stressed that in the empirical data of chats, the

reciprocity of the directed links is high and emotional valence of the exchanged messages is well

balanced at the level of the entire network [19]. A slightly higher number of positive emotion messages

can be attributed to the fact that most of the involved positive emotions (i.e., identified by arousal and

valence in the texts of messages), have higher arousal, and thus are more likely to trigger user actions,

than the involved negative emotions.

2.3. Fractal Structure of Bursting Processes with Emotional Messages in Blogs and Chats

Apart from the emergence of networks with emotion carrying links, the collective emotional behavior

of users has been studied quantitatively by means of time series analysis and statistics of avalanches.

The time series of messages carrying positive/negative emotion valence is constructed by selecting

the number of such messages occurring within a small time bin. The avalanche (burst) of emotional

messages is then identified as temporally connected sequence of events occurring above a threshold line

(noise level) along the respective time series [12,34,35]. In Figure 2 the distributions of sizes of such

avalanches are shown, determined from the empirical data of BBCblog and Ubuntu chats.

The dominance of messages with negative emotion valence on Blogs (similar conclusions apply to

the data from ddDiggs [12]) leads to the occurrence of large avalanches. For comparison, in Figure 2a

the distribution of avalanches of all messages, i.e., irrespective of their emotional contents, are also

plotted. The distributions obey a power-law decay with a slope close to 2.2 and an exponential cut-off.

This indicates possible closeness to a critical point (see theoretical analysis in [12]). In contrast, positive

emotion avalanches are much shorter. Their distribution is dominated with the exponential decay. On

the other hand, in Ubuntu chats, both positive and negative emotion avalanches appear to be of a

comparable size; in both cases, the distributions are dominated by cut-off length, indicating that they are

far below a critical behavior, see Figure 2b.
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Figure 2. The distributions of size of the avalanches carrying emotional messages in

BBCblogs (a) and in Ubuntu chats (b).
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Occurrence of avalanches is often associated with the correlations of events in the underlying

stochastic processes. By fractal analysis of time series the structure of these processes can be determined

and expressed by suitable quantitative measures. Here, applying detrended time series analysis, we

analyse the time series carrying emotional messages in the empirical data of ddDiggs and Ubuntu

chats. The results are summarized in Figures 3 and 4, respectively.

Figure 3. Fractal analysis of time series in ddDiggs. (a) Time series of all messages,

and messages with positive and negative (plotted with negative sign) valence. (b) Power

spectrum of these time series. (c) Example of the cyclic daily trend plotted over the original

time series of all messages. (d) Fluctuations F2(n) plotted against time interval n for the

time series and the trend.
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Figure 4. Same as Figure 3 but for the time series obtained from Ubuntu chats data.
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In ddDiggs, large activity of users leads to strong fluctuations in the number of messages per time

bin (tbin = 5 min). Moreover, these time series exhibit strong daily fluctuations, related with the

circadian cycles of users. The number of negative emotion messages, plotted with the negative sign

−N−(t) to avoid overlap, exceeds the number of positive emotion messages, cf. Figure 3a. The fractal

structures of these time series also differ in the quantitative measures: power spectral densities and Hurst

exponents. Specifically, the power spectrum, shown in Figure 3b, exhibits a strong peak, corresponding

to daily cycle, however, the remaining spectrum obeys a power-law decay as S(ν) ∼ ν−φ; the respective

numerical values of the exponents (indicated on the figure) are characteristic for the stochastic point

processes [33]. The exponents φ corresponding to the power spectrum of all messages time series and

time series with negative emotion messages are approaching the limit φ → 1 of flicker noise. Whereas,

somewhat weaker correlations are found in the case of positive emotion messages.

Note that these time series are stationary, but the fluctuations around a stable average value are

strongly affected by the occurrence of daily cycles (and possibly higher cycles). Therefore, in order

to compute the Hurst exponent, the fluctuations of the detrended time series are considered. To remove

the local trend, we use the method with overlaping intervals, described in detail in [16,38,58], which is

particularly suitable for the time series with strong cycles. An example of local cyclic trend is shown

in Figure 3c for the time series of all messages. For a time series h(k), k = 1, 2, · · ·T , the profile

Y (i) =
∑i

k=1(h(k)− < h >) is divided into Nn segments of length n. Then the Hurst exponent H is

computed as a scaling exponent of the fluctuations at time segment of length n around the cycle trend as

F2(n) =
[

(1/Nn)
∑Nn

µ=1 F
2(µ, n)

]1/2

∼ nH . Here F 2(µ, n) = (1/n)
∑n

i=1[Y ((µ − 1)n + 1) − yµ(i)]
2

denotes departure of the integrated signal Y (k, µ) from the local trend yµ(i) at the segment µ.

The removal of cycles in these time series affects the size of scaling region where the Hurst exponent

is computed, as shown in Figure 3d, as well as the values of Hurst exponents. Note that the cycle is quite

regular resulting in a large Hurst exponent H trend = 1.92, which is also shown in Figure 3d. The results
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for the Hurst exponents of the detrended time series are found to be H . 1, i.e., much larger than in

the random Brownian motion (HBM = 1/2), suggesting strongly persistent fluctuations in all three time

series on ddDiggs. Note also that, within numerical error bars, these values are compatible with the

scaling relation φ = 2H − 1, which is expected in the case of self-organized stochastic processes [33].

Performing a similar analysis for the time series of messages from the empirical data of Ubuntu

chats, we obtain the results which are displayed in Figure 4a–d. The obtained quantitative measures,

however, indicate that we are dealing with a different stochastic point process. Here, the number of

positive and the number of negative emotion messages are approximately balanced (see Figure 4a).

Consequently the time series of positive and negative emotional messages fluctuate within similar ranges,

and their power spectral densities have comparable slopes, i.e., φall = 0.66 ± 0.02, φ+ = 0.55 ± 0.02,

and φ− = 0.50 ± 0.02. Moreover, no prominent daily cycle is found. A weak seven days cycle can

be determined (depicted in Figure 4c). Consequently, in the detrended time series an extended scaling

region of the fluctuations is found, as shown in Figure 4d. The numerical values of the Hurst exponents

are smaller, compared with the ones in ddDiggs; However, for all time series the Hurst exponents

are in the range H ∈ (0.5, 1), indicating that the persistent fluctuations also occur in the dynamics

of chats. Further understanding of the stochastic processes in online chats and Blogs and mechanisms

underlying clustering of emotional messages are studied below within agent-based modeling approach.

(See also [38]).

The above performed fractal analysis of the underlying stochastic processes in the empirical data of

ddDiggs and Ubuntu chats, complements our earlier study of the empirical data for Blogs [10,28],

Diggs [12] and Chats [19,29,30]. In the remaining part of this work in Sections 3 and 4, we attempt

to understand the structure and dynamics observed in these empirical data, by means of theoretical

modeling. We use a simple but highly nontrivial agent-based model of the emotional agents interacting

on a co-evolving network. Specifically, we aim to unravel the mechanisms behind the observed

coexistence in the evolution of communities and the abundance of negative emotions on popular

Diggs [12]. Furthermore, the stability of the chat processes with a well-balanced use of positive and

negative emotions, that we witnessed in the empirical data of chat channels [19,29], will be examined

here (by means of the simulations) against the activity of the emotional Bots. A summary of all fractal

measures for a compariosn of the simulated and the empirical data will be given in the discussion

in Section 5.

3. Blogging by Emotional Agents: Structure of the Co-Evolutionary Model and Simulations

In the agent-based modeling approach, the agents, representing users on a given Web portal, have

certain attributes which determine their activity over time, thus affecting the course of the process. The

agents establish connections over an evolving network. Hence, the activity of other agents (directly or

indirectly) influences the connected agents, changing their attributes and possibly triggering their actions.

The agent’s attributes are motivated by psychology profiles of users. To a large extent, user’s psychology

profile determines its pattern of activity online, its interactivity time, and use of emotions. Thus the

agents have to be designed in a way that can capture these relevant features of users on a specific Web
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portal and statistically match their activity pattern. The required minimum number of attributes can be

summarized as follows [59]:

A[i; (ai(t), vi(t)); profile; personal.connections; delay.time.distribution] (1)

Here, agent’s ID number i and its profile (see below) are fixed by the agent’s appearance in the

system; on the other side, the agent’s emotional state, which is described by two variables—arousal,

ai(t), and valence, vi(t)—vary dynamically under the influence exerted by other agents in the network,

possible external noise and mere relaxation. Similarly, the agent’s personal connections on the network

are updated, due to the evolution of network and the agent’s activity. The delay (or interactivity) time is

an annealed variable, driven from a given distribution ∆t ∈ P (∆t) after every completed action of the

agent. Fixing the parameters which determine the profile of an agent is strictly related with the allowed

actions, which are characteristic of the communication system in question, i.e., Blogs, Chats, or other.

Specifically, in Chat channels, users differ considerably by the number of messages that they post in the

entire dataset. For the ensemble of users, one can determine the distribution of the number of messages

per user P (Nc), which, together with the ensemble averaged delay time distribution, P (∆t) is a finger

print of the chat channel. Thus, the profile of the agents can be fixed by the number of messages that

the agent can post during the simulation time, N i
c ∈ P (Nc), and its inclination towards personalized

communications, g0 ∈ P (g0), which also can be inferred from the empirical data. The agent-based

model of chats will be discussed in Section 4, see also [38]. Here, we will describe in more details the

blogging dynamics.

In Blogs, a number of potential actions of users (and agents) are allowed, each of which is controled

by a parameter (probability). For instance, the following actions can be detected [45], and the related

probabilities (the distributions obtained by averaging over all users) measured in the empirical data of

ddDiggs: g ∈ P (g)—the probability of writing a new post, else ( 1 − g) commenting the existing

posts; µ(T0)—the probability that user looks for a post older than the exposure window t− T0. Together

with the delay time distribution P (∆t) and the pace p(t) by which new users arrive per time bin in the

ddDiggs, which are shown in Figure 5, the above set of parameters fully characterizes the empirical

system in question.

In contrast to chats, in blogging dynamics the agents are in principle not limited in the number

of comments that they can write during the simulation time. Rather, their heterogeneity is imposed

dynamically via a finite lifetime of the posts to which the agents are connected during the evolution of

the system. The lifetime of a post tP ∈ P (tP ) is also fixed from the empirical data; tP is the distance

between the time when the post appeared in the system and the last recorded comment on it [45]. Note

that, due to complexity of the process, certain hidden correlations among these parameters may exist.

Therefore, it is advisable to define the agent’s profiles by inferring the related quantities from the same

empirical dataset, thus implicitly taking into account such correlations. In our model, the agent’s profiles

are determined by fixing the probability g ∈ P (g) by the agent’s first appearance, and furthermore taking

the delay time ∆t ∈ P (∆t), and the probability for looking at old posts with probability µ(T0) as well

as the lifetime of posts tP ∈ P (tP ) from the dataset of ddDiggs (see Table 1). Of course, the model

can run for a variety of parameters far away from these empirical values, see [38,45].
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Table 1. Parameters of the model that are used for the simulations.

control of parameter & value nature

individual maps c1 = d1 = 1, c2 = 2.0, γ = 0.05, ac = 0.5 theoretical

users & posts g ∈ P (g), tP ∈ P (tP ), ∆t ∈ P (∆t), T0 = 2 days ⇒ µ(T0) = 0.05 empirical

driving p(t) empirical

external influence f = 0.4 theoretical

Figure 5. From the ddDiggs dataset: (a) Cumulative distribution of delay times P (∆t);

Inset: distribution of weights of links from the same data; (b) Time series of new users p(t).
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Having defined the agent’s profiles, as discussed above, the dynamics of interacting agents and

co-evolution of the network on which they are situated is taken by dynamic update rules of the model.

The general structure of the model involves the following essential steps:

• Driving. Starting with an empty system, at each time step t we add p(t) new agents; these agents

become immediately active, thus potentially triggering the action of other agents in future steps.

Chosing p(t) as the empirical time series of new users (with respect to the beginning of the dataset),

has the following advantages. Firstly, the empirical time series p(t) introduces the daily cycles,

characteristic for human activity. The p(t) time series from ddDiggs dataset is given in Figure 5b.

Secondly, the time bin of the empirical time series sets the physical meaning of time step in the

simulations; therefore, this allows a comparison of the simulated and the empirical system as well

as predictions of potential future events.

• Building influence. Agent’s activity—posting a new post or comment on an existing post—can

influence emotional states of other agents who are linked to that post. The influence field for a

particular agent i builds from all posts and/or comments posted within previous and current time

step, to which the agent has a link Aip > 0. The arousal field is composed from the arousals of

related comments, i.e.,

ha
i (t) =

∑

p∈C(t,t−1) Aipa
C
p(t)(1 + vi(t)v

C
p (t))

∑

p∈C(t,t−1) AipnC
p(t)(1 + vi(t)vCp (t))

; ha
mf (t) =

∑

p∈C(t,t−1) a
C
p(t)

∑

p∈C(t,t−1) n
C
p(t)

(2)

Here, the network area C(t, t−1) of currently active posts is identified as post on which an activity

occurred in two preceding time steps. aCp(t) and vCp (t) are the total arousal and the average valence
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of a post p, calculated from the comments in two preceding time steps, while nC
p(t) is the number

of all comments posted on it during that time period. Aip represents the matrix elements of the

network, i.e., Aip > 0 if user i is connected with the active post p, while Aip = 0 if there is

no link between them at the time t when the fields are computed. Note that such links may

appear as the system evolves. In Equation (2) the individual arousal fields ha
i (t) is modified

by (dis)similarity in agent’s actual valence, vi(t), and the valence of recent comments on the

post, vCp (t). The common field ha
mf (t) affects each active agent equally; it is given as a sum of

arousals of all active posts. The valence field hv
i (t) in Equation (6) acting on the agent i, as well as

the corresponding common field hv
mf (t), are also determined from the contributions of all active

posts at time t. In this case, however, we take into account contributions from the positive and

the negative comments separately; the neutral comments do not contribute to the valence field.

Depending on the current emotional state of the agent, positive and negative fields can lead to

different effects [60], in particular, positive (negative) state will be influenced more with negative

(positive) field, and vice versa. Here we assume that both components influence user valence, but

with different strength according to the following expression:

hv
i (t) =

1− 0.4ri(t)

1.4

∑

p∈C(t,t−1) AipN
+
p (t)

∑

p∈C(t,t−1) AipN emo
p (t)

− 1 + 0.4ri(t)

1.4

∑

p∈C(t,t−1) AipN
−
p (t)

∑

p∈C(t,t−1) AipN emo
p (t)

(3)

where the valence polarity of the user i is given by ri(t) = vi(t)
|vi(t)|

, and N±
p (t) is the number of

positive/negative comments written on post p in the period (t − 1, t). The normalization factor

N emo
p (t) is defined as N emo

p (t) = N+
p (t) +N−

p (t). Note that, in the absence of psychology-based

arguments, the pre-factor 0.4 is chosen by formal reasons, i.e., to avoid a fast switching of the

valence polarity (in the limiting cases: 0 or 1) as well as an artificial reduction of the phase space

(if the value 0.5 is used). The mean-field contributions to the valence stem from the entire set of

currently active posts C(t, t− 1), and are independent on how users are linked to them:

hv
i,mf (t) =

1− 0.4ri(t)

1.4

∑

p∈C(t,t−1) N
+
p (t)

∑

p∈C(t,t−1) N
emo
p (t)

− 1 + 0.4ri(t)

1.4

∑

p∈C(t,t−1) N
−
p (t)

∑

p∈C(t,t−1) N
emo
p (t)

(4)

However, the mean-field effects are perceived individually by each agent, depending on the

polarity ri(t) of agent’s current valence.

• Update of emotion variables. When the agent’s interactivity time since previous action expires,

∆t = 0, the agent’s arousal ai(t) ∈ [0, 1] and valence vi(t) ∈ [−1,+1] are updated taking

into account influence of the above fields; meanwhile, the relaxation towards zero state applies

with the rates γa and γv. The following nonlinear maps with polynomial nonlinearities are

assumed [44,45,60]:

ai(t+1) =

{

(1− γa)ai(t) + [ha
i (t) + fha

mf(t)](d1 + d2(ai(t)− ai(t)
2))(1− ai(t)) if ∆ti = 0

(1− γa)ai(t) otherwise

(5)
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vi(t+ 1) =

{

(1− γv)vi(t) + [hv
i (t) + fhv

mf(t)](c1 + c2(vi(t)− vi(t)
3))(1− |vi|) if ∆ti = 0

(1− γv)vi(t) otherwise

(6)

The parameters of the nonlinear maps are selected as d1 = c1 = 1, to ensure additive actions of

the influence fields. Other parameters are selected such that the maps cover a large area of the

phase space when the fields vary within their typical values in the simulations. In particular, we

use c2 = d2 = 0.5 and γ = 0.05 and the fraction f = 0.4 of the common-field influence. The

situations corresponding to typical values of the fields are shown in Figure 6.

Figure 6. Two nonlinear maps for the arousal ai(t) and valence vi(t) are plotted for a few

typical values of the “influence fields”.

• High arousal triggers action. With a probability proportional to the agent’s updated arousal, the

agent becomes active posting a new post or comment to one of the active posts in its neighbourhood

on the network. In addition, with a small probability µ(T0) the agent searches for an older post

and puts a new comment on that post too; thus, the old post with a new comment is brought to the

exposure window again; the posts are selected preferentially according to the existing number of

negative comments. The lifetime of posts is systematically updated. It is assumed that the agent’s

current emotional state (ai(t) and vi(t)) is transfered into its posted comment.

• Rules & Implementation. The action rules which are described above are directly motivated by

user activity on the empirical systems. The decision of an agent i to chose a post p between the

exposed post is parametrized by the time-dependent probability pp(t) =
0.5(1+vCp (t)vi(t))+Nc

p (t)∑
p[0.5(1+vCp (t)vi(t))+Nc

p(t)]
,

depending on the number of comments on that post N c
p(t) and the valence similarity. Similarly,

an old post is selected preferentially according to the negativity of the charge of all comments on

it, with (properly normalized) probabilities pj,old(t) ∼ 0.5 + |Qj(t)|, if the charge is negative,

else pj,old(t) ∼ 0.5. Lifetimes of posts are systematically updated, i.e., decreased by one at

every time step (already expired posts are not considered). These rules, in association with the

control parameters, are implemented in program code (see the Algorithm 1). More detailes can be

found in [45].
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The control parameters that are introduced by the dynamic rules of the model are summarized in

Table 1. They can be divided into indicated categories.

Algorithm 1 Pseudocode for Emotional Agents on the Emerging Bipartite Network

1: INPUT: Parameters p(t), µ(T0), T0, tmax; Distributions P (∆t), P (g), P (tP )); start User List UL, Exposed Posts List

EPL, New User List NUL, Prompted User List PUL, Active User List AUL; Exposed User List EUL;

2: for all t < tmax do

3: for all i ∈ UL do

4: relax user valence vi(t) and arousal ai(t) with the rate γ

5: end for

6: add p(t) new users to NUL with ai ∈ [0, 1], vi ∈ [−1, 1] fix gi ∈ P (g) and set ∆t = 0

7: for all i ∈ NUL do

8: vi(t) and ai(t) update with current MF term in Equations (5) and (6)

9: move to AUL

10: end for

11: for all i ∈ PUL do

12: compute personal valence and arousal fields and update ai(t) and vi(t) according to Equations (5) and (6)

13: with probability acai(t) move to AUL

14: end for

15: for all i ∈ AUL do

16: with prob. gi post a new post k; fix its lifetime tk from the distribution tk ∈ P (tℓ)

17: else with probability pp select a post p from EPL and make comment on it

18: with prob. µ select additional old post preferetially with pj,old and make comment on it

19: end for

20: Update Network connections {Aip}; Decrease lifetime of all existing posts by one

21: Update EPL

22: Update EUL

23: for all i ∈ UL do

24: if ∆t = 0 set new ∆t based on P (∆t)

25: else ∆t−−
26: end for

27: for all i ∈ EUL do

28: if ∆t 6= 0 set new ∆t from P (∆t)

29: end for

30: Update PUL (all Users with ∆t = 0)

31: Update UL

32: Sampling temporal quantities

33: end for

34: SAMPLING

In the simulations, a number of parameters can be freely varied away from their empirical values.

Variation of the fraction f of common-field contribution in Equations (5) and (6) was shown to have a

strong influence onto formation of communities in [45]. Here, we fix f = 0.4 and keep the empirical

values of the above described parameters.
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3.1. Blogging Dynamics and Emergence of Communities

In the simulations, the system is driven by adding a variable number p(t) new agents at each time step;

the emotional states of new agents are selected randomly. The new arrived agents connect to the existing

part of the evolving bipartite network, by linking to certain exposed and/or old posts which they chose

to comment. According to the rules, their comments contribute to the influence fields that may trigger

actions of other agents who are linked to the same active posts. It should be stressed that at each agent

(user-node) different patterns of the activity are expected. They depend not only on the current network

structure surrounding the agent, but also on the fact that at given time the activity might be transferred

to another part of the network, i.e., due to the aging of posts and the preferences of other agents towards

particular types of posts. The actions of individual agents contribute to the overall activity that can be

monitored at each post and at the whole (evolving) network, as well as at the network parts, for instance

the topological communities, that can be identified when the network is large enough.

Figure 7. Time-series simulated within the agent-based model of blogging. (a) The number

of active users (top line), active posts (middle) and charge Q(t) = N+(t) − N−(t) of the

emotional comments (bottom line) per time step. (b) Number of all comments (cyan), and

comments carrying negative (black) and positive (red) emotion valence. (c) Power spectra

and (d) Fluctuations of these time series; The values of Hurst exponents are indicated in (d).
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At every time step in the simulations, we monitor states of each agent and each post. We sample

several quantities, e.g., those that can be compared with the empirical data, and other. Specifically, the

fluctuations in the number of active posts, Nap(t), the number of different agents that are active at these

posts, Nau(t), and the number of comments that they posted, Nc(t), at each time step are determined.

Furthermore, we distinguish between the comments that carry positive (negative) valence, N±(t), and

the overall charge Q(t) = N+(t) − N−(t) of these emotional comments. The temporal fluctuations

of these quantities are shown in Figure 7; the starts of the time series are displayed, corresponding to
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four weeks of real time. Note that the circadian cycles of the driving signal p(t) are clearly reflected in

time-series of the number of active agents and the number of their comments.

The simulated time series in Figure 7 can be readily compared with the respective time series from

empirical data in Figure 3 and similar results in Figure 4 obtained in the dynamics of chats.

Furthermore, the bipartite network that emerge through the activity of our emotional agents on posts

can be compared with the empirical one. In [45] the topology of the network of agents has been studied in

full analogy with the topology of bipartite network mapped from the empirical data of the same structure,

see Section 2.2 and [10,27,28]. It was found that, to a large extent, the emotional interaction among

agents reproduces the structure of connections of real users at popular discussion-driven Diggs. For the

discussion in this work, it is essential that these networks exhibit a community structure, much similar

to the empirical system. Here, we focus on agent communities, that we determine on the monopartite

agent-projection of the emergent bipartite network after 4032 time steps (two weeks) of the evolution.

The network projected onto agents partition contains NU = 4572 agents; only agents with the degree

larger than 5 are considered as relevant for the community formation.

In order to determine the community structure, we perform the spectral analysis of the normalized

Laplacian operator [57,61] which is related to the weighted agent-projection network. Its matrix

elements CW
ij represent the common number of posts per pair of agents, including the multiplicity of

user–post connections, which is indicated by the superscript. The Laplacian is constructed from the

symmetric matrix of commons as

Lij = δij −
CW

ij
√

(lilj)
(7)

where li is the strength of agent i, defined as the sum of weights of its links. The eigenvalue spectrum

of the Laplacian operator Equation (7) with the CW
ij matrix related with this agent-projected weighted

network, is computed. Theoretically, when the communities exists, the lowest non-zero eigenvalues of

the Laplacian of Equation (7) appear separated from the rest of the spectrum and the corresponding

eigenvectors are localized on the network subgraphs (communities). The eigenvector localization is

visualized as a characteristic branched structure of the scatter-plot in the space of these eigenvectors.

This property of the eigenvectors is then utilized to identify the nodes of the network that belong to

each community [10,12,26,57]). The scatter-plot of three eigenvectors belonging to the three lowest

eigenvalues of the Laplacian is shown in Figure 8a. It indicates that five agent-communities can

be differentiated. These are denoted by Gk, with k = 1, 2, · · · , 5 corresponding to top-to-bottom

branches in Figure 8a. A part of the agent-projected network with three weighted communities (out

of five communities, determined above) is displayed in Figure 8b, indicating heterogeneity among the

agents within each community. In the following we first identify the nodes representing the agents in

each of these communities. Then we analyze how the communities actually evolved on that network

in accordance with the fluctuations of emotional states of agents in the communities throughout the

evolution time.
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Figure 8. Communities in the emergent network of emotional blogging by agents. (a)

3-D scatter-plot of the eigenvectors indicating the community structure. (b) Close up of

the agent-projected network (nodes belonging to three communities are marked by different

colors, their size is proportional to the number of links): Inside each community a few very

active agents can be identified.
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Having identified the agents in each of the communities, we can now track their group activity and

the emotion fluctuations over time from our simulation data. The time-series of the number of comments

of all agents in a given community Gk are shown in Figure 9a and the emotional charge of the valence

of these comments in Figure 9b. Note that a fraction of comments with the valence values close to zero

in the range between (−0.01,+0.01) are considered as neutral, and do not contribute to the charge. The

profile of the time series indicates that all communities started to grow at early stages of the network

evolution. However, the activity in two communities G1 and G5 is gradually reduced and their growth

ceased quickly after their appearance. Looking at the fluctuations of charge of the emotional comments

in these two communities, we find that it is well balanced, fluctuating around zero at early times, and

eventually leveling up at zero. On the other hand, in two medium-size communities, G2 and G4, the

activity is slowly decreasing, while the largest central community, G3, shows constantly large activity.

Comparing the activity (number of comments) with the fluctuations in the charge of the emotional

comments, we can see that in these three communities the excess negative charge settles after some

time, breaking the initial balance in the charge fluctuations. In this way our model reveals the correlations

between the prolonged activity and the size of a community (i.e., number of different agents), on one side,

with the occurrence of the negative charge of the related comments, on the other. The co-occurrences

of the negative charge Q(t) and the number of comments Nc(t) in the community G3 are also depicted

by the scatter-plot in Figure 10. Here, two details are manifested: firstly, the negativity of the charge

increases with the number of comments per time bin; further, the maximum frequency (larger color

intensity) is regularly in the negative region of the charge axis. In contrast, other four communities show

a rather symmetrical plot, cf. Figure 10. The correlation between the size of community and excess

negative charge was also observed in the empirical data on Blogs and Diggs [12,27].
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Figure 9. Activity and negative charge gives raise to community growth. Time series of

the number of messages, Nc(t), (a) and charge of emotional messages, Q(t), (b) within

identified agent communities.
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Figure 10. Scatter-plot of activity and charge in different communities. Charge Q(t) plotted

against the number of comments Nc(t) per time bin for the groups G1, G2,G3, G4 and G5

(left to right). Color intensity increases with the occurrence of related (Nc(t), Q(t)) values.
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Another interesting feature of these communities is observed by visualizing the patterns of their

activity in the phase space of the emotion variables. In order to match the emotion measures accepted

in the psychology literature, the values of the arousal and valence components are mapped onto a

surface enclosed by a circle (circumplex map). According to the 2-dimensional Russell’s model [25,62],

each commonly known emotion, for instance, “afraid”, “astonished”, “bored”, “depressed”, “ashamed”,

“enthusiastic”, “happy”, “miserable” and other, can be represented as a specific point (or a segment) on

the surface. In particular, the values of the arousal and valence are mapped as follows [63]:

a
′

=
a1√
1 + z2

, v
′

=
v√

1 + z2
(8)

where z ≡ min(|a1|, |v|) and a1 ≡ 2a− 1 ∈ [−1,+1].

Computing the transformed values of the arousal and the valence for each agent at all time steps when

an action of that agent is recorded in our simulations, we obtain the color-plots shown in Figure 11.

Different plots contain agents’ trajectories in four different communities, G1–G4, which are discussed

above. Specifically, the color map indicates how often a particular state on the circumplex was occupied

in four of the above communities, normalized with the all actions in that community. As Figure 11

shows, the communities leave different patterns in the space of emotions. For instance, the community

G1, that have balanced charge fluctuations, appears to cover a larger variety of the emotional states,

leading to the pattern on the top left figure. A similar patter was found for community G5 (not shown).

However, when a large community is formed, it may induce large negative fields which keep the agents

in the negative valence area of the circumplex map. Such a situation is shown for the community G3 in

the top right panel of Figure 11. The majority of comments in this case is centered in the area of arousal

and valence where the negative emotions known as “worried”, “apathetic”, “suspicious”, “impatient”,
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“annoyed” are found on the circumplex map (see, for instance, [62,63] for coordinates of some other

well known emotional states covered by these patterns). Plots in the bottom left and right panels of

Figure 11 correspond to the communities G2 and G4, respectively; in these groups, charge fluctuations

are moderately negative, as discussed above.

Figure 11. Patterns of emotion-driven communities. Circumplex map of the emotional states

of agents belonging to four communities, G1, G2, G3, G4, identified on the emergent network

in agent-based simulations. Color map indicates occupancy of a given state, normalized by

the number of messages in the community.

In conclusion, both the analysis of empirical data [12] and agent-based simulations done here, indicate

that the occurrence of communities around certain popular posts and dominance of negative emotions are

universal phenomena in blogging dynamics. Unlike the case of real systems where the parameters are

fixed, the simulations within agent-based model explain the underlying mechanisms. In particular, the

communities can form in a self-organized manner when the external influence (represented by a common

field) is comparatively low. Then the excessive use of negative emotions powers the communications

at few popular posts, leading to growth of the community and its activity level. This mechanism of

emotional bursts is thus typical for systems with indirect communications among users (agents) and may

involve a large variety of posted subjects.

It should be stressed that, co-evolution of the dynamics and the topology is a crucial part of

this phenomenon. An entirely different situation is foreseen in the online social networks, like

MySpace [16], where the network has a fixed structure that is promoting the user-to-user dialogs within
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and across different communities. It was shown [46] that, in these social networks, appearance of a

prevailing emotion valence considerably depends on the external inputs.

4. Dynamics of Chats with Emotional Bots

The relevance of emotions expressed in the text messages in the empirical chat system Ubuntu

channel has been pointed out in Sections 2.2 and 2.3 (see also [19,29,30]). The underlying mechanisms

of emotional communications are explored here using the agent-based modeling approach with the

emotional agents, who interact in an co-evolving chat network [38,47]. Compared with the above

described agent-based model of blogging, the model for chats differs in several details. Specifically,

due to a direct interaction among agents in chats, a monopartite network with directed weighted links

embodies agent’s connections. The network evolves in time by addition of new p(t) agents per time step,

by insertion of new links and/or adding weight on the existing links. Consequently, the field ha
i (t) that

influences agent’s i emotional arousal at time t, in Equation (5), is built from the messages within current

time window t− T0, which are directed to the agent from its neighbors in the network, i.e.,

ha
i (t) =

∑

j∈Lin,i
amj [θ(tm − (t− 1))− θ(tm − (t− T0))]

∑

j∈Lin,i
[θ(tm − (t− 1))− θ(tm − (t− T0))]

(9)

Here, amj is the arousal of the message m arriving along the link j → i from the agent j and tm indicates

the creation time of the message. For the valence field hv
i (t), in analogy to Equation (3) in blogging

dynamics, we assume that current balance of the number of positive and negative messages N±
i (t) can

affect the agent i valence, in Equation (6), depending on polarity of its current valence ri(t) = sgn(vi(t)).

Specifically,

hv
i (t) =

1− 0.4ri(t)

1.4

Np
i (t)

N emo
i (t)

− 1 + 0.4ri(t)

1.4

Nn
i (t)

N emo
i (t)

(10)

where Np
i (t) and Nn

i (t) are the number of positive and negative messages, respectively,

which are directed to agent i within the current time window, i.e., Np,n
i (t) =

∑

j∈Lin,i

|sgn(vmj (t))±1|

2
[θ(tm − (t− 1))− θ(tm − (t− T0))], and N emo(t) = Np(t) + Nn(t). In

addition, the common fields, which may affect all agents equally, ha
mf (t) and hv

mf (t) are computed in a

similar manner but observing that the summation in the Equations (9) and (10) is adequately changed,

i.e., j ∈ S, where S is the set of all currently active messages, including the messages which are posted

on the channel and not directed to any specified agent.

The agent’s profile is determined by fixing the number of messages Nc ∈ P (Nc) that the agent

can post during the simulation time as well as its attitude towards direct communication with other

agents, given by the empirical probability g ∈ P (g). Both distributions P (Nc) and P (g), as well as

the delay times P (∆t) and the time series p(t) are inferred from the same empirical data of Ubuntu

channel, which are analysed in Section 2 (see also [38]). In the chat dynamics, beside ordinary agents

the presence of Bots and moderators is considered. Motivated by the rules of Ubuntu channel, certain

number of moderators Nm is defined and their profiles adjusted according to their function. In particular,

the moderators have no limits to the number of messages and their delay times are derived from another

empirical distribution, which, on average, provides shorter delays. Otherwise, the dynamics of their
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emotions is governed by the same Equations (5) and (6) as for all other agents. The moderators also can

employ the Bot by passing a fraction ǫ of new messages to its list. On the other hand, the Bot in our

model has a fixed emotion. Also, the Bot can have different patterns of communication, i.e., sending a

message directly to the involved agent, or posting the message to the channel. Furthermore, unlike the

agents and moderators, who always have a finite delay time to the next action, the Bot can reply instantly

to all agents accumulated on its list in the previous time step.

The Bots are algorithms, which are often implemented at IRC channels and serve different functions.

For instance, the Bot in Ubuntu channel, when prompted by the moderators, gives a predefined answer

to the concerned user. In the world of emotional agents in our model, the Bot has predefined emotion.

Therefore, when the Bot is active, i.e., according to the model rules, its message to an agent carries the

emotional content which is identical with the Bot’s emotion. Other versions of the emotional Bots, e.g.,

Bots with “human-like” characteristics have also been considered [38].

Apart from the parameters which are inferred from the empirical dataset, in the simulations presented

in this work we used the following values for the parameters γ = 0.1 and 0.3; ǫ = 0.5 or 0.1; f =0.4.

The interested reader can find a more detailed description of the rules and parameters of the agent-based

model of online chats with Bots as well as its numerical implementation in references [38,47]. Here, we

focus on the chat dynamics in the presence of Bots, whose activity enables the mechanisms for emotional

bursts. For this purpose, we first summarize the fractal features of the process occurring in the absence of

Bots. Then we demonstrate how such processes are altered when Bots with emotional profile are active

and communicating with a limited number of agents. Finally, allowing the emotional Bots unrestricted

communication with agents, we examine the chat process by focusing on nonextensivity features. In

order to point out the effects of emotional Bots in the dynamics, the relevant quantitative measures are

compared with the case when the Bot is neutral or inactive, as well as with the equivalent quantities

determined directly from the empirical data.

4.1. Fractal Time Series Analysis of Chats in the Absence of Bots

In the absence of emotional Bots, the simulations lead to the balanced use of positive and negative

emotions. The time series of the number of messages carrying positive N+(t) and negative N−(t)

emotion valence are shown in Figure 12a. The fractal time series analysis in [38] revealed the occurrence

of long-range correlations, avalanches and persistent fluctuations around a cyclic trend. For instance,

when no moderators are present Nm = 0, the self-organized dynamics of chats among the emotional

agents is characterized by the scaling exponents for the time series with positive and negative emotion

messages, respectively: φ+ = 1.06 ± 0.06 and φ− = 1.19 ± 0.06, for the power spectrum; the scaling

exponents τ+s = 1.34 ± 0.03 and τ−s = 1.83 ± 0.04, for the avalanche sizes, and γ+
ST = 1.47 and

γ−
ST = 1.23, for the avalanche shape; H+ = 0.94 ± 0.02 and H− = 0.97 ± 0.01, for the Hurst

exponent [38]. Compared with the values H± = 0.83, φ± = 0.62 in Figure 4, which are obtained

from the empirical data (where a Bot is present but is emotionally neutral), we may conclude that the

simulated system of emotional agents without Bots maintains a bit stronger temporal correlations.
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Figure 12. Patterns of emotional balance and clustering in chats. (a) Time series of the

number of messages with positive and negative emotion valence. (b) Color-coded plot of the

emotional states of agents in simulated chats shown on circumplex map, where also some

known emotions are marked.
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Moreover, the balanced use of positive and negative emotions is reflected in the phase space pattern

in Figure 12b; the trajectories of all agents symmetrically fill the left v < 0 and the right v > 0 section

of the circumplex map. However, when the arousal is also considered in accordance with the valence,

it appears that both on positive and negative valence side certain areas of the phase space (implying

particular emotions) are more often used than the others. Compared with the community-induced pattern

of emotions in blogging dynamics, Figure 11, the symmetrical pattern in Figure 12b suggests an entirely

different mechanism of emotion clustering in the dynamics of chats. We will return to the discussion of

the phase space trajectories in Section 4.3.

4.2. Response of Agents’ Network to the Activity of Emotional Bots

When the Bot with a given emotional profile is activated in the chat system, the interactions among

emotional agents may be altered. In [38] it has been argued that namely the fractal nature of chat process

is the basis on which the emotional Bots can build their influence on agents and eventually polarize the

mood on the entire chat network. In the remaining part of this chapter, we consider the impact that

the activity of different emotional Bots have on the self-organized process of chats. The Bot with an

emotional function can be implemented in different ways. Here, we consider two types of emotional

Bots, specifically:

• Bots with a fixed emotion, e.g., “enthusiastic” (posBot), and “ashamed” (negBot); the Bots can

interact with anyone of the agents who seek such interaction, according to the model rules; every

message from the Bot to an agent carries Bot’s fixed emotion. The effects of these Bots will be

studied in detail in Section 4.3.

• Experimental Bots ExpBot with a fluctuating but predominantly positive (negative) emotion and

contact with a limited number of agents. Motivated by an experiment where the emotional Bot
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communicates with 91 isolated users [64], here we consider these experimental Bots as part of the

agent’s networked environment [65]. Hence, we fix 91 agents with whom the Bot communicates

by exchanging emotional messages. The Bot uses the same sequence of emotional messages

(identified by their arousal and valence) to each of the 91 agents exactly as in the experiment.

In contrast to the experimental situation, the agents in the numerical experiment can interact with

other agents in the network. Moreover, their communication with the Bot is regulated with the

rules of the model, i.e., they use accumulated emotional influence and respond with a time delay,

etc. When a sequence of Bot’s messages is exhausted, it starts again from the beginning. The Bot

remains emotionally neutral in communication with all other agents in the network.

Due to the interaction among agents, the emotional impact of ExpBot on the fixed 91 agents

propagates through the network. In the effect, the system slowly builds the emotional charge

Q(t) = N+(t)−N−(t) which coincides with the dominant emotion of the Bot, cf. Figure 13a–d. The

time series of charge of emotional messages on the entire network in the presence of two experimental

Bots are shown in Figure 13b,d. In lower panels of Figure 13a,c we display the fluctuations of valence

in the sequence of messages that the agents communicate to the Bot (Bot’s messages are excluded).

Comparing these fluctuations with the fluctuations of charge in Figure 13a,b, it is apparent that an excess

of positive valence in the messages exchanged with the Bot coincides with the appearance of prevailing

positive charge in the entire network. Similarly, in Figure 13c,d, the valence fluctuations in presence of

negative Bot correlates with the tendency towards prevailing negative charge in the network of agents.

The fractal characteristics of time series in the presence of emotional Bots are altered compared with

the situation without Bots. In Figure 13e the fluctuations of the time series of emotional messages and

their charge around local cyclic trend are shown. In particular, the Hurst exponents for the positive

emotion messages in the presence of a positive Bot H++ = 0.78 ± 0.02, and negative messages in the

presence of a negative Bot are H−− = 0.76±0.02, are smaller than the corresponding Hurst exponents in

the absence of emotional Bots, studied in Section 4.1. (Here, the first index stands for the Bot’s emotion

while the second index indicates the polarity of agents’ messages.) The fluctuation of the charge in

both cases roughly follows a weak cycle, leading to a similar exponent, HQ,± = 0.85 ± 0.02. The

cycle is quite irregular, having Hurst exponent H trend ≈ 1; it is possibly related with the frequency of

Bot’s actions.

Building a polarized mood, i.e., a predominant emotion polarity (either positive or negative), of

all agents is much more effective in the presence of emotional Bots with fixed emotion posBot

and negBot, which have unlimited access to agents in the network. In this case, by affecting the

connections among agents, the emotional Bots influence the growth of the network itself [30]. Their

effects are studied in terms of bi-layered structure of the network, where the layers of positive and

negative connections (i.e., valence of the exchanged messages) among agents are distinguished. For

illustration, a small network grown in the presence of posBot is shown in Figure 14. Different structure

of connections with a dominant positive layer is apparent. Several multiplexity measures have been

accepted to characterize the layered structure of networks [15,66,67], specifically: link overlap between

different layers, node degree correlations, as well as node degree rank correlations. These quantitative

measures are computed considering the positive and the negative layer in our chat networks, which are

grown in the presence of posBot and negBot. The results revealed [30] that, in the presence of
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emotional Bots, a specific agent participates building the network structure in a different manner than in

the absence of Bots or when an emotionally neutral Bot is present. In the following section the effects of

emotional Bots onto the dynamics of chats will be investigated from the point of view of nonextensive

statistics [2,68].

Figure 13. Network of agents builds emotional response to experimental Bots. In the

presence of experimental Bot with positive (a–b) and negative (c–d) dominant emotion

and limited access to agents: Valence of agent’s messages to the Bot (lower panels) and

charge of the entire system of agents (upper panels). Here, Bot’s messages are excluded.

(e) Fluctuations of the detrended time series of emotional messages, the charge, and the trend.
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Figure 14. Layered structure of chat network. The layers with positive valence and negative

valence links are shown in the network (a) emerging by simulations in the presence of

positive emotion Bot “enthusiastic” and (b) from the empirical data of Ubuntu channel.

4.3. Nonextensivity of the Emotion Dynamics

In the agent-based simulations of Section 4, the system of interacting emotional agents on a growing

network evolves towards states of higher complexity. As the above fractal anlaysis of time series shows,

these states are characterized by long-range temporal correlations, persistence and clustering of events

(avalanching). Moreover, the agent trajectories unevenly occupy the phase space of emotional variables,

cf. Figure 12. In this type of systems [7], observing the entropy generation with a non-constant

rate or nonextensivity may serve as a measure of complexity [3]. For the quantitative analysis within
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nonextensive statistical mechanics, however, a non-additive entropy needs to be considered [2–4,7,8],

for instance q-generalized Tsallis entropy,

Sq = k
1−

∑W
i=1 p

q
i

q − 1
(

W
∑

i=1

pi = 1; k > 0) (11)

for a discrete set of probabilities pi. It has been recognized that, for q 6= 1 the non-additive entropy Sq

is compatible with a class of power-law probability functions and hierarchical or multifractal geometry

(see [2] and references therein). Specifically, the probability distribution P (X) corresponding to the

maximum entropy Sq when the first moment is fixed 〈X〉 is given by q-exponential [69–71]

P (X) = C

(

1− (1− q)
X

X0

)
1

q−1

(12)

Similarly, when the first moment vanishes but the second moment 〈X2〉 is known, the entropy

maximizing distribution is given by q-Gaussian,

P (X) = A

(

1− (1− q)
X2

X2
0

)
1

q−1

(13)

These types of distributions were found in many complex dynamical systems [6,72–75]. Consequently,

the Kolmogorov-Sinai (KG) entropy rate, which is used in nonlinear dynamical systems to characterize

the rate at which information about the phase space trajectories is produced [76,77], is generalized by

using the non-additive entropy, Sq, [2,78], i.e.,

Kq = lim
t→∞

lim
W→∞

lim
N→∞

Sq(t)

t
(14)

In our case W indicates the number of boxes in the partition of (v, a) phase space, and N is the total

number of points in the phase-space that evolves over time. The partitioning of (v, a) phase-space

allows us to define a set of probabilities pi(t) =
Ni(t)
N

, where Ni is the number of points within ith box.

Therefore, the generalized Tsallis entropy Sq(t) can be calculated according to Equation (11) for a given

value of the parameter q. Varying q-values, the entropy growth with time changes. Hence, for a specific

value of the parameter q = q⋆ the entropy rate becomes constant, i.e., the generalized non-additive

entropy becomes extensive [2,78]. The set of q-values, associated with different quantities, characterize

the system’s nonextensivity class. Note that these parameters are expected to be intrinsically related [2].

In the remaining part of this section we will use the concepts of nonextensive statistical mechanics

to determine several quantities from the simulated chat dynamics and from the empirical chat data. In

particular, we consider:

• Time series of avalanche sizes sk, where k = 1, 2, · · · denotes successive avalanches obtained

from the time series of all messages. Then the difference between sizes of successive avalanches

or return of avalanche size Xk ≡ sk+1−sk is computed; the results are plotted on a histogram. The

case of avalanches from empirical data and from simulated data in the presence of emotional Bots

and inactive Bot are shown in Figure 15. For better comparison, in each panel, respectively, along

x-axis we plot the deviation from its average value X−〈X〉, normalized by the standard deviation
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σ of the respective time series. The curves in each panel are fitted by q-Gaussian distributions of

Equation (13), with q > 1, which are listed in the caption of Figure 15.

Figure 15. q-Gaussian distribution of avalanche size returns. Probability density function

(PDF) of the rescaled avalanche size returns, Xk = sk+1 − sk, in empirical data of Ubuntu

chats (a), and agent-based simulations: silenced Bot (b), positive Bot (c) and negative Bot

(d). Solid lines are fits using q-Gaussian distribution of Equation (13), where q = 1.66±0.09

(a), q = 1.4± 0.2 (b), q = 1.84± 0.06 (c) and q = 1.6± 0.1 (d).
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• Return times of trajectories to a specified section of the phase space. It serves as a suitable

quantitative measure of the reduction of phase space in self-organized processes [7,68,79,80].

The distributions of return times are averaged over trajectories of all agents in the simulations.

Considering the arousal and valence of all messages in the simulated data with silenced Bot and

with two emotional Bots as well as in the messages of all users in the empirical data, the results

for the return-time distributions which are shown in Figure 16a–c are obtained. In the case of the

empirical data, the distributions are fitted with the q-exponential distribution Equation (12), with

q = 1.52. It is interesting to note that, the distribution from the simulated data with a silenced Bot,

in the region of small return times is fitted with the same expression. For long times, however,

an exponential function fits the data, suggesting a larger amount of randomness in the simulated

dynamics in comparison with the empirical data. On the other hand, when the emotional Bots are

present, the entire distribution is modified and can be approximated by a power-law distribution

with an exponential cut-off, cf. Figure 16c.
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Figure 16. Trajectories in the phase space of emotional variables. The distribution of return

times to a given area of phase space in online chats from the empirical Ubuntu data (a) and

from agent-based simulations with silenced Bot (b) and two emotional Bots (c).
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Furthermore, when the messages carrying positive and negative emotions are considered

separately, the return times to the respective phase space sections differ already in the empirical

data. Specifically, the distribution in the case of messages with negative emotion valence has a

larger cut-off length X0 = 117± 12, compared with X0 = 6.4± 0.4, for the positive emotion; on

the other hand, the tails have similar slopes (within numerical error bars), leading to q = 1.50±0.02

and q = 1.47 ± 0.15 for the positive and negative section of the phase space, respectively. The

results are shown in Figure 17a. However, in the presence of emotional Bots, the return time

distributions differ considerably, depending on the polarity of messages with respect to the Bot’s

emotion. In particular, when the positive Bot is present, the return time distribution of positive

emotion messages exhibits a power-law decay; on the other hand, the negative messages rather

reflect a random process, compatible with an exponential distribution, cf. Figure 17c. Exactly the

opposite situation is found in the case of the negative Bot, which is shown in Figure 17d. The

situation with an emotionally neutral Bot is depicted inFigure 17b. In this case the differences

between positive and negative valence areas are smaller, but the overall tendency resembles the

case with the positive Bot.

• The q-generalized Kolmogorov-Sinai entropy rate of Equation (14), is determined by computing

the generalized entropy Sq(t) via Equation (11) for a fixed q and a given partition of the phase

space. Then, by varying the parameter q, the rate by which the entropy increases per time step

is determined as the slope of the curve Sq(t) vs. t, see Figure 18. Following [1,78], the value

of q = q⋆ at which the growth becomes linear (i.e., entropy extensive) is determined. Precisely,

assuming a polynomial dependence of entropy, Sq(t) = A+Bt+Ct2, in the time interval [t1, t2],

the nonlinear coefficient can be found as R = C(t1 + t2)/B. Then q⋆ corresponds to the point

where R(q) vanishes, as it is shown in the insets to Figure 18. Note that the values q⋆ < 0.5

are obtained both in the case of empirical data and data from agent-based simulations, suggesting

strong non-additivity of the entropy in the dynamics of emotional chats.
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Figure 17. Trajectories in the positive and negative valence regions. The distribution of

return times to a given area of phase space with positive and negative valence in online

Chats: from the emotion-annotated messages in the empirical data of Ubuntu chats (a) and

from agent-based simulations with neutral Bot (b) positive Bot (c) and negative Bot (d).

10-10

10-8

10-6

10-4

10-2

100

100 101 102 103 104 105

P
(∆

)

∆

(c)

PosB (v > 0)
PosB (v < 0)

fit (v > 0)
fit (v < 0)

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

100 101 102 103 104 105

P
(∆

)

∆

(d)

NegB (v > 0)
NegB (v < 0)

fit (v > 0)
fit (v < 0)

10-10

10-8

10-6

10-4

10-2

100

100 101 102 103 104 105

P
(∆

)

∆

(a)

Data (v > 0)
Data (v < 0)

fit (v > 0)
fit (v < 0)

10-10

10-8

10-6

10-4

10-2

100

100 101 102 103 104 105

P
(∆

)

∆

(b)

NeuB (v > 0)
NeuB (v < 0)

fit (v > 0)
fit (v < 0)

Figure 18. Generalized Kolmogorov-Sinai entropy for online chats. Sq(t) for different

values of nonextensivity parameter q plotted against time. Results obtained from empirical

data of Ubuntu chats (a) or agent-based simulations with silenced Bot (b) and for the active

positive Bot (c) and negative Bot (d). ǫ = 0.1, γ = 0.3. Open and filled symbols are used

for two different partitions of the phase space.
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5. Summary and Conclusions

Modern research approaches on quantitative analyses of online communications data have exposed

two major features of social dynamics: (a) online social phenomena possess their own regularities that

are not mere images of offline social behavior; (b) similarity in the observed collective behavior pertains,

to a certain extent, across diverse online communication systems. These findings induct a clear need for

better understanding the underlying dynamics and distinguishing the mechanisms at work, which may

lead to recognizable social phenomena at a large scale.

In this work, we have addressed these problems by means of data analysis and agent-based modeling.

We have demonstrated how different use of emotions in circumstances of online communications are

associated with two key mechanisms in the self-organized dynamics, which affect both the emerging

social structures and the nature of collective behavior on them. Specifically, by studying two prototype

systems—Blogs and IRC channels—we have recognized two distinct classes of the active mechanisms

underlying co-evolution of the network structure and emotion propagation, which leads to emotional

bursts. Their principal characteristics are summarized here.

• Excessive-negativity—Popularity—Local-communities: These mechanisms arise in the conditions

of indirect interaction between users, which are mediated by posted texts; they involve excessive

use of negative emotions (critique), which power the evolution of communities; the self-organized

process is highly persistent and it is distinguished by strong clusterings of emotional events;

spontaneous breaking into communities occur, leading to popularity of certain posts, which can be

tuned by varying the level of external influence;

• High-arousal—Susceptibility—Global-hierarchy: Such mechanisms are characteristic for knowl-

edge sharing dynamics via direct contacts between users. Disparity on the level of knowledge

(activity) between users inevitably leads to a hierarchical structure of connections. The process is

self-organized but with a moderate persistence and subcritical avalanches; emotional commitment

with a high arousal is relevant. However, typically balanced positive and negative emotional

valence, together with the hierarchical structure of the network, makes the system highly

susceptible for external emotional influence or activity of Bots.

Furthermore, performed a comparative analysis of the empirical data, where the presence of emotions

is recognized, with the agent-based modeling, where the interactions among agents are chiefly emotional,

but the profile of agents is statistically similar with the profile of users in the respective empirical

data, enables us to quantify the role of emotions in these communication systems. A detailed study

of topology of the networks emerging in emotional blogging by agents has been made in [45]. It has

been shown that global topology of the bipartite, as well as the projected monopartite structures, have

statistically similar characteristics as the networks constructed from the empirical data of ddDiggs. The

number of communities can be influenced [45] by varying the parameter f , the mean-field fraction in

Equations (5) and (6). A similar analysis, which is conducted for the networks emerging in the emotional

chats of agents in the presence of a neutral Bot in [30], revealed that salient features of the empirical chat

networks (including its disassortative mixing) are well reflected in the simulated data. In this work, we

have further extended these studies; specifically, we have examined the fractal stochastic processes in
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real systems (from their empirical data) in comparison with the processes simulated by the corresponding

agent-based model. The obtained quantitative measures of these fractal processes are summarized in

the Table 2.

These results suggest that a similar collective emotional behavior occurs in both agent-based

simulations and the related empirical data. Accordingly, the quantitative measures for the temporal

correlations, avalanching and persistence of the fluctuations indicate that we deal with the same type of

stochastic point processes. On the other hand, the quantitative differences between the corresponding

scaling exponents, shown in the Table 2, indicate to what amount the emotions play a role in the

particular system. For instance, the time series of the emotional messages in the simulated dynamics of

chats exhibits stronger temporal correlations and slightly larger persistence than the similar series in the

empirical system Ubuntu channel. Therefore, we may conclude that the model slightly exaggerates the

role of emotions, as compared with the real chat channel. However, in the case of blogging dynamics, the

situation is just the reverse. The temporal correlations and persistence are even greater in the emotional

messages of the empirical system ddDiggs than in the simulated data with the emotional interactions

among agents. These findings further reinforce the conclusions, obtained in Section 3.1 and in the

empirical data of [12], that the occurrence of communities at popular posts is powered by an excessive

use of negative emotions.

Table 2. Summary of the scaling exponents which characterize the fractality of dynamics of

blogs and online chats, from the empirical data and the related agent-based modeling.

ddDiggs data ABM blogging by Ubuntu channel data ABM emotional chats

popular posts emotional agents of online chats with a neutral Bot

φa 0.93(7) 1.18(11) 0.66(2) 0.84(6)

φ+ 0.77(8) 1.25(11) 0.55(2) 1.06(8)

φ− 0.84(8) 0.80(11) 0.50(2) 1.19(8)

Ha 1.035(3) 0.854(3) 0.796(5) 0.907(1)

H+ 0.901(3) 0.775(3) 0.834(2) 0.942(2)

H− 0.966(2) 0.809(5) 0.825(3) 0.971(2)

Even though the identified mechanisms are typical for the dynamics in Blogs and IRC channels,

respectively, we expect that they apply more commonly, i.e., in accordance with the associated type of

social structure co-evolving in the same self-organized process. It should be stressed that the entirely

different mechanisms are at work when the network is fixed, such as in the case online social network

MySpace, where the communities of “friends” already exist and the messages are exchanged directly

from user to user [16]. It was shown that in such direct communications often positive emotions

prevail [16], however, both negative and positive emotions may become dominant in the dialogs,

depending on the external input [46].

One of our main emphases in this work was on the nature of self-organized processes in IRC

channels and Blogs when the emotions are involved. Our quantitative analysis of these processes led

to the following conclusions. Firstly, the fractal structure of the underlying self-organized process is

compatible with the active mechanism of the use of emotions and the type of emergent social network.



Entropy 2013, 15 5116

Hence, the fractal characteristics of the process can be seen as the hallmark of the dynamical system.

Secondly, by means of several quantitative measures, we have made evident that these processes of

emotional interactions follow a generalized extensive entropy. Thirdly, these fractal characteristics of

the process as well as the co-evolution of the social network allow smooth spreading of the Bot’s impact

over the entire social structure. The Bot’s activity changes the quantitative measures of the process and

causes bi-layered network structure of the emotion-carrying links. Therefore, by measuring namely these

characteristics of the self-organized process and the co-evolving network one can reveal the behavior of

an (emotional) Bot in the system and can estimate its effectiveness. These findings shed a new light onto

complexity of online social dynamics. We hope that they may contribute to establishing a more robust

classification of the social phenomena on the Web as well as to initiate more theoretical and empirical

research along these lines.
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