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Bad-metal (BM) behavior featuring linear temperature dependence of the resistivity extending to well
above the Mott-Ioffe-Regel (MIR) limit is often viewed as one of the key unresolved signatures of strong
correlation. Here we associate the BM behavior with the Mott quantum criticality by examining a fully
frustrated Hubbard model where all long-range magnetic orders are suppressed, and the Mott problem can
be rigorously solved through dynamical mean-field theory. We show that for the doped Mott insulator
regime, the coexistence dome and the associated first-order Mott metal-insulator transition are confined to
extremely low temperatures, while clear signatures of Mott quantum criticality emerge across much of the
phase diagram. Remarkable scaling behavior is identified for the entire family of resistivity curves, with a
quantum critical region covering the entire BM regime, providing not only insight, but also quantitative
understanding around the MIR limit, in agreement with the available experiments.

DOI: 10.1103/PhysRevLett.114.246402 PACS numbers: 71.27.+a, 71.30.+h

Metallic transport inconsistent with Fermi liquid theory
has been observed in many different systems; it is often
linked to quantum criticality around some ordering phase
transition [1,2]. Such behavior is notable near quantum
critical points in good conductors, for example in heavy
fermion compounds [3,4]. In several other classes of materi-
als, however, much more dramatic departures from con-
ventional metallic behavior are clearly observed, where
resistivity still rises linearly with temperature, but it reaches
paradoxically large values, well past the Mott-Ioffe-Regel
(MIR) limit [5,6]. This bad-metal (BM) behavior [7]was first
identified in the heyday of high-temperature superconduc-
tivity, in materials such as La2−xSrxCuO4 [8]. While the
specific copper-oxide family and related high-Tc materials
remain ill-understood and marred with controversy, it soon
became clear that BM behavior is a much more general
feature [6] of materials close to the Mott metal-insulator
transition (MIT) [9]. Indeed, it has been clearly identified
also invarious oxides [10,11], organicMott systems [12–14],
as well as more recently discovered families of iron pnictides
[15]. Despite years of speculation and debate, so far its clear
physical interpretation has not been established.
To gain reliable insight into the origin of BM behavior, it

is useful to examine an exactly solvable model system,
where one can suppress all possible effects associated with
the approach to some broken symmetry phase, or those
specific to low dimensions and a given lattice structure. This
can be achieved by focusing on the maximally frustrated
Hubbard model, where an exact solution can be obtained
by solving dynamical mean-field theory (DMFT) equa-
tions [16] in the paramagnetic phase. Although various
aspects of the DMFT equation have been studied for more
than twenty years, only very recent work [17,18] established
how to identify the quantum critical (QC) behavior

associated with the interaction-driven Mott transition at
half-filling.
Here we present a large-scale computational study across

the entire phase diagram, showing that qualitatively differ-
ent transport behavior is found in doped Mott insulators.
Our study reveals a clear and quantitative connection
between BM phenomenology and the signatures of Mott
quantum criticality, including the characteristic mirror
symmetry [19] of the relevant scaling function. We dem-
onstrate that the associated QC region, featuring linear
temperature dependence of resistivity around the MIR limit,
corresponds to a fully incoherent transport regime. In
contrast, the coherent Fermi liquid (FL) regime and even
the resilient-quasiparticle regime [20,21] do emerge at lower
temperature, but here the resistivity remains well below
the MIR limit. Our results provide strong evidence that
bad-metallic behavior represents a universal feature of
high-temperature transport close to the Mott transition,
presenting intriguing parallels with recent ideas based on
holographic duality [22,23].
Phase diagram.—We consider a single-band Hubbard

model defined by the Hamiltonian

H ¼ −t
X
hi;ji;σ

ðc†iσcjσ þ H:c:Þ þ U
X
i

ni↑ni↓ − μ
X
i;σ

c†iσciσ;

where t stands for the nearest-neighbor hopping amplitude,
U is the on-site interaction, and μ denotes the chemical
potential. The creation and annihilation operators for spin
orientation σ are denoted by c†σ and cσ , and niσ ¼ c†iσciσ. We
solve the DMFT equations using the continuous-time quan-
tum Monte Carlo (CTQMC) algorithm for the impurity
solver [24–26].We focuson the paramagnetic solutionwhich
is a physically justified assumption for frustrated lattices.We
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use the semielliptic bare density of states and set the half-
bandwidthD ¼ 1 as the unit of energy. This corresponds to
the infinitely dimensional Bethe lattice, as well as the fully
connected lattice with random hopping amplitudes [16].
At half-filling, strong enough on-site interaction U opens

a spectral gap at the Fermi level and produces the Mott
insulating state [16]. The Mott insulator can also be
destroyed by adding electrons to the system, i.e., raising
the chemical potential μ. When μ reaches the upper Hubbard
band, the system is once again conducting [20]. In both
cases, at low temperature the transition is of the first order,
and features a pronounced jump in the value of resistivity
and other quantities [27]. Around the first-order transition
line, a small coexistence region is present, where both
metallic and insulating phases are locally stable. Our
calculations show (see the Supplemental Material, Secs. I
and II [28]) that the critical end-point temperature TcðUÞ for
the doping-driven transition rapidly drops with increasing
interaction, and at U ¼ 4 it already is less than 10% of that
at half-filling. This is illustrated in Fig. 1(a). At the critical
end-point (red dots), the two solutions merge, and above it
no true distinction between the phases exists; only a rapid

crossover is observed upon variation of U or μ. Previous
work [17,18] examined the vicinity of the interaction-driven
MIT at half-filling; here we analyze the broad finite temper-
ature crossover region between the half-filled Mott insulator
and the doped Fermi liquid state [27,34–36]. This bad-metal
regime, displaying very different transport behavior than
that found at half-filling, is the main focus of this work.
In Fig. 1(b), we color-code the resistivity in the ðμ; TÞ

plane, calculated for U ¼ 4. The resistivity is given in units
of the Mott-Ioffe-Regel limit ρMIR which is defined as the
highest possible resistivity in a Boltzmann semiclassical
metal, corresponding to the scattering length of one lattice
spacing. Numerical value for ρMIR is taken consistently
with Ref. [21]. At μ ¼ U=2, the system is half-filled. At
approximately μ ¼ U −D ¼ 3, the Fermi level enters the
upper Hubbard band, and a first-order doping-driven MIT
is observed at temperatures below Tc ¼ 0.003D. While the
chemical potential is within the gap, a clear activation
behavior, ρ ∼ eEg=T , is found at low temperatures. On the
metallic side of the MIT, due to the strong electron-electron
scattering, the resistivity grows rapidly with temperature,
and typical Fermi-liquid behavior is observed only below
rather low coherence temperature TFL (denoted with the
gray dashed line).
Quantum critical scaling.—In the standard scenario for

quantum criticality [1,9], the system undergoes a zero-
temperature phase transition at a critical value of some
control parameter g ¼ gc, and within a V-shaped finite
temperature region, physical quantities display scaling
behavior of the form Aðg; TÞ ¼ AcðTÞF½T=ðg − gcÞzν�.
Mott MIT is a first-order phase transition [37], but the
corresponding coexistence region is confined to extremely
low temperatures, and at temperatures sufficiently above
the critical end-point Tc, the quantum effects are expected
to set in [1], and restore the QC behavior.
To test the QC scaling hypothesis in the case of a Mott

transition, one must first identify the appropriate gcðTÞ
instability trajectory [17,18] which enters the argument of
the scaling function (for illustration, see the Supplemental
Material, Fig. 2 [28]). gcðTÞmarks, on the phase diagram, a
trajectory where the system is least stable (i.e., is found in
equal proximity to both the metal and the insulator), and is
therefore most prone to fluctuations. The relevant thermo-
dynamic stability is most easily determined from the
curvature λ of the free energy functional F ½GðiωnÞ� near
its global minimum; this can be numerically determined
by monitoring the convergence rate in the DMFT self-
consistency loop [17]. Having in mind the analogy of this
definition with the standard Widom crossover line for
classical liquid-gas transitions [38], we refer to the insta-
bility line as the “quantum Widom line” (QWL) [18].
We carried out a careful λ analysis for the doped Mott

insulator (see the Supplemental Material, Sec. III [28]), and
we display the resulting QWL trajectory μ�ðTÞ as an orange
line in all plots [throughout this Letter, an asterisk in the
superscript indicates physical quantities evaluated along the
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FIG. 1 (color online). (a) Phase diagram of the maximally
frustrated Hubbard model. The quantum critical scaling is
observed in the green region which extends to lower temperatures
as Tc (red dots) is reduced. (b) Color plot of the resistivity in the
(μ; T) plane forU ¼ 4. The quantumWidom line (see text) passes
through the crossover region where the resistivity is around the
MIR limit. The coexistence region (gray) is barely visible on the
scale of this plot.
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QWL; e.g., ρ�ðTÞ is resistivity calculated at temperature T
at μ ¼ μ�ðTÞ]. The QC region (green) spreads above the
critical end point (red points and dotted line) and quickly
extends to much lower temperatures as Tc is reduced
[Fig. 1(a)]. The QWL, separating the metalliclike and
the insulatinglike behavior, marks the center of the corre-
sponding QC region, where the resistivity curves are
expected to display the scaling behavior of the form

ρðμ; TÞ ¼ ρ�ðTÞF½T=T0ðdμÞ�: ð1Þ
Here the parameter T0 should assume power-law depend-
ence on the deviation from the QWL: T0ðdμÞ ∼ dμzν, with
dμ ¼ μ − μ�ðTÞ.
To check validity of the scaling hypothesis, Eq. (1), we

calculate the resistivity along the lines parallel to the QWL,
as shown in Fig. 2(a). We find that, for the doped Mott
insulator, the resistivity shows very weak temperature
dependence along the QWL. In particular, above
T ¼ 0.08, it follows the line of constant resistivity which
coincides with the MIR limit, ρ�ðT > 0.08Þ ¼ ρMIR (in
contrast to the behavior previously established at half-
filling [17,18], where ρ ≫ ρMIR along the QWL). In fact, all
curves converge precisely to the MIR limit at high temper-
atures, suggesting its fundamental role in characterizing the
metal-insulator crossover for doped Mott insulators. The
curves also display the characteristic bifurcation upon
reducing temperature, and a clear change in trend upon
crossing the QWL. The scaling analysis confirms that all
the curves indeed display fundamentally the same func-
tional dependence on temperature, and that they all can be
collapsed onto two distinct branches of the corresponding
scaling function [Fig. 2(b)]. The scaling exponent has been
estimated to be zν ≈ 1.35� 0.1 for both branches of the

scaling function, which display mirror symmetry [17,19]
over almost two decades in T=T0, and the scaling covers
more than 3 orders of magnitude in resistivity.
Bad-metal behavior.—We demonstrated the emergence

of clearly defined quantum critical behavior through an
analysis of the ðμ; TÞ phase diagram, with dμ ¼ μ − μ� as
the scaling parameter. From the experimental point of view,
it is, however, crucial to identify the corresponding QC
region in the ðδ; TÞ plane and understand its implications
for the form of the resistivity curves for fixed level of
doping ρðTÞjδ. By performing a careful calculation of the
δðμ; TÞ dependence (see the Supplemental Material, Fig. 4
[28]), it is straightforward to replot our phase diagram and
resistivity curves in the ðδ; TÞ plane. Remarkably, we find
that the quantum critical scaling region covers a broad
range of temperatures and dopings, and almost perfectly
matches the region of the well-known bad-metal transport
[21,39], characterized by the absence of long-lived quasi-
particles and linear ρðTÞjδ curves. We first analyze the
ðδ; TÞ phase diagram in detail, and then establish a
connection between the slope of ρðTÞjδ curves in the
bad-metal regime and the QC scaling exponent νz.
In Fig. 3(a), we show the phase diagram of the doped

Mott insulator. At T ¼ 0, the Mott insulator phase is found
exclusively at zero doping. At low enough temperature and
finite doping, characteristic Fermi liquid behavior is always
observed. Here, the resistivity is quadratic in temperature,
while a clear Drude peak is observed at low frequencies
in optical conductivity and density of states (see the
Supplemental Material, Fig. 5 [28]). The coherence temper-
ature TFL is found to be proportional to the amount of
doping δ, however, with a small prefactor of about 0.1, in
agreement with Refs. [20,21]. In a certain temperature
range above TFL, a Drude peak is still present as well as the
quasiparticle resonance in the single-particle density of
states, but the resistivity no longer follows the FL T2

dependence. This corresponds to the resilient-quasiparticle
(RQP) transport regime, which was carefully examined in
Ref. [21]. At even higher temperatures, the temperature-
dependent resistivity at fixed doping ρðTÞjδ enters a
prolonged linear regime [see Fig. 3(b)] [40], which is
accompanied by the eventual disappearance of the Drude
peak around the MIR limit. This behavior is usually
referred to as the bad-metal regime [21]. The resistivity
is comparable to the MIR limit throughout the BM region,
and the QWL (as determined from our thermodynamic
analysis) passes through its middle.
The region of linear ρðTÞjδ dependence is found to be

completely encompassed by the QC scaling region between
the dashed lines on Fig. 3(a) (see the Supplemental
Material, Sec. VI [28]). We therefore expect that the
emergence of the linear T dependence of the resistivity,
as well as the doping dependence of its slope, should be
directly related to the precise form of the corresponding
scaling function. Indeed, at high temperature and close
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FIG. 2 (color online). (a) Family of resistivity curves calculated
along lines parallel to the QWL (orange). (b) Upon rescaling the
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curves collapse and reveal mirror symmetry of metalliclike and
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to the QWL, the argument of the scaling function
x ¼ dμ=T1=zν is always small, and the scaling function
can be linearized, viz., ~FðxÞ ≈ 1þ Axþ � � �. We find that
the coefficient A has the numerical value A ≈ −0.74. The
functional form for ρðTÞjδ close to the QWL is then directly
determined by the behavior of the scaling parameter xðTÞjδ.
We find that xðTÞjδ is a linear function in a wide range of
temperatures around T�ðδÞ. Then, close to the QWL,
the resistivity is well approximated by a linear function
of the form

ρðTÞjδ ≈ ρ�ðδÞ
�
1þ A

∂x
∂T

����
δ;T¼T�ðδÞ

½T − T�ðδÞ�
�
: ð2Þ

Furthermore, the slope of the scaling argument at the QWL
can be expressed as ð∂x=∂TÞjδ;T¼T�ðδÞ ¼ fχ�ðδÞðdT�=dδÞ×
½T�ðδÞ�1=zνg−1, where χ�ðδÞ ¼ ð∂δ=∂μÞjT¼T�ðδÞ. Here, we
observe that the charge compressibility is nearly constant
along the QWL, χ�ðδÞ ≈ χ� ¼ 0.33 (see the Supplemental
Material, Fig. 6 [28]), which may be interpreted as

another manifestation of the quantum critical behavior
we identified. T�ðδÞ is approximately a linear function
T�ðδÞ ≈ K0 þ Kδ, where K ≈ 2 and K0 is small. In
Fig. 3(b), we compare the approximation stated in
Eq. (2) with the DMFT result and find excellent agreement.
Finally, noting that for δ > 5%, ρ�ðδÞ ¼ ρMIR, we arrive

at the central result of this Letter,

ρQCBMðTÞjδ ≈ ρMIR½1þ Cδ−1=zνðT − KδÞ�: ð3Þ
In the quantum critical bad-metal regime, the resistivity has
a linear temperature dependence with the slope decreasing
as a power −1=zν of doping. This demonstrates a direct
connection of the universal high-temperature behavior in
the bad-metal regime with the (zero-temperature) quantum
phase transition. The MIR limit of the resistivity is reached
at temperature roughly proportional to the amount of
doping, T�ðδÞ ∝ δ, since the doping level sets the main
energy scale in the problem. The result of this simplified
scaling formula is color-plotted in Fig. 4(a) (with C ¼ 0.69,
K ¼ 1.97, and zν ¼ 1.35) and shown to capture the
features of the full DMFT solution at high temperatures.
Discussion.—Sufficiently systematic experimental stud-

ies of doped Mott insulators, covering an appreciable range
of doping and temperature, remain relatively scarce. Still,
approximately linear temperature dependence of the resis-
tivity at high temperatures with a slope that decreases with
doping has been observed, most notably in the seminal
work of Takagi et al. [8] on La2−xSrxCuO4. To make a
qualitative comparison with our theory and to highlight a
universal link of bad-metal behavior and quantum critical-
ity associated with the Mott metal-insulator transition, in
Fig. 4 we color code the reported experimental data; here
the temperature is shown in units of TMIR at 20% doping
and the resistivity is given in units of ρMIR, which in this
material is estimated as 1.7 mΩ cm. The experimental
results presented in Fig. 4(c) cover the temperature range
of 150–1000 K at 5% to 30% doping. Here one observes a
striking similarity between DMFT theory and the experi-
ment, as already noted in early studies [39–41]. We
established this result by focusing on an exactly solvable
model, where all ordering tendencies are suppressed, and
single-site DMFT becomes exact. Real materials, of course,
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exist in finite (low) dimensions where systematic correc-
tions to DMFT need to be included [42–45]. In many cases
[46–48], these nonlocal corrections prove significant only
at sufficiently low temperatures. Then our findings should
be even quantitatively accurate in the high-temperature
incoherent regime, as in the very recent experiments on
organic materials [49] for the case of half-filling.
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