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Transport of Strongly Correlated Bosons in an Optical
Lattice
Arya Dhar, Christian Baals, Bodhaditya Santra, Andreas Müllers, Ralf Labouvie,
Thomas Mertz, Ivana Vasic, Agnieszka Cichy, Herwig Ott,* and Walter Hofstetter
The transport of strongly correlated bosons in a three-dimensional optical
lattice is studied within the Bose–Hubbard approximation. The transport is
induced by a small displacement of the overall harmonic trapping potential.
The subsequent relaxation dynamics is monitored by high precision density
measurements with the help of scanning electron microscopy. Good
agreement with a real space time-dependent Gutzwiller mean-field descrip-
tion is found.
1. Introduction

Transport properties are among the most characteristic features
of materials. Understanding and engineering the transport of
mass, charge, spin, or heat opens the door for the development
of new devices with new functionality. For strongly correlated
materials, transport properties are especially difficult to describe,
yet, their understanding is mandatory to fully exploit their
application potential. Model systems, such as ultracold quantum
gases, are a class of tunable systems, which contain essential
aspects of real materials but are still conceptually simple enough
to be amenable to advanced theoretical modeling from first
principles, thus enabling quantum simulations of strongly
correlated condensed matter systems.[1] They are therefore ideal
candidates to understand the connection between microscopic
interaction mechanisms and global transport properties.
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Ultracold quantum gases have often
been studied in the context of being the
ground state of a many-body Hamilto-
nian.[2] In recent years, however, increasing
interest is focused on non-equilibrium
dynamics, especially with respect to trans-
port processes.[3,4] A paradigmatic class of
quantum gases are lattice gases, where the
particles are residing and moving in a
periodic potential, created by interfering
laser beams. Optical lattices allow for easy
control of the tunneling and interaction
parameters, thus tuning the correlations in
the system. At the same time, the system can be mapped onto
seminal model hamiltonians such as the Hubbard and the Bose-
Hubbard model.[5] The superfluid to Mott-insulator transition of
a bosonic gas[6] is a good example how microscopic interaction
and hopping mechanisms determine the quantum phases in the
lattice. Similarly, the interplay between onsite correlations and
hopping, and the resultingmetal to Mott-insulator transition has
been realized and studied with interacting spin-1/2 fermions in
an optical lattice.[7,8]

Transportprocesses inoptical latticeshavea long traditionin the
researchofultracoldquantumgases.[9] Inorder todirectlymeasure
transport in optical lattices, two experimental schemes have been
developed: the motion of the particles under the influence of a
constant force and the motion of a trapped atomic gas after a
displacement. In the first case, the generic dynamics are Bloch
oscillations,[10,11] whose contrast is strongly affected by the
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Figure 1. Setup. A cloud of ultracold bosons residing in a parabolic trap
with superimposed three-dimensional optical lattice is shifted out of its
equilibrium position. The subsequent relaxation dynamics is studied with
high precision density measurements. The sketched optical lattice on the
right side of the gas extends homogeneously over the whole cloud.
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presence of interactions with the same species or collisions with
another species.[12] Thedipolaroscillation inadisplaced trap[9,13,14]

is conceptually related to Bloch oscillation, as the physical
displacementofaparabolic trapcanbedescribedby theapplication
of a constant force. However, the inhomogeneity of the system
effectively emulates a varying local force on the atoms.

Within the Bose-Hubbard model, the generic expected
phenomenology is straightforward: below the quantum phase
transition to the Mott-insulator, the system is superfluid, while
for a Mott-insulator, transport should be essentially blocked.
Thus, in a trap displacement experiment, one expects an
oscillation of the whole cloud in the superfluid phase and the
absence of motion in the insulating regime. This simple
phenomenology is spoiled by several effects: the first is the
inhomogeneity of the system. In local density approximation,
this leads to a spatially varying chemical potential and the gas
develops a shell structure.[15] Superfluid motion is therefore
never fully suppressed. Moreover, the finite temperature, particle
hole excitations and the finite system size allow for a finite
mobility even in the Mott-insulating phase.[16] The overall
motion of the gas in the Mott-insulating phase is therefore
nontrivial and its theoretical description requires modeling and
simulating the real-space density distribution.

This was addressed in an early theoretical study,[17] where
interacting bosons in one- and two-dimensional optical lattices
were subject to a instantaneous displacement of a harmonic
confining trap, and the resulting dynamics of the many-body
system was investigated by time-dependent Gutzwiller theory.
While for weak interactions damped Bloch-type oscillations were
found, strong repulsive onsite interactions in 1d lead to the
formation of a Mott-insulator and complete blockade of the
dynamics. In two spatial dimensions, on the other hand, at
longer times a “melting” of the displaced Mott-insulator was
observed and, depending on the lattice geometry, also
thermalization toward an equilibrium state in the shifted trap.

The above considerations motivate a precision comparison
between experiment and theory, which allows to benchmark
theoreticalmodels and simulation techniques, and tounderstand in
moredetail, forexample, towhichextentcorrelationsbetweenlattice
sites have to be considered to describe the systemdynamics. Earlier
works have primarily focussed on the transport of weakly and
strongly interacting atoms in one-dimensional systems,[9,13,14]

where powerful numerical tools are available.[14] The experimental
signature of the transport was deduced from time offlight imaging.
However, to the best of our knowledge, the effects of interaction on
the transport of bosonic atoms in a three-dimensional optical lattice
has not been studied in detail with high precision both from an
experimental and numerical perspective.

In this work, we combine powerful experimental and
numerical in situ techniques to study the center of mass
motion of a bosonic quantum gas in a three-dimensional optical
lattice. Displacing the overall harmonic confinement by a small
amount, we induce the dynamics. By a high precision density
measurement, we monitor the density distribution with high
spatial resolution. Varying the lattice depth, we map out the
transport through the superfluid to Mott-insulator transition.
Slicing the cloud into different parts, we can also compare the
inner part of the cloud with the edges. The experimental results
are compared to time dependent mean-field calculations within
Phys. Status Solidi B 2019, 256, 1800752 1800752 (
the Gutzwiller ansatz. This method has been widely used to
study time-dependent bosonic lattice problems, such as the
creation of molecular Bose-Einstein condensate by dynamically
melting a Mott-insulator,[18] many-body dynamics after a sudden
shift of the harmonic trap,[17] creation of exotic condensates via
quantum-phase-revival dynamics,[19] the Higgs-amplitude mode
of strongly correlated lattice bosons,[20] collective modes of a
harmonically trapped, strongly interacting Bose gas in an optical
lattice,[21] quantum dynamics of interacting bosons in a three-
dimensional disordered optical lattice,[22] and many more.[23–32]

We also present results from a projection operator approach[33,34]

with a finite energy cut-off, which we find to agree well with the
Gutzwiller ansatz for our parameters.
2. Experimental Setup and Theoretical Model

The experimental sequence starts by preparing a Bose-Einstein
condensate of 87Rb atoms in an optical dipole trap, formed by a
single beam CO2 laser.

[35] The atomic gas is cigar-shaped and the
axial trap oscillation frequency is 10Hz, while the two transverse
oscillations frequencies are 145Hz in the horizontal and 80Hz in
the vertical direction, respectively. The latter is reduced due to the
gravitational sag. We then adiabatically switch on an anisotropic
three-dimensional optical lattice, whose depths can be tuned
individually in all three directions. After a short settling time, the
dipole trap is shifted in the horizontal direction within 2ms by
about 1mmwith the help of a piezo actuated mirror, thus forcing
the system out of equilibrium, (see Figure 1). The subsequent
relaxation dynamics is imaged with the help of scanning electron
microscopy (SEM)[36,37] for evolution times up to 150ms. During
the imaging procedure, the dynamics of the atomic cloud is frozen
out in the optical lattice by increasing its strength to a value where
tunneling is suppressed. FromtheSEMimageof theatomic cloud,
the size and the center- of-mass of the cloud are determined
(Figure 2). Furthermore, the images are dissected into different
slices for a detailed spatially resolved analysis of the mass
transport. The optical lattice has a tetragonal symmetry with a
lattice spacing of dz ¼ 547 nm in the axial direction and
dx ¼ dy ¼ 387 nm in the two transverse directions. Due to
geometrical constraints of the experimental setup, the orientation
of the two transverse lattice axes is rotated by 45 degrees with
respect to the vertical and horizontal direction.

The lattice depth is expressed in units of the recoil energy,
E ¼ �h2k2= 2mð Þ, where k ¼ π=d is the lattice vector and m is the
mass of the atoms. As there are two different lattice constants in
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2 of 8)
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Figure 2. Scanning electron microscopy image of the BEC for s ¼ 11. From Gaussian fits to the density distribution, we extract the center-of-mass of the
cloud. For a more detailed analysis, we additionally slice the cloud into different segments and analyze the slices individually. Exemplary, on the right
panel, we plot the radial atomic density for the second slice.
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the present setup, we define individual dimensionless lattice
depths,

sα ¼ Vα

Eα
ð1Þ

where the index α ¼ x; y; z denotes the corresponding lattice
height Vα and recoil energy Eα. The values of sα control the ratio
of the interaction energy to the tunneling amplitude, giving rise
to the different quantum phases of a Mott-insulator and a
superfluid.

The experimental system can be suitably described by the
Bose-Hubbard model in the lowest band approximation

H ¼ �
X
hi;ji

Jij b̂
†
i b̂j þ h:c:

� �
þU

2

X
i

n̂i n̂i � 1ð Þ

þ
X
i

ei � μð Þn̂i

ð2Þ

where b̂
†
i b̂i
� �

creates (annihilates) a bosonic particle at site i, n̂i

is the number operator at site i, Jij denotes the tunneling
amplitude between nearest neighboring sites hi; ji arising from
the different lattice constants along the three directions forming
the optical lattice, U is the onsite interaction energy, ei is the
potential energy at site i and m is the chemical potential.

The tunneling couplings Jij can take two different values,
depending whether the particle moves along the transverse x- or
y-direction (Jx ¼ Jy), or along the z-direction (Jz). Within the tight
binding approximation, the tunneling couplings Jα can be
related to the lattice parameter with the following approximative
expression,[38] valid for each lattice axis:

Jα �
4ffiffiffi
π

p sα
3=4Eαe

�2
ffiffiffi
sα

p
; α ¼ x; y; z: ð3Þ

The interaction energy for a tetragonal lattice reads[2]

U �
ffiffiffi
8
π

r
s3=4klaEr ð4Þ
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where s, kl, and Er are the geometric means of the individual
lattice directions. More precise values of the tunneling energy
and the interaction energy can be retrieved by a band structure
calculation, which we have used in this work. The values of U/J
addressed in this work ranges from 0.60 to 8.21, where
J ¼ 2 Jx þ Jy þ Jz

� �
.

To numerically study the relaxation dynamics after the shift of
the dipole trap center, we use the time-dependent Gutzwiller
mean-field approach, which is a well-established method,
especially for higher dimensional systems.[39,40] We first
calculate the ground state density distribution at T ¼ 0 for the
given experimental parameters (see Figure 3). We then time
evolve the system in the shifted trapping potential. To verify the
results obtained from this approach at higher values of the
interaction strengths, we retained first-order corrections due to
correlations within the realm of the projection operator approach
and compared the results obtained from both approaches.

To obtain the ground state, we use the time independent
Gutzwiller variational ansatz

jψGWi ¼
Y
�l

X
n

c lð Þ
n nil
�� ð5Þ

where l denotes the site index and nij denotes the Fock
occupation basis. The Gutzwiller state becomes exact in the limit
of large and small interactions. In order to find the ground state,
we minimize the energy functional of the full Hamiltonian with
respect to this state.

E ¼ hψGW Ĥ
�� ��ψGWi

hψGW ψGWi�� ð6Þ

This effectively reduces to a minimization with respect to the
coefficients, c lð Þ

n .
After computing the ground state, we proceed to study the

time dependence by considering the coefficients in the
Gutzwiller state as time dependent, that is, c lð Þ

n tð Þ.
By applying the time-dependent variational principle, we

obtain the equations of motion for all of the coefficients,
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim3 of 8)
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Figure 3. The ground state density distribution in the y ¼ 0 plane for
three values of s ¼ 7 (top), 13 (middle), 16 (bottom) as simulated using
Gutzwiller approximation. The density is given in atoms per lattice site.
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i@tc
lð Þ
n ¼ � Jl;l0

X
l0

c lð Þ
n�1

ffiffiffi
n

p
ϕl0 þ c lð Þ

nþ1

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
ϕ�
l0

h i

� μn�U
2
n n� 1ð Þ � ein

� �
c lð Þ
n

ð7Þ

where the sum over l0 goes over all the nearest neighboring sites
to l, and ϕl ¼ hali is the condensate fraction at site l. The above
equation corresponds to a set of Nc � L first order coupled
differential equations, where Nc is the size of the local Hilbert
space and L is the total number of sites.

To analyze the dynamics of the Bose-Hubbard model beyond
mean-field theory, we have also implemented the projection
operator approach.[33,34,41] This method uses a canonical
transformation such that it systematically eliminates hopping
processes which connect states with a large energy difference.
This energy cut-off is typically chosen as the onsite interaction
energy U. This will generate an effective low-energy
Phys. Status Solidi B 2019, 256, 1800752 1800752 (
Hamiltonian for the system in the strongly interacting limit.
It should be noted that choosing this energy cut-off as infinity
leads to the Gutzwiller mean-field approximation. The projection
operator method gives improved phase boundaries for the
superfluid to Mott-insulator transition, which are very close to
the numerically exact Monte Carlo data in three spatial
dimensions.[33]

To understand the projection operator approach, let us first
divide our model Hamiltonian into two parts, one containing the
interaction and one-body terms, and the other having the kinetic
energy part:

H ¼ H0 þ
X
hiji

Tij ð8Þ

where H0 ¼ U
2

P
in̂i n̂i � 1ð Þ � μn̂i þ ein̂i, and Tij ¼ �Jijb̂

†
i b̂j is

the anisotropic hopping rate. The kinetic energy can be written
as Tij ¼

P
βTij, where

Tβ
ij ¼ �Jij

X
n

gnβ jnþ 1iijn� βij ihnjjhn� βþ 1j ð9Þ

where gnβ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1ð Þ n� βþ 1ð Þp

. Tβ
ij connects local states

differing in energy by eβij ¼ βU þ ei � ej, where
β ¼ 0;�1;�2 . . .. Let us now introduce an energy scale, ΔE
such that we consider a hopping process to be a low-energy
process if eβij

��� ��� < ΔE. For each bond hiji, we introduce a set
βij : β 2 βij if the above condition is satisfied for the low energy
process.

We improve the variational ansatz to

ψ tð Þi ¼ e�iS tð Þ�� ��ψGWi ð10Þ

where ψGWi ¼ Q
l

P
nc

lð Þ
n tð Þjnil is the Gutzwiller wave function,

and the canonical transformation, S introduces correlations
between different lattice sites. The operatorS is defined in such
a way that higher order hopping terms in H�, as defined below,
are systematically removed up to the order J J==Uð Þm�1,

H� ¼ exp iSð ÞHexp �iSð Þ: ð11Þ

We limit ourselves to the leading approximation m ¼ 1,

S � �i
X
hiji

X
β=2βij

Tβ
ij

eβij
ð12Þ

The energy cut-off is set as U. From the time dependent
variational principle, we obtain improved equations of motion
for the coefficients c lð Þ

n tð Þ.[41]
3. Results

We first analyze the motion of the whole cloud during the
relaxation process. The results are summarized in Figure 4,
where the center-of-mass dynamics of the entire cloud after the
sudden shift of the dipole trap center is plotted for different
values of s ¼ sx ¼ sy ¼ 1:25sz. Figure 4 constitutes the main
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim4 of 8)
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Figure 4. Time evolution of the center-of-mass after the harmonic trapping potential center is suddenly shifted. The experiment has been performed for
different values of the lattice strength s as indicated in each of the subplots. Experimental data are shown in orange, the numerical simulation using time
dependent Gutzwiller approximation is shown in blue. The magenta dashed line shows the position of the equilibrium position.
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result of this work. An immediate look at the figure reveals the
remarkable agreement obtained between the experimental and
theoretical results for all the s values which have been
considered.

We now discuss some important features of the time
evolution as shown in Figure 4. For small values of s, there
are large oscillations of the center-of-mass around the new trap
center, shown by both theoretical and experimental results.
These oscillations can be attributed to the dipolar oscillations set
in by the sudden shift in the trap center.

The large amplitude of the oscillations can be traced back to
the superfluid ground state covering the entire cloud. As the
cloud is shifted by only two lattice sites, the whole cloud remains
in the lowest band upon the displacement. The amplitude of the
oscillations as obtained through the numerical simulations is
found to be slightly more than that observed in the experiment.
This can be due to the finite temperature effect in the
experiments, which decreases the condensate fraction in the
cloud, and introduces thermal fraction. On the contrary, the
numerical simulations are carried out at zero temperature with
the entire cloud being in the superfluid phase. The frequency
difference of about 10 percent, which is visible for s ¼ 7 and
s ¼ 10, is most likely due to a long term drift of the dipole
trapping potential between the initial calibration measurement
and the actual experimental runs.
Phys. Status Solidi B 2019, 256, 1800752 1800752 (
More interesting features in the dynamics appear for
increasing lattice depth. The relaxation dynamics is not only
slowed down by the decreasing tunneling coupling, the results
change also qualitatively. Already for s ¼ 11, there are practically
no oscillations sustained for longer times. The center-of-mass
overshoots the new trap center, but then slowly converges to the
equilibrium value. We attribute the absence of oscillations to the
interplay between the interaction and closed single particle
orbits, which are due to the fact that the bandwidth is smaller
than the chemical potential. Going from s ¼ 12 to s ¼ 13 shows a
remarkable difference in the initial dynamics of the center-of-
mass of the cloud. The system displays the initial fast movement
for both the s values. For s ¼ 12, it reaches the equilibrium value,
whereas for s ¼ 13, even for longer timescales, a small offset
remains (see Figure 5, where we show the experimental data for
a 5 times longer times scale).

Hereafter the systemmovement becomes significantly slower.
For larger s values, the center-of-mass is not able to reach the new
trap center in the timescales observed in the experiment. This is
caused by the decrease of the condensate fraction and rise in the
Mott-insulating region in the cloud, which prohibits the
transport of the bosonic atoms. Higher values of s correspond
to higher interaction strengths between the atoms, leading to
localized wavefunctions describing them. For s ¼ 16, the
movement of the entire cloud is practically negligible compared
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim5 of 8)
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Figure 5. COM dynamics for longer times as observed in the experiment
for higher values of s.

Figure 6. Ground state condensate fraction, explained in the text, for
different slices marked by green dashed lines for various s values.
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to the shift due to presence of the incompressible Mott-
insulating region encompassing a vast region of the cloud.

To confirm our results, we looked at the ground state density
distribution for the extreme values of s from the numerical
simulations using Gutzwiller approximation and indeed, we find
the superfluid and Mott-insulating phases in the cloud as shown
in Figure 3. It shows the existence of superfluid phase in the
entire cloud for s ¼ 7 whereas for s ¼ 13, a thinMI shell arises in
the intermediate region of the cloud, and a clear density plateau
for s ¼ 16 implies the appearance of Mott-insulating region at
the central part with superfluid wings. The simulations were
carried out with typical system sizes of 25� 25� 180 sites along
x,y,z directions, respectively. The larger number of sites along
the z direction, which has the weakest trapping amplitude, were
taken in accordance with the experiment. The choice of chemical
potential was done such that the total number of particles were
�30000. Depending on the s-value, a convergence test was
performed to select the appropriate occupation cut-off on a
single site.

To have a deeper understanding of the movement of the
atoms, we sliced the cloud in several sections as shown in
Figure 2. The width of each of the slices is 100 pixels, which
correspond to �15 μm. The slices are paired because of the
mirror symmetry. Each slice is integrated in the axial direction to
get a 1D profile, which is fitted with a Gaussian function to
determine its center. The error of this center is given by the
standard deviation σ from the Gaussian fit divided by

ffiffi
I

p
, where I

is the summed intensity of the corresponding slice.
Since the movement of the atoms is related to the superfluid

nature of the atomic cloud, it is instructive to first look at the
condensate fraction of the different parts of the cloud, defined as

Φ ¼
X
i2slice

ϕ2i
ni

ð13Þ

where ϕi ¼ hbii at site i. This quantity cannot be measured in the
current experimental setup and we resort to the numerical
simulations, having already established the reliability on the data
obtained from time-dependent Gutzwiller method. Figure 6
Phys. Status Solidi B 2019, 256, 1800752 1800752 (
shows the condensate fraction of different slices corresponding
to different values of s. For s ¼ 7, we see that the entire cloud has
condensate fraction close to 1. As the lattice depth increases, the
condensate fraction in the inner slices decreases much faster
than in the outer wings. This is a clear signature of the increasing
Mott-insulating character in the inner sections of the cloud.
Consequently, we expect for all lattice parameters a larger
mobility of the atoms towards the edges of the cloud.

Figure 7 shows the comparison between experiment and
theory for the individual slices for s ¼ 13. The experimental data
for all slices look very similar. A closer look reveals that the outer
slices show a slightly faster motion toward the equilibrium
position as compared to the inner slices. For all slices, no
oscillations are visible. The theoretical simulation shows a
similar trend with respect to the motion: the inner slices have a
slower initial motion towards the equilibrium position. This is
compatible with the onset of a Mott-insulator shell in the trap
center at s ¼ 13. For the outer slices, however, the simulations
predict clearly visible oscillations. This is in contrast to the
experimental findings. From an analysis of the numerical data,
we find that the outer shells indeed host a superfluid and can
therefore undergo a damped oscillation. Two reasons can be
responsible for the absence of oscillations in the experiment: In
the experiment, we have a finite temperature of about T ¼ 30 nK.
This is already sufficient to smear out the shell structure of the
Mott-insulator plateaus significantly,[16] thus smearing out the
dynamics of the slices. Another consequence of the finite
temperature is the appearance of a normal (thermal) component
at the edges of the cloud, which is not undergoing superfluid
behavior. The appearance of a thermal component goes along
with a depletion of the superfluid fraction. Note that the
bandwidth of the optical lattice for s � 12 is smaller than the
thermal energy. This interpretation is compatible with the fact
that the overall center-of-mass motion shows very good
agreement, indicating the presence of an effective smearing
out taking place in the experiment. A comparison of the
individual slices for a lattice depth of s ¼ 16 shown in Figure 8
shows qualitatively similar results. Again, the outer slices show
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim6 of 8)
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Figure 7. Comparison of the center-of-mass dynamics for different slices
from the experiment (orange) and numerical simulations (blue) for
s ¼ 13. The slices are defined in Figure 2.

Figure 9. COM dynamics for a smaller system size obtained from time-
dependent Gutzwiller (blue) and the projection operator approach
method (magenta).
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residual oscillations. Note that these oscillations persist, even
though the cloud is well in the Mott-insulating regime. In
addition to the above two reasons, one should also take into
account the fact that the Gutzwiller approximation overestimates
the condensate fraction, as discussed in ref. [33]. This can also
contribute to the discrepancy between the theory and experi-
mental results for the motion of the outer slices.

The results obtained from the time-dependent Gutzwiller
method ignores quantum correlations between the different
lattice sites. We implement an independentmethod based on the
projection operator approach to include additional quantum
correlations. The main motivation for this endeavour is to
investigate the validity of the approximation in the Gutzwiller
method. As discussed before, the projection operator approach
with an infinite energy cut-off reduces to the Gutzwiller mean-
field theory. Keeping a finite energy cut-off equal to the
corresponding U, we can thus include hopping processes which
Figure 8. Comparison of the center-of-mass dynamics for different slices
from the experiment (orange) and numerical simulations (blue) for
s ¼ 16. The slices are defined in Figure 2.

Phys. Status Solidi B 2019, 256, 1800752 1800752 (
do not change the energy more than the energy cut-off, thus
retaining quantum correlations with neighboring sites. How-
ever, for the projection operator approach, we are limited by
smaller system sizes. Figure 9 shows the COM dynamics for a
smaller system size (12� 12� 14 along x� y� z) for s ¼ 16
obtained from time-dependent Gutzwiller projection operator
approach method. Indeed they show remarkable agreement for
timescales studied in this work. This result thus confirms the
validity of the Gutzwiller approximation in this parameter
regime.
4. Conclusions

We have studied transport of interacting bosons in an optical
lattice, for a range of interaction strengths across the superfluid
to Mott-insulator quantum phase transition, by using a high
resolution scanning electron microscopy technique. We have
clearly observed dipolar oscillations in the superfluid regime,
whereas in the presence of a pronounced Mott-plateau the
system showed a strongly suppressed mobility due to sup-
pressed tunneling. We compared our experimental findings to
simulations based on time-dependent Gutzwiller theory, and
found very good agreement. For smaller system sizes, the time
dependent Gutzwiller method was successfully benchmarked
with the projection operator approach. Several open questions
will be the subject of future research. These include the possible
melting of the Mott-insulator at long time scales and the
dependence of thermalization dynamics on the lattice geometry,
as indicated by earlier studies.[17] Furthermore, it would be of
interest to take into account by more advanced simulation
techniques also the tunneling dynamics of the normal bosonic
component at finite temperature.
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