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Abstract.  Percolation properties of two-component mixtures are studied by 
Monte Carlo simulations. Objects are deposited onto a substrate according to 
the random sequential adsorption model. Various shapes making the mixtures 
are made by self-avoiding walks on a triangular lattice. Percolation threshold 
θp for mixtures of objects covering the same number of sites is always lower 
than θp for the more compact object, and it can be even lower than θp for both 
components. Mixtures of percolating and non-percolating objects almost always 
percolate, but the percolation threshold is higher than θp for the percolating 
component. Adding a shape of high connectivity to a system of compact non-
percolating objects, makes the deposit percolate. Lowest percolation thresholds 
are obtained for mixtures with elongated angled objects. Dependence of θp on 
the object length exhibits a minimum, so it could be estimated that the angled 
objects of length 6 � � � 10 give the largest contribution to the percolation.
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1.  Introduction

Irreversible deposition or random sequential adsorption (RSA) model has a wide range 
of applications in biology, nanotechnology, material science and even some ecological 
and sociological problems. Depending on the problem of interest, depositing objects 
can be various macromolecules, proteins, DNA segments, polymer chains, nanotubes, 
colloidal particles etc [1–4]. If the relaxation times are much longer than the deposit 
formation, adsorption of these objects can be modeled by irreversible deposition of vari-
ous shapes on a lattice or continuum substrate.

In RSA models particles are randomly, sequentially and irreversibly deposited onto 
a substrate. The particles are not allowed to overlap, so the dominant eect in RSA is 
the blocking of the available substrate area and the limiting (jamming) θjam coverage is 
less than in close packing. The kinetic properties of a deposition process are described 
by the time evolution of the coverage θ(t), that is the fraction of the substrate area 
occupied by the adsorbed particles [5–7].

Depending on the studied system, the substrate can be continuum or discrete, and 
RSA models can dier in substrate dimensionality. Exact solutions are available only 
for a number one-dimensional problems [8, 9]. Due to the complexity of the geometrical 
exclusion eects in two and three dimensions, Monte Carlo simulations are one of the 
primary investigating tools for these deposition processes [10–15].

The long-term behavior of the coverage fraction θ(t) is known to be algebraic for 
continuum systems [2, 11] and exponential for lattice models [12, 14]. For discrete sub-
strates the late time kinetics of the process is described by the time dependence:

θ(t) = θjam − Ae−t/τ ,� (1)

where A and τ  are parameters that depend on the shape, orientational freedom of the 
objects, and on the dimensionality of the substrate.

During the process of irreversible deposition, coverage increases causing the growth 
of clusters of occupied sites. Percolation assumes the formation of a large cluster that 
connects two opposite sides of the substrate [16]. The interplay between RSA and per-
colation has been discussed in several works [17–19]. Motivated by irreversible deposi-
tion of large particles, such as polymers, the temperature behavior of the percolation 
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threshold of adsorbed flexible chains was studied in [20]. Percolation properties of 
flexible chains were discussed in [21] for the square and for the triangular lattice. 
Simulations were performed for various chain lengths and the compositions that give 
minimum percolation thresholds were identified. For longer and more bent chains non-
percolation regime was observed. Results for the percolation thresholds, jamming cov-
erages and their ratios for deposition of various objects on a triangular lattice were 
presented in [22]. Depositing objects of various shapes were made by self-avoiding 
random walks on the lattice. It was found that the percolation threshold monotoni-
cally decreases for elongated shapes and increases for more compact objects with the 
object size. For compact objects of larger sizes jamming coverage was reached before 
the percolation.

Percolation has also been studied in the presence of defects on a lattice [23, 24]. For 
each object shape there is a concentration of defects above which percolation cannot 
be achieved. Generally, the critical defect concentration has higher values for objects 
forming more porous surface configurations, and lower values for compact objects.

Existence of percolation is relevant for many physical, chemical and biological phe-
nomena. Particle transport in overcrowded media, such as dense colloidal suspensions, 
supercooled liquids, diusion of proteins in crowded environment of nucleic acids and 
other macromolecules, is highly aected by the density of obstacles. In [25] it has 
been shown that anomalous diusion sets on when the obstacles reach the percolation 
threshold.

Polydispersity is a common feature of real physical systems. There are numerous 
studies of irreversible deposition of mixtures, including binary mixtures [26, 27], as well 
as polydisperse mixtures [28]. Reversible RSA of mixtures on a triangular lattice has 
also been studied [29]. Motivated by a broad application of the results for percolations 
in various systems, we present the results for percolation in irreversible deposition of 
binary mixtures. Depositing objects are made by self-avoiding random walks on a tri-
angular lattice.

The paper is organized as follows. Section 2 describes the details of the model and 
simulations. Results and discussions are given in section 3, while section 4 contains 
some additional comments and final remarks.

2. Definition of the model and the simulation method

Depositing objects of various shapes are made by self-avoiding walks on a triangular 
lattice. Binary mixtures are composed of the objects shown in tables 1–3. The Monte 
Carlo simulations are performed on a triangular lattice of size up to L  =  3200. For 
the approach to the jamming coverage, periodic boundary conditions are used in all 
directions. On the other hand, when studying percolation, hard boundary conditions 
are used in the horizontal direction, in which the onset of percolation is detected, and 
periodic boundary conditions in the other two directions.

At each Monte Carlo step a lattice site is selected at random. If the selected site 
is unoccupied, one of the objects making the mixture is chosen uniformely at random 
and deposition of the selected object is tried in one of the six orientations. We fix the 
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beginning of the walk that makes the shape at the selected site and search whether 
all successive � sites are unoccupied. If so, we occupy these �+ 1 sites and place the 
object. If the attempt fails, a new site and a depositing object is selected at random. 
The jamming limit is reached when neither of the objects can be placed in any position 
on the lattice.

The time is counted by the number of attempts to select a lattice site and scaled 
by the total number of lattice sites. In all the simulations the data are averaged over 
500 independent runs.

In this work we concentrate on the study of percolation in irreversible deposition 
of binary mixtures. The coverage of the surface is increased in the RSA process up to 
the percolation threshold, when there appears a cluster that extends through the whole 
system—from the left to the right side of the lattice. The tree-based union/find algo-
rithm is used to determine the percolation threshold [30]. Each cluster of connected 
sites is stored as a separate tree, having a single ‘root’ site. All sites of the cluster pos-
sess pointers to the root site, so it is simple to ascertain whether two sites are members 
of the same cluster. When a deposited object connects two separate clusters, they are 
amalgamated by adding a pointer from the root of the smaller cluster to the root of the 
larger one. This procedure is repeated until the percolation threshold is reached, i.e. 
until the opposite sides of the lattice are connected by a single cluster.

3. Results and discussion

Jamming coverages and percolation thresholds were first determined for the objects 
given in table 1. It is important to note that a walk of length � always covers �+ 1 lat-
tice site. Analyzing the three representative sets of lengths � = 2, 3, and 6, we can see 
that the percolation threshold for the objects covering the same number of sites has 
the lowest value for the elongated shapes containing an obtuse angle (in further text 
referred to as the angled objects). On the other hand, compact objects, such as trian-
gles, rhombuses and hexagons, have a lower connecting probability and higher values of 
the percolation thresholds. The number of nearest neighbors m seems to be a quantity 
that is closely related to the connectivity, and it is included in table 1. It can be seen 
that the percolation threshold decreases with m for objects of the same length. These 
conclusions were driven from simulations performed for a large variety of objects [22].

The eective percolation threshold θp (measured for a finite lattice) approaches the 
asymptotic value θ∗p (L → ∞) via the power law:

θp − θ∗p ∝ L−1/ν .� (2)

The theoretical value for the critical exponent is ν = 4/3 for two-dimensional systems. 
Simulations were performed for the lattice size ranging from L  =  200 to L  =  3200 for 
the mixtures (B) + (C), (E) + (K) and (T ) + (S). Plots of the mean value of θp obtained 
for various lattice sizes against L−1/ν, shown in figure 1, confirm the validity of the 
finite-size scaling. Although θp is sensitive to the lattice size L, the asymptotic value 
of the percolation threshold θ∗p coincides with the value of θp obtained for the largest 
lattice, within the limits of the statistical error. Thus, results for a suciently large 
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lattice can be taken instead of the asymptotic value θ∗p. The similar method was used 
in [23]. For further analysis of the percolation threshold of mixtures we take the results 
for L  =  3200.

According to the scaling theory, the standard deviation σp of the percolation thresh-
old measured for a finite lattice L satisfies the power law

Table 1.  Samples of depositing objects (x), with m nearest neighbors and of length 
�(x). The jamming coverages θjam and the percolation thresholds θp are given for 
the illustration of their percolation properties. The numbers in parentheses are the 

numerical values of the standard uncertainty of θ
(x)
jam and θ

(x)
p  referred to the last 

digits of the quoted value.

(x) Shape m �(x) θ
(x)
jam θ

(x)
p

(A) 8 1 0.9139(5) 0.4841(13)
(B) 10 0.8362(7) 0.4611(9)
(C) 10 2 0.8345(8) 0.4585(11)
(D) 9 0.7970(4) 0.5214(9)
(E) 12 0.7886(8) 0.4399(12)
(F) 12 3 0.7653(10) 0.4304(12)
(K) 10 0.7593(4) 0.5387(6)
(S) 18 0.7212(7) 0.4145(17)
(T) 12 6 0.6696(8) 0.5843(13)

(R) 18 0.6445(10) 0.3831(14)

Figure 1.  Finite-size scaling of the mean value of the percolation threshold θp 
against L−1/ν for the mixtures (B) + (C), (E) + (K) and (T ) + (S) (see table 2). 
Straight lines represent linear fit of the form θp = θ∗p + L−1/ν, where the asymptotic 

value of the percolation threshold θ∗p coincides with the value θp obtained for the 
largest lattice, within the statistical error.
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σp ∝ L−1/ν .� (3)

Scaling of the standard deviation σp is ilustrated for the mixtures (B) + (C), (E) + (K) 
and (T ) + (S) in figure 2. The values of σp are shown versus L on a log–log scale and 
they lie on parallel straight lines. The slope of the lines corresponds to the exponent 
1/ν = 0.74± 0.01.

In order to gain an insight into the way the combinations of object shapes aects 
the percolation properties, simulations were performed for the mixtures of objects cov-
ering the same number of lattice sites, shown in table 2. We can see that the value of 
θp of a mixture is either between the values for the mixture components, or lower than 
the percolation thresholds for both shapes making the mixture, due to the high con-
nectivity of both mixture components.

Results are also obtained for larger sizes of the basic objects shown in table  3. 
Larger elongated objects, k-mers and angled objects, are made by repeating each step 
of the basic shape the same number of times. Compact objects of larger sizes, triangles, 
rhombuses and hexagons, occupy all comprised sites on the lattice. Jamming coverage 
decreases with the object size for all objects shapes. On the other hand, for the elon-
gated angled object percolation threshold θp decreases with their size, but increases for 
the compact ones [22]. In table 4 jamming coverages and percolation thresholds are 
given for triangles, rhombuses and hexagons of various sizes. Values of the jamming 
coverages decrease, while the percolation thresholds increase with the object size and 
for larger objects jamming coverage is reached before the percolation. For the most 
compact object, hexagon, percolation is possible only for the basic shape.

It is interesting to examine the behavior of mixtures of percolating and non-percolating 
objects. In table 5 results are given for a large number of combinations of objects of 
various shapes and sizes. Notations in the table 5 coincide with those from tables 1–4 
for triangles, K for rhombuses and T for hexagons. The index number stands for the 
number of steps of the walk making the shape. For mixtures of two non-percolating 

Figure 2.  Finite-size scaling of the standard deviation σp against L for the mixtures 
(B) + (C), (E) + (K) and (T ) + (S) (see table 2).

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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objects percolation was never reached. On the contrary, mixtures containing one per-
colating object, even if it is a compact one, and one non-percolating object, exhibit 
percolation. In the latter case the percolation threshold for the mixture is always larger 
than θp for the percolating object. Adding non-percolating objects to the system of 
percolating ones, makes the connecting of the objects on the lattice more dicult and 
percolation sets in at larger values of coverage fractions.

Mixtures were made of non-percolating objects and objects with better connectivity 
that easily reach percolation. Simulations were performed for the mixtures of k-mers 
of various lengths and the non-percolating triangles, rhombuses and hexagons denoted 
as (D20), (D27), (K15), (K24), (T18), and (T36). The percolation threshold θp and the jam-
ming limit θjam, as well as their ratio θp/θjam, are plotted versus the length of the k-
mer combined with the mentioned non-percolating objects in figure 3. It can be seen 
that the jamming coverage monotonically decreases with the length � of the k-mers, 
while the percolation threshold decreases for shorter k-mers, reaches a minimum and 
slightly increases for longer k-mers. The ratio θp/θjam increases for all the mixtures. As 
expected, the highest values of θp are obtained for the mixtures containing the larger 
hexagon (T36), and a little lower for the smaller hexagon (T18) (see, figure 4). Values 
of θp for (K24) and (D27) and also for (K15) and (D20) are intertwined when varying the 

Table 2.  Jamming θ
(x+y)
jam  and and percolation threshold θ

(x+y)
p  for the binary 

mixtures composed of the objects of the same length �. The numbers in parentheses 

are the numerical values of the standard uncertainty of θ
(x+y)
jam  and θ

(x+y)
p  referred to 

the last digits of the quoted value.

(x  +  y ) Shape � θ
(x+y)
jam θ

(x+y)
p

(B  +  C) 0.8525(7) 0.4587(12)
(B  +  D) 2 0.8588(6) 0.4926(12)
(C  +  D) 0.8625(7) 0.4910(12)
(E  +  K) 0.8107(8) 0.4901(13)
(E  +  F) 3 0.7878(9) 0.4350(11)
(K  +  F) 0.8141(7) 0.4875(12)
(T  +  S) 0.7125(7) 0.4991(16)

(T  +  R) 6 0.7089(8) 0.4919(15)

Table 3.  Basic shapes used for the construction of objects of larger sizes.

Shape �(x)

1

2
2

3

6

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Table 4.  Values of the jamming coverages and the percolation thresholds for 
compact objects of larger sizes. For larger sizes of compact objects a no-percolation 
regime is observed.

(x�) Shape �(x) θ
(x)
jam θp

(D2) 2 0.7970(4) 0.5214(9)
(D5) 5 0.7211(5) 0.5524(14)

(D9) 9 0.6816(6) 0.5789(15)

(D14) 14 0.6572(6) 0.6003(5)
(D20) 20 0.6406(8) /
(D27) 27 0.6286(7) /

(K3) 3 0.7591(4) 0.5393(12)
(K8) 8 0.6793(6) 0.5793(14)

(K15) 15 0.6428(7) /
(K24) 24 0.6220(7) /

(T6) 6 0.6696(5) 0.5843(13)

(T18) 18 0.6148(6) /

(T36) 36 0.5942(8) /

Table 5.  Values of the percolation thresholds for mixtures of one percolating x� 
and one non-percolating object y�.

(x� + y�) θ
(x)
p ,    θ

(y)
p θx+y

p

(D2 +D20) 0.5214(9), no 0.5646(14)
(D2 +D27) 0.5214(9), no 0.5699(13)
(D5 +D20) 0.5524(14), no 0.5805(15)
(D5 +D27) 0.5524(14), no 0.5858(15)
(D9 +D20) 0.5789(15), no 0.5977(18)
(D9 +D27) 0.5789(15), no 0.6035(18)
(D14 +D20) 0.6003(5), no 0.6109(17)
(D14 +D27) 0.6003(5), no 0.6196(19)
(K3 +K15) 0.5393(12), no 0.5715(14)
(K3 +K24) 0.5393(12), no 0.5805(14)
(K8 +K15) 0.5793(14), no 0.5927(15)
(K8 +K24) 0.5793(14), no 0.6036(15)
(K3 +D20) 0.5393(12), no 0.5726(13)
(K3 +D27) 0.5393(12), no 0.5780(14)
(K8 +D20) 0.5793(14), no 0.5971(16)
(K8 +D27) 0.5793(14), no 0.6025(15)
(D2 +K15) 0.5214(9), no 0.5641(13)
(D14 +K15) 0.6003(5), no 0.6051(6)
(D14 +K24) 0.6003(5), no 0.6202(17)
(T6 + T18) 0.5843(13), no 0.6110(14)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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length of the k-mer as the second component of the mixture. For suciently short 
k-mers percolation threshold for mixtures with objects (D27) and (D20) are below the 
thresholds for mixtures with objects (K24) and (K15), respectively. For longer k-mers, 
the inversion of percolation thresholds for these mixtures occurs. This means that in 
the case of mixtures with shorter k-mers percolation is reached more easily when the 

(a) (b)

(c) (d)

(e) (f)

Figure 3.  Dependence of the percolation threshold θp, the jamming coverage θjam 
and their ratio θp/θjam on the length of k-mer combined with non-percolating 
object: (a) triangle (D20), (b) triangle (D27), (c) rhombus (K15), (d) rhombus (K24), 
(e) hexagon (T18) and (f) (T36).

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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second component is a triangle, and for longer k-mers the situation is inverse, percola-
tion is favored for the mixtures with rhombuses. A striking feature of the plots shown 
in figure 4 is that the minimum θp is obtained for the same value of the k-mer length, 
� = 7, regardless of the second mixture component. It should be mentioned that the 
obtained minimum is broad, with the values of θp for the k-mers diering in one lattice 
spacing being within the statistical error.

In addition, results were obtained for the mixtures of angled objects (Cl) of var-
ious sizes and the non-percolating objects (D20), (D27), (K15), (K24), (T18), and (T36). 
Corresponding plots of θp, θjam and θp/θjam are shown in figure  5. These plots look 
similar to those for the mixtures of k-mers of various lengths and the chosen compact 
objects. The jamming coverage monotonically decreases, and the percolation threshold 
exhibits a minimum. Figure 6 shows the impact of the compact (non-percolating) object 
shape on the percolation threshold of the mixture. Values of θp for the mixtures of non-
percolating objects and angled objects are even more intertwined than in the case of 
mixtures with k-mers. For most of the examined lengths of the angled objects, θp has 
largest values when the other component of the mixture are hexagons (T36) for shorter 
(Cl), and (T18) for longer ones. The lowest values of θp are obtained for the combina-
tions of triangles and angled objects, with the component (D20) for shorter (Cl), and 
with (D27) for the longer angled objects. Similarly as in the case of k-mers of various 
lengths, these plots exhibit a minimum. For most of the examined mixtures the mini-
mum values of the percolation threshold are reached for � = 8, but for the combination 
(Cl +K15) it is shifted to � = 6. For the mixture (Cl + T36) containing the larger hexa-
gon, the object with the lowest connectivity of all examined objects, the minimum of θp 
is obtained for � = 10. Increasing the length of the percolating object combined with a 
non-percolating one, the percolation threshold decreases, reaches a minimum value and 

Figure 4.  Dependance of the percolation threshold θp on the length of k-mer for 
the various mixtures made of k-mers and non-percolating triangles, rhombuses and 
hexagons, as indicated in the legend.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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increases for longer percolating objects. Decrease of θp for shorter percolating objects 
is due to the increase of the surface porosity with �. On the other hand, in the case of 
mixtures of non-percolating objects and longer percolating objects it is more dicult 
to reach the percolation, and θp increases with � of the percolating component, getting 
closer to the jamming coverage.

(a) (b)

(c) (d)

(e) (f)

Figure 5.  Dependence of the percolation threshold θp, the jamming coverage θjam 
and their ratio θp/θjam on the length of angled object (Cl) combined with non-
percolating object: (a) triangle (D20), (b) triangle (D27), (c) rhombus (K15), (d) 
rhombus (K24), (e) hexagon (T18) and (f) (T36).

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Let us now compare the percolation thresholds for the mixtures consisting of certain 
non-percolating objects and k-mers with those with angled objects instead of k-mers. 
In figure 7 plots are given for the mixtures of k-mers and angled objects of various 
lengths with triangles of two sizes: (D20) and (D27). We can see that the percolation is 
favored for the mixtures containing angled objects, in comparison to the mixtures with 
k-mers of various lengths. Similar plots are shown in figures 8 and 9 for the mixtures of 
rhombuses and hexagons with k-mers and angled objects of various lengths. Generally, 

Figure 6.  Dependance of the percolation threshold θp on the length of angled 
object (Cl) for the various mixtures made of angled objects (Cl) and non-percolating 
objects, as indicated in the legend.

Figure 7.  Dependance of the percolation threshold θp on the length of k-mer/
angled object for the mixtures of k-mers and angled objects with triangles of two 
sizes D20 and D27.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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percolation sets in more easily in combinations with angled objects. It should be noted 
that in the case of the mixture of the larger hexagon and the angled object of length 
� = 20, percolation is not reached. This is the consequence of the enhanced blocking of 
the substrate area in this case. On the other hand, for the mixture C18 + T36 percola-
tion threshold has lower value than for C16 + T36, due to the more pronounced porosity 
of the surface in the case of longer angled object. It is interesting that for the mixtures 

Figure 8.  Dependance of the percolation threshold θp on the length of k-mer/
angled object for the mixtures of k-mers and angled objects with rhombuses of two 
sizes K15 and K24.

Figure 9.  Dependance of the percolation threshold θp on the length of k-mer/
angled object for the mixtures of k-mers and angled objects with hexagons of two 
sizes T18 and T36.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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containing angled objects lower values of θp are obtained for larger sizes of the non-
percolating component.

All these results suggest that mixtures of objects of higher and lower percolating 
thresholds show better percolating performance than the object that reaches percola-
tion at higher coverages. Moreover, adding percolating objects with good connectivity 
to a system of non-percolating objects, makes the deposit percolate. It seems that the 
best connectivity is obtained for elongated, but angled objects that can make paths 
through various geometries of vacant sites.

4. Concluding remarks

Percolation phenomena have been investigated for a wide variety of binary mixtures by 
Monte Carlo simulations. Depositing objects were made by self-avoiding lattice steps 
on a triangular lattice and irreversibly placed on the substrate.

For the mixtures of object shapes covering the same number of sites it was found 
that the percolation threshold for mixtures is always lower than θp for the more com-
pact object. When objects of high connectivity are combined, it can be even lower than 
θp for both components.

Mixtures of percolating and non-percolating objects almost always percolate, but 
the percolation threshold is higher than θp for the percolating component. Adding a 
component with good percolating properties to a system of non-percolating objects 
makes the resulting deposit percolate. For example, mixtures of k-mers and compact 
non-percolating objects exhibit percolation, and θp reaches a minimum value for the 
k-mer of length � = 7. Elongated angled objects have the lowest percolation thresholds, 
due to the porosity of the surface. In combinations with non-percolating objects they 
also give the lowest percolation thresholds of all investigated objects. A minimum of θp 
for the examined mixtures was obtained for 6 � � � 10.

Thus, percolation of a deposit can be enhanced by adding a component with better 
percolating properties. Further investigations could be focused on percolation of mix-
tures with various fractional concentrations of mixture components, as well as on the 
percolation properties of polydisperse mixtures.
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