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Finite-temperature crossover and the quantum Widom line near the Mott transition
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The experimentally established phase diagram of the half-filled Hubbard model features the existence of three
distinct finite-temperature regimes, separated by extended crossover regions. A number of crossover lines can
be defined to span those regions, which we explore in quantitative detail within the framework of dynamical
mean-field theory. Most significantly, the high-temperature crossover between the bad metal and Mott-insulator
regimes displays a number of phenomena marking the gradual development of the Mott insulating state. We
discuss the quantum critical scaling behavior found in this regime, and propose methods to facilitate its possible
experimental observation. We also introduce the concept of quantum Widom lines and present a detailed discussion
that highlights its physical meaning when used in the context of quantum-phase transitions.
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I. INTRODUCTION

Strongly correlated materials exhibit a variety of phases
whose properties often lack a complete microscopic
understanding.1 The most interesting new aspect of this class
of materials is a possibility to tune the system through
two or more different ground states separated by quantum
critical points (QCPs).2 Such QCPs are often difficult to
directly approach and investigate, not only because they reside
at T = 0, but also because various additional instabilities
and orders emerge in their immediate vicinity. Nevertheless,
understanding them is of chief importance, because they often
control rather extended finite-temperature quantum critical
regions displaying universal properties and featuring scaling
behavior of all quantities.

Quantum critical points have been experimentally iden-
tified and studied in several classes of physical systems,
ranging from heavy fermion metals3,4 to conventional5 and
even high-temperature superconductors.6 In most of these,
however, the QCP is obtained when quantum fluctuations
become sufficiently strong to suppress an appropriate ordering
temperature—for magnetic, structural, or superconducting
order—down to T = 0. When this happens, then concepts
familiar from the very successful theory of classical crit-
ical phenomena can be utilized and naturally extended to
a quantum regime.2 Indeed, most conventional theoretical
approaches follow the Landau theory paradigm7 and examine
the impact of thermal and quantum fluctuations of appropriate
order parameters, as describing the corresponding patterns of
spontaneous symmetry breaking.

Should most exotic phenomena, then, be regarded as
manifestations of some form of (static or fluctuating) order, as
Slater speculated even in the 1930’s,8 or should fundamentally
different classes of quantum-phase transitions exist? The first
viewpoint was at the origin of the Hertz (weak coupling)
approach9,10 to quantum criticality, which, despite its formal
elegance, resulted in only modest successes. The latter,
however, was at the core of pioneering ideas of Mott11

and Anderson,12 who provided a complementary perspective.
According to their views, strong electronic correlations are

able destroy the metallic state even in the absence of any
ordering, leading to the formation of the Mott insulating
state. The existence of broad classes of Mott insulators is,
of course, beyond the doubt at this time. And while most order
antiferromagnetically at low temperature, they indeed remain
robustly insulating (gaps often in the electron volt range) even
well above the corresponding Néel temperature.13–15

The nature of the phase transition between the metallic and
the insulating phase—the Mott transition—has, in contrast,
remained highly controversial and subject to much debate.
Because the two phases share the same symmetries, the clear
distinction between them is apparent only at T = 0. Should a
direct and continuous transition between a paramagnetic metal
and a paramagnetic Mott insulator exist at T = 0, it would
represent the most obvious example of a QCP outside the
Landau paradigm, unrelated to any mechanism of spontaneous
symmetry breaking. Unfortunately, in most familiar situations,
the Mott metal-insulator transition is also accompanied by
simultaneous magnetic, charge, structural, or orbital ordering,
considerably complicating the situation and fogging the issues,
both from the theoretical and the experimental perspective.

Still, it is a well established experimental fact that in all
known cases, the characteristic temperature scale Tc, below
which many of such “intervening” phases are found, is quite
small, as compared to both basic competing energy scales:
the Fermi energy EF measuring the quantum fluctuations,
and the Coulomb repulsion U that opposes the electron
motion. As a result, a very sharp crossover between metallic
and insulating behavior is observed even at T � Tc, for all
physical quantities. The key issue thus remains: What is the
main physical mechanism controlling this finite-temperature
metal-insulator crossover? Should it be viewed as a quantum
critical regime dominated by appropriate order-parameter
fluctuations, or is it, as postulated by Mott and Anderson,
a dynamical phenomenon not directly related to any ordering
tendency.

To clearly and precisely address this question, one must (1)
suppress all ordering tendencies, at least in the relevant tem-
perature range, and (2) understand and describe the remaining
physical processes controlling the resulting finite-temperature
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crossovers, and the corresponding quantum critical region, if
one exists. From the theoretical point of view, this ambitious
goal is generally very difficult to achieve, at least for realistic
model systems. The task is hard, because standard perturbative
approaches, which are so well suited to describe Fermi-surface
instabilities and the associated competing orders, are quite
incapable in describing the Mott physics. The situation, how-
ever, improved with the development of dynamical mean-field
theory (DMFT) method,16 which capitalizes on performing a
local approximation for appropriate self-energies and vertex
functions, yet which provides a completely nonperturbative
description of strong correlation effects. Its physical content is
most clearly revealed by focusing at the “maximally frustrated
Hubbard model” (MFHM)16,17 with long-range and frustrating
intersite hopping (see below), where the DMFT approximation
becomes exact.

The MFHM, because it is maximally frustrated, displays no
magnetic or any other kind of long-range order across its phase
diagram. It does display, however, a precisely defined Mott
metal-insulator transition at low temperature, precisely in the
fashion anticipated by the early ideas of Mott and Anderson.
It has been studied by many authors, ever since the beginning
of the DMFT era some 20 years ago,18 yet, surprisingly,
some of its basic features have remained ill understood
and even confusing. Most studies focused on characterizing
the low-temperature behavior, where a strongly correlated
Fermi liquid (FL) forms on the metallic side of the Mott
transition.18 At low temperatures, this FL phase is separated
from the Mott insulator by an intervening phase coexistence
region (see Fig. 1), and the associated first-order transition
line (FOTL) terminating at the critical end point (CEP) at
T = Tc.19 The behavior in the immediate vicinity of the CEP
has attracted much recent attention20,21 but, unsurprisingly (as
any other finite-temperature CEP), it display scaling behavior
of the standard classical liquid-gas (Ising) universality class.19

Indeed, several experiment reporting transport in this regime
have successfully been interpreted22 using these classical
models.
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FIG. 1. (Color online) Phase diagram of the half-filled maximally
frustrated Hubbard model. The background is an actual color map of
the resistivity obtained using the IPT impurity solver (see the text):
Blue, small resistivity; red, large resistivity.

But what about the supercritical (T � Tc) behavior? Its
rough features have been investigated by many authors,16

who identified several regimes and complicated crossovers
connected to them, but no simple and plausible physical
picture has emerged. Most importantly, almost no one has
attempted to interpret the features of this high-temperature
regime in terms of ideas or concepts of quantum criticality.2

The complication, of course, comes from the presence of the
coexistence dome at T < Tc, which confuses the issues, and,
at least at first glance, makes the situation seem incompatible
with the standard paradigm of quantum criticality.

Our very recent work,17 however, provided a new per-
spective. It made two key observations. (1) The characteristic
temperature scale of the coexistence dome Tc � EF ,U : The
physics associated with it should, at T � Tc, be little affected
by its presence, and thus behave just as if Tc ≈ 0, and an
actual QCP would exist separating the two phases. (2) To
reveal the possible quantum critical scaling associated with
the proposed “hidden” QCP, one must follow a judiciously
chosen trajectory (sometimes called the “Widom line”23,24),
as in almost any standard critical phenomenon. This work also
demonstrated17 remarkable scaling of the resistivity curves,
displaying all features expected of quantum criticality. The
resistivity around this line exhibits a characteristic “fan-
shaped” form, surprisingly similar to experimental findings
in several systems,1,20,21,25–27 reflecting gradual crossover
from metallic to insulating transport. The scaling behavior
in this high-temperature crossover regime was thus argued
to encapsulate the universal features of finite-temperature
transport near the metal-insulator transition.

The work of Ref. 17 focused on behavior close to the
“instability line” and the associated quantum critical scaling
regime around it. It should be noted, however, that several
other finite-temperature crossover lines have been discussed
by other authors16,24,28–30 to characterize the metal-insulator
region. The exact relationship between these different ideas
and approaches—for the same model—thus remained an
open and rather confusing issue that needs to be carefully
investigated and understood. This important task is the chief
subject of this paper, where we present a detailed and very
precise characterization of all the crossover regimes across the
entire phase diagram for the maximally frustrated Hubbard
model at half filling, within the paramagnetic solution of
dynamical mean-field theory. We carefully characterize the
relevant crossover lines employing all the various proposed
criteria used for their definitions. Two fundamentally distinct
crossover regions are identified: one referring to the thermal
destruction of long-lived quasiparticles and the other to
the gradual opening of the Mott gap. The instability line,
as previously determined from a thermodynamic analysis,17

belongs to the latter region, and is found to lie very near to
the line of inflection points in the resistivity curves log ρ(U ).
The scaling of resistivity curves found around both of these
lines is analyzed and discussed from the perspective of hidden
quantum criticality and its experimental observation. In the
end, we outline the generalized concept of the Widom lines,
and argue that they gain a new fundamental meaning in
the context of quantum-phase transitions, which opens an
avenue to put our results into a more general theoretical
framework.
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II. PHASE DIAGRAM

We consider a single band Hubbard model at half filling,

H = −t
∑
〈i,j〉σ

(c†iσ cjσ + H.c.) + U
∑

i

ni↑ni↓, (1)

where c
†
iσ and ciσ are the electron creation and annihilation

operators, niσ = c
†
iσ ciσ , t is the nearest-neighbor hopping

amplitude, and U is the repulsion between two electrons on
the same site. We use a semicircular density of states, and the
corresponding half bandwidth D = 2t is set to be our energy
unit. We focus on the paramagnetic DMFT solution, which
is formally exact in the limit of large coordination number,
including the maximally frustrated Hubbard model.16,17 The
DMFT provides a unique theoretical framework, as it works
well in the entire range of model parameters, thus treating
all the relevant phases and regimes on an equal footing. It
is, however, most reliable at high temperatures,31–34 when the
correlations are more local, and this is precisely the regime of
primary interest of this paper. To solve the DMFT equations
we utilize both the iterated perturbation theory16 (IPT) and
the numerically exact continuous time quantum Monte Carlo
(CTQMC).35,36 The results obtained with these two methods
are found to be in very good agreement. In this section we
concentrate on IPT results, which cover the entire phase
diagram and do not suffer from numerical noise. Figures in
the rest of the paper are the QMC results.

The phase diagram in the U -T plane is shown in Fig. 1. The
DMFT solution reproduces the three regimes found close to
the metal-insulator transition (MIT): Fermi liquid, bad metal,
and Mott insulator, in qualitative agreement with experiments
on various Mott systems.16 We begin their characterization by
first analyzing the behavior of the resistivity in the relevant
range of parameters.

The DMFT expression for the calculation of DC resistivity,
ρ = 1/σ (ω → 0), is given by16

σ = πσ0

∫ +∞

−∞
dεv2(ε)D0(ε)

∫ +∞

−∞

(
− df

dω
A2(ε,ω)

)
, (2)

where A(ε,w) = − 1
π

Im G(ε,w), v(ε) =
√

(4t2 − ε2)/3.

D0(ε) = 1
2πt2

√
4t2 − ε2 is the noninteracting density of

states (DOS), and f is the Fermi function. The calculation
of resistivity from the IPT results is straightforward as this
method is defined on the real axis. To calculate the resistivity
from the QMC results, one first needs to perform the analytical
continuation, which we carry out using the maximum entropy
method.37

Our quantitative IPT results are replotted in Fig. 2, where
the value of resistivity is color coded, with white stripes
separating the consecutive orders of magnitude between 10−3

and 1013. In this plot, as well as in the rest of the paper, the
resistivity is given in the units of ρMott , the maximal metallic
resistivity in the semiclassical Boltzmann theory, defined as
the resistivity of the system when the scattering length is
equal to one lattice spacing.38,39 At zero temperature, the
metallic resistivity vanishes, while the Mott insulator has an
infinite resistivity. With increasing temperature, the difference
between the two states becomes less and less pronounced.
(Between the spinodals, both metallic and insulating solutions

U ,TC C

log
ρ (U

,T)
10
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FIG. 2. (Color online) Resistivity (in units of ρMott ) calculated in
the entire U -T plane. The white stripes follow the lines of equal
resistivity and separate the orders of magnitude in the resistivity.
Spinodals are denoted with thick black lines, and the first-order phase
transition line is dashed.

are possible, but in this plot only the metallic resistivity
is shown.) In the intermediate correlation, U < Uc, high-
temperature, T > Tc, regime, the resistivity is comparable
or even larger than ρMott , but it still (weakly) increases with
temperature, which is characteristic for the “bad metal” regime
observed in several Mott systems.38

It is remarkable how this way of presenting the data im-
mediately creates the familiar “fan-shape” structure, generally
expected for quantum criticality.2 At high temperatures all the
white constant-resistivity stripes seem to converge almost to
the same point U ∼ Uc. The perfect convergence, however,
is interrupted by the emergence of the coexistence done at
T < Tc, but such behavior is exactly what one expects for
“avoided quantum criticality,”30 consistent with the physical
picture proposed in Ref. 17.

Different regions of the phase diagram are also distin-
guished by the qualitatively different form for the temperature
dependence of the resistivity. To make this behavior even more
apparent, we follow a commonly used procedure to display
the data around QCPs, compute the logarithmic derivative of
resistivity with respect to the temperature, i.e., the “effective
exponent”40,41

β(T ,U ) = d log ρ(U,T )/d log T , (3)

which is presented in color-coded form in Fig. 3.
On the metallic side, at the lowest temperatures, one finds

a typical metallic dependence of the form ρ ∼ T 2 and here
we have β = 2 (white). Far from the transition, this regime
survives up to relatively high temperatures, but eventually
the temperature dependence of the resistivity starts gradually
slowing down, displaying behavior sometimes described as
“marginal Fermi-liquid” transport (green, β ∼ 1). Closer to
the transition, this is preceded by an increase in the effective
exponent (red), which is a reflection of the existence of the
critical end point in which β diverges (yellow). Very close to
the transition, a maximum of the resistivity is reached at some
temperature (pink) and the trend of the resistivity increase is
then reversed. On the other side of the phase diagram, deep in
the Mott insulator, one finds typical activation curves which
exhibit the exponential drop in the resistivity with increasing
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FIG. 3. (Color online) The effective resistivity exponent (β =
d log ρ/d log T ) calculated in the entire U -T plane illustrates the
different transport regimes (see the text).

temperature, due to the gap in the excitation spectrum (black
and purple). However, just above the coexistence dome, one
finds an intermediate regime, where the behavior is generally
insulating because the resistivity decreases with temperature,
but the gap is not yet fully open, and the temperature
dependence deviates from exponential (blue). This region is
sometimes referred to as the “bad insulator.”

III. CROSSOVER LINES

In the previous section we have characterized the different
regimes in the vicinity of the Mott MIT: Fermi liquid, bad
metal, and Mott insulator. However, apart from the coexistence
region, the properties of the system change continuously in
the entire phase diagram. The lines separating the different
regimes are thus a matter of convention and many definitions
can be found in literature proposing the criteria for their
distinction.

In Fig. 4 we present the lines corresponding to various
definitions of a crossover line between the Fermi-liquid and
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FIG. 4. (Color online) Various definitions for the crossover lines
between the Fermi liquid and the bad metal. The meaning of each
definition is illustrated on a smaller panel to the right. The results are
obtained with the QMC.

the bad metal regimes. The definition of each line is illustrated
on a smaller panel on the right, where the corresponding
feature in the resistivity and other relevant quantities is marked
with the dots of the same color. The dark blue line (a) is
defined by ρ = 0.1ρMott and it roughly corresponds to the Fermi
coherence temperature TFL (the temperature above which the
temperature dependence of resistivity is no longer quadratic).
The corresponding small panel (a) shows the resistivity as
a function of temperature, plotted for three different values
of U. The dotted horizontal line marks ρ = 0.1ρMott . The
arrow denotes the direction of increase of U . The light blue
line (b) corresponds to the inflection point of the resistivity,
d2ρ(ω = 0)/dT 2 = 0, and the green line (c) is determined
as the inflection point of the spectral density at the Fermi
level with respect to the temperature, d2A(ω = 0)/dT 2 = 0.
These are illustrated on smaller panels (b) and (c) where the
dc resistivity and A(ω = 0) are plotted versus the temperature,
for three different values of U. The inflection points are
marked with the dots of color corresponding to the (b)
and (c) lines on the main panel. The additional two dotted
lines are (d) the quasiparticle weight at zero temperature
defined by Z = [1 − d Im �(iωn)/dωn|ωn→0]−1 and (e) the
zero temperature local spin susceptibility χ . Both quantities
are divided by 10 to fit in the temperature range of the plot
and to be more easily compared to the crossover lines. It is
evident that the coherence temperature is roughly proportional
to the quasiparticle weight at zero temperature, but with
the prefactor 0.1, TFL(U ) ∼ 0.1Z(U ). As compared with the
doped Hubbard model,42,43 TFL is higher but still distinct
from the temperature corresponding to ρMott , in agreement
with the experiments on organic materials.39,44,45 The quasi-
particle weight Z is weakly temperature dependent and the
Drude peak in the opticalal conductivity is still pronounced
for ρ � ρMott .

46

In contrast with these lines, one can also define the lines
separating the bad metal from the (bad) Mott insulator. In
Fig. 5, we present several criteria for their definition. In
analogy to line (a) of Fig. 4, one can use the resistivity to
distinguish between the two regimes. The dark blue line (a)
plotted here connects the points where the resistivity is equal
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FIG. 5. (Color online) Various definitions for the crossover lines
between the bad metal and the Mott insulator. The meaning of each
definition is illustrated on a smaller panel to the right. The results are
obtained with the QMC.
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to the one found precisely at the critical end point, which we
estimate to be roughly 10ρMott . The light blue line (b) marks
the inflection point of logarithmic resistivity as a function of
U [∂2 log ρ(U,T )/∂U 2 = 0]. It is a well pronounced feature
up to high temperatures, and it is a direct consequence of
the discontinuity across the FOTL at T < Tc. These two are
illustrated on the small panel to the right, where log ρ(U )
is plotted at three different temperatures. The dark blue dots
are the intersections of these lines with the dotted, 10ρMott

line. The inflection points are marked with the light blue
dots, and are found at slightly lower values of U. Another
natural definition for the crossover is the β = 0 line (c), as
it marks the place where the trend of resistivity growth is
reversed. At its right-hand side, the resistivity decreases with
temperature, which is a sign of insulating behavior. This is
illustrated on the corresponding small panel, where log ρ(T )
is plotted for three different values of U and the maxima are
marked with the green dots. The double occupancy nd has an
obvious change in trend on crossing line (d). Here, the second
derivative ∂2nd/∂U 2 has a sharp maximum, and separates the
two distinct regimes of nd (U ), both almost linear but with
different slopes. This is apparent on the small panel (d), where
double occupancy is plotted as a function of U at various
temperatures.

It is striking that these lines almost coincide, in sharp
contrast to what is seen in Fig. 4. Although the opening of
the gap is very gradual, it is possible to pinpoint the boundary
between the two regimes and actually divide the supercritical
part of the phase diagram into metallic and insulatinglike
regions. In the following section we present an overview of
the instability line, another definition for a metal-insulator
crossover line, and explain how it helps reveal a very peculiar
property of the Hubbard model, which is very suggestive
when it comes to interpreting the Mott MIT in terms of
quantum-phase transitions.

IV. INSTABILITY LINE AND QUANTUM
CRITICAL SCALING

It is a well established phenomenon that in the vicinity
of quantum critical points, at finite temperatures, physical
observables display a characteristic quantum critical scaling.2

A very good example of this is the transport in high-mobility
two-dimensional electron gases, in particular, in metal-oxide-
semiconductor field-effect transistors (MOSFETs).1 There is
overwhelming evidence that they exhibit a zero temperature
metal-insulator transition at a critical concentration of charge
carriers.25 It is experimentally observed in these systems that
the value of resistivity at finite temperatures above the quantum
critical point (nc,T = 0) is a function of only δn = n − nc and
T , which is considered a hallmark of quantum criticality. As
shown in Fig. 6(a), 47 the resistivity curves collapse onto two
branches: The resistivity is first divided by the “separatrix”
ρc(T ) = ρ(nc,T ) which weakly depends on the temperature,
and then the temperature is scaled by To(δn) = |δn|νz, yielding

ρ(δn,T ) = ρc(T )f (δnT −1/νz). (4)

The mechanism behind the physical picture of MOSFETs
is still elusive,27 but a similar physical picture is seen is
various spin systems, where the physics is well understood.2

 0.001

 0.01

 0.1

 1

 10

 100

 0.01  0.1  1  10

ρ(
U

,T
)/ρ

c(
T)

T/|δU| zν, zν=0.8

(a)

(b)

FIG. 6. (Color online) (a) Experimental results: Conductivity
scaling in high-mobility Si MOSFETs presents a textbook example
of quantum critical scaling (taken from Ref. 47). (b) DMFT QMC
results: Resistivity scaling strongly reminiscent of what is seen in
MOSFETs. After dividing ρ(U,T ) with the value of resistivity on the
instability line ρc(T ) (see the text) and then rescaling the temperature
with an appropriately chosen parameter T0(δU ), the resistivity curves
collapse onto two branches.

When there is a well defined order parameter, the separatrix
corresponds to the line of zero symmetry-breaking field, which
is trivially a straight vertical line emanating from the quantum
critical point.

Although our model does feature a FOTL, the critical
temperature is actually very low (Tc ≈ 0.03), which makes
it reasonable to pursue a description of its supercritical
region from the perspective of quantum criticality. This is the
approach that we have taken in a recent work,17 where we have
shown that in the Hubbard model, a quantum critical scaling of
the resistivity curves does indeed hold [Fig. 6(b)]. There is an
obvious analogy between the interaction U in our model and
the carrier density n in MOSFETs, but it was not immediately
clear what line Uc(T ) should correspond to the separatrix in
our model. The phase transition in the Hubbard model does
not break any symmetries and the first-order transition line
is curved, which indicated that Uc has possibly a nontrivial
temperature dependence.
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A. The instability line

Starting from the thermodynamic arguments,19,48 we have
defined the instability line U ∗(T ) as the line which corresponds
to the minimum curvature of the free-energy functional
F[G(iωn)] with respect to U .49 Above Tc the system has a
unique ground state which corresponds to the minimum of
F[G(iωn)]. In this minimum, the curvature of F[G(iωn)] is
determined by the lowest eigenvalue λ of the fluctuation matrix

Mmn = 1

2T t2

∂2F[G]

∂G(iωm)∂G(iωn)

∣∣∣∣
G=GDMFT

, (5)

where δG(iωn) ≡ G(iωn) − GDMFT(iωn), and GDMFT is the
self-consistent solution of the DMFT equations. As explained
in detail in the Supplemental Material of Ref. 17, λ can be
obtained by monitoring the rate of convergence in the DMFT
iteration loop. Close to the self-consistent solution, the differ-
ence between the consecutive solutions drops exponentially,
with an exponent proportional to λ. We have

G(n+1) − G(n) = δG(n) = e−nλGλ(iωn), (6)

where Gλ is the eigenvector of M̂ corresponding to its lowest
eigenvalue λ.

The curvature λ is actually a very general quantity that
describes the response of the system to an infinitesimal external
perturbation, which may be a time-dependent field of an
arbitrary form. As such, λ is very important in describing a
thermodynamical state close to the Mott MIT, since it has a
fundamentally dynamic nature. Indeed, λ vanishes precisely
at the critical end point, as the free-energy functional becomes
flat around GDMFT. This is directly connected to the critical
slowing down of dynamics, which manifests as the vanishing
of a characteristic frequency scale. Above Tc, λ is related to
the local stability of a given thermodynamic state and has
a minimum precisely where the system is the least stable,
or where its proximity to either competing phase is equal.
Therefore, the instability line which connects the minima
of λ vs U is the closest analogy to the lines of the zero
symmetry-breaking field in systems with an order parameter.

The instability line is presented in Fig. 1 and indeed
it represents a boundary between a metallic and insulating
transport. It lies among the other crossover lines from Fig. 5
(see also Sec. V). Its physical meaning is illustrated in Fig. 7.
The middle column shows the DOS along the instability line
for three different temperatures. While the DOS at the Fermi
level is strongly suppressed, the gap is not yet fully open. The
left column shows the density of states in the metallic phase
following a trajectory parallel to the instability line: There is a
clear quasiparticle peak at low temperatures, which gradually
disappears as the bad metal region is reached by increasing the
temperature. At larger U (right column) the system is in the
insulating phase with a fully open Mott gap, featuring activated
transport.

B. Free-energy calculation

To further illustrate the physical meaning of the instability
line, we explore the free-energy landscape in the Hilbert space
of Green’s functions. For this we closely follow the procedure
described in Ref. 49. The iterative self-consistency procedure
used to solve the DMFT equations converges towards a local

U=U (T)**U=U (T)-0.6

T=
0.

1
16

U=U (T)+0.6*

T=
0.

09
T=

0.
06
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FIG. 7. (Color online) Density of states (QMC results) along
the instability line U ∗(T ) (middle column), and along the parallel
trajectory for smaller (left column) and larger U (right column).

minimum of the corresponding Ginzburg-Landau free-energy
functional F[G], which, in the Hilbert space of the Matsubara
Green’s functions G(iωn), takes the form

F[G] = Fimp[G] + Fbath[G]

= Fimp[G] − t2T
∑

n

G2(iωn), (7)

where the first term is the free energy of the impurity site in the
presence of the Weiss field � = t2G, while the second term is
the energy cost of forming the Weiss field around a given site.

The DMFT self-consistency condition, typically reached
via an iterative procedure, is then regarded as a saddle-point
equation derived from the extremum condition of such a
Ginzburg-Landau functional. The physical DMFT solution
corresponds to the local stationary point of F[G], where a
gradient vector g = ∂F[G]/∂G becomes zero. However, in
the coexistence region below Tc, two such local minima are
found. They correspond to physical solutions (metallic GM

and insulating GI ), and are separated by an unstable solution
(a local maximum or a saddle point).

We can visualize the shape of the infinitely dimensional
free-energy surface by calculating F [G] along a single direc-
tion going through the self-consistent GDMFT. Below Tc, we
do this along the direction connecting the two solutions, which
can be parametrized as G(l) = (1 − l)GM − lGI . Above Tc,
where there is only one solution, we follow the eigenvector
Gλ with G(l) = GDMFT + lGλ. The relative change of the
free energy is calculated49 as an integral �F(l) = F[G(l)] −
F[GM/DMFT] = t2T

∫ l

0 dl′el · g[G(l′)], where el is the unit
vector of the followed direction [el = (GM − GI )/|GM − GI |
below Tc and el = Gλ/|Gλ| above Tc]. The gradient vector
takes the form g = Gimp(G) − G, with Gimp(G) the output of
the impurity solver used in the DMFT procedure, and G is the
input–effective medium (hybridization bath) Green’s function.

Figure 8(a) shows the free-energy landscape around GDMFT,
precisely at the instability line. The curvature of the global
minimum vanishes as one approaches Tc, which is consistent
with eigenvalue λ being zero at this point. Below Tc there are
two minima and the instability line is no longer well defined,
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FIG. 8. (Color online) Free-energy landscape (IPT results): (a)
Along the “zero field” line (δU = 0). At T > Tc, the curvature of
the free energy increases with temperature, and it is zero at T = Tc.
Below Tc, at the first-order transition line, metallic and insulating
solutions have the same free energy. (b) Along the “finite field” line
(δU = −0.05). At T > Tc, the curvature of the free energy is greater
than in the “zero field” case. In the coexistence region one of the
minima is energetically favored. Note that the spacing between �F
curves for different temperatures is arbitrary.

but it is logically continued to the line of the first-order phase
transition, where two possible solutions are of the same energy.
On Fig. 8(b), we move along a parallel trajectory, defined
by δU �= 0. It is immediately obvious that λ never reaches
zero and that in the coexistence region one of the solutions
is energetically favored. This physical picture is common to
various models. For example, it is seen in the Ising model in
an external field, where the analogy is between the strength of
the magnetic field and δU in our case.

C. Quantum critical scaling

While the instability line is determined from the free-energy
analysis, a novel physical perspective is obtained by looking at
the transport properties in its vicinity. We have demonstrated17

that around this line, all resistivity curves can be collapsed onto
two branches: We first divide each resistivity curve by the
resistivity along the instability line (the “separatrix”) ρc(T ) =
ρ(T ,δU = 0), and then rescale the temperature for each curve
with an appropriately chosen parameter T0(δU ) to collapse the
data onto two branches [Fig. 6(b)]. The family of resistivity
curves displays characteristic quantum critical scaling of the
form

ρ(T ,δU ) = ρc(T )f (T/To(δU )), (8)

with To(δU ) ∼ |δU |zν . The scaling parameter To displays
power-law scaling with the same exponents for both scaling
branches and falls sharply as U → U ∗, which is consistent
with the quantum critical scenario. The resistivity scaling holds
in the temperature range roughly between 2Tc and 4Tc, as
depicted in Fig. 1. We estimate the exponent zν to be around
0.6 when IPT is used to solve the DMFT equations. The scaling
procedure with the data obtained with the CTQMC impurity
solver gives a slightly larger critical exponent with an error

Coexistence
Uc1

Uc2

(Uc,T )c

Quantum 
Critical Point

Quantum 
Critical RegionT

U

X=?
Xc

FIG. 9. (Color online) Possible phase diagram of a generalized
Hubbard model. The observed scaling (valid in the green region)
may be due to a quantum critical point that is unreachable by the
simple two-parameter half-filled Hubbard model. An additional, third
parameter (here marked with X) could drive Tc to zero at some critical
value, and extend the region of validity of the scaling formula in the
U -T plane.

bar due to numerical noise of the data and due to the analytical
continuation.

We emphasize the difference in the proposed quantum
critical scaling and classical scaling in the immediate vicinity
of the critical end point (classical critical region in Fig. 1). It
has been already carefully studied theoretically,19,50 and even
observed in experiments,20 revealing the classical Ising scaling
in this regime. In contrast, the scaling parameter in our formula
is T rather than |T − Tc| and the value of the exponent does not
fit any of the known universality classes. The scaling region
in our analysis is significantly broader and the collapse of the
resistivity curves is observed in a large temperature region
above the critical end point.

A stringent test of the proposed quantum critical transport
scenario would be on systems with reduced critical tempera-
ture Tc. Figure 9 presents a schematic phase diagram with an
additional parameter driving Tc to zero at some critical value
Xc and merging Uc1, Uc2, and Uc into a single, quantum critical
point. If this were the case, the quantum critical region would
extend down to zero temperature. For a simple half-filled
Hubbard model, the critical temperature can be reduced, e.g.,
by the disorder51 or particle-hole asymmetry, but still remains
finite. Therefore, other models should be considered, also
away from half filling,52,53 which have a significantly reduced
coexistence region and where the proposed scaling may give
a more direct evidence of the quantum criticality. In some of
these models the coexistence region was not even detected, and
then the eigenvalue analysis can also be used as an ultimate test
for its existence. It would be also very interesting to explore a
possible quantum critical scaling in the external electric field
within the nonlinear I -V regime,5 similar as in the experiments
on Si MOSFETs.54 This seems especially important in light

075143-7
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of the recent discovery of devices displaying novel resistive
switching in narrow gap Mott insulators.55 Finally, the concept
of the instability line above the quantum critical point, which
is based on the thermodynamic analysis, is very general and
can be applied to other physical systems (e.g., interacting spins
in an external field), and the scaling analysis can be tested on
physical quantities other than the resistivity.

V. SCALING AROUND THE INFLECTION-POINT LINE

As stated in the previous section, the curvature λ must
be directly related to an appropriate relaxation rate of a
system perturbed away from the equilibrium, a quantity that
in principle should be possible to measure on any system.
However, it is currently very hard to make such measurements
on the Mott systems and precisely determine the instability
line. Our calculations, however, show that it lies just among
the crossover lines that separate the bad metal and the Mott
insulator, so it might not be necessary to know its exact position
to observe quantum criticality. In the following, we present a
scaling analysis that can be performed around the resistivity
inflection-point line (or any of the other crossover lines) to
test the scaling hypothesis. As it turns out, the scaling is
a robust feature, not particularly sensitive to the choice of
Uc(T ), as already tested in experiments on various organic
Mott systems.56

We first observe that the resistivity curves display almost
a perfect mirror symmetry when plotted on the log scale
[Fig. 6(b)]. This puts a strong constraint on the functional
form of the scaling function f (as we show below) and also
indicates that the resistivity curve along the inflection-point
line, ∂ log ρ(U )/∂U = 0, could also serve as the separatrix.
The mirror symmetry requires that

f (y) = 1/f (−y). (9)

For the above to be satisfied, the function f must be of the
form

f (y) = eh(y), (10)

where h is an antisymmetric function of y. It is clear that
f (0) = 1 and therefore h(0) = 0. h must also be smooth, so it
can be represented as a Taylor series with only odd terms,

h(y) = ay + by3 + · · · . (11)

In our calculations, it turns out that only the linear term is
significant, and here we show how this can be tested. First
we make a substitution of variables T/δUzν → δUT −1/zν and
then take the logarithm of both sides of the scaling formula to
obtain

log

(
ρ(Uc(T ) + δU,T )

ρ(Uc(T ),T )

)
= log (f (δUT −1/zν)). (12)

If the mirror symmetry is satisfied, then

log

(
ρ(Uc(T ) + δU,T )

ρ(Uc(T ),T )

)
= h(δUT −1/zν), (13)

which means that the precise form of h(y) can be deduced by
plotting the left-hand side of the above equation as a function
of y = δUT −1/zν and then making a fit of a polynomial curve
to the data. This is possible because in the region where the
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FIG. 10. (Color online) The symmetric and asymmetric part of
the scaling function, hs and ha , at various temperatures. The small
value of hs(y) shows that the mirror symmetry of resistivity curves
is present. The ha(y) curves collapse around the inflection-point line,
which shows that the exponent, zν = 0.953, is well evaluated. Fitting
a third-order polynomial to ha(y) in the range where these curves
collapse can reveal the exact form of the scaling formula. In our
calculations only the linear term is significant.

scaling formula is valid, all the data points should collapse onto
a single curve. To test whether h(y) is truly antisymmetric, it
is convenient to first split it into symmetric and antisymmetric
parts, h(y) = hs(y) + ha(y), where hs(y) = 1

2 [h(y) + h(−y)]
and ha(y) = 1

2 [h(y) − h(−y)]. If the resistivity is mirror
symmetric, hs should be 0 and ha should be equal to h. In
Fig. 10 we plot these functions around the inflection-point line
and find hs to be negligible. Also, it is easily seen that h(y)
is purely linear in the region where the data points perfectly
collapse on a single curve.

Now it is clear that there are two conditions that Uc(T ) has
to satisfy for the scaling with mirror symmetry to be possible.
First, if we take the partial derivative over U at both sides of
the equation, we get

∂ log ρ(U,T )

∂U
= aT − 1

zν + bδU 2T − 3
zν + · · · . (14)

If h(y) is a linear function, then only the first term in the above
equation remains, which means that the logarithm of resistivity
is a linear function of U in the entire region in which the scaling
formula holds. Even if there are higher terms in h(y), the above
has to be true at least close to Uc (small δU ), where the linear
term is dominant in any case. This imposes a constraint on
Uc(T ), such that it has to be in a region where the second
derivative of logarithmic resistivity is zero, or at least small,

∂2 log ρ(U,T )

∂U 2
≈ 0. (15)

This derivative is color coded in the (U,T ) plane in Fig. 11
so that yellow color corresponds to a small absolute value.
As it is readily verified, the above condition is not fulfilled
anywhere exactly [except precisely at the log ρ(U ) inflection-
point line by its definition], but all of the crossover lines lie
in the region where this condition is approximately satisfied.
There is an additional requirement for Uc(T ) which is not in
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FIG. 11. (Color online) The instability line lies among the other
crossover lines. log ρ(U ) is linear in this crossover region, which
allows for the scaling formula to be valid.

any way implied by definition of any of the crossover lines.
Namely, the first derivative of the logarithmic resistivity has
to be decreasing along Uc(T ) as a power law of temperature.
This can be shown by taking the limit δU → 0 in Eq. (14),

∂ log ρ(U,T )

∂U

∣∣∣∣
Uc

∝ T − 1
zν . (16)

The above holds regardless of the value of the cubic (or any
higher) term coefficient. One can even use this to give a good
assessment of the exponent zν, by fitting such an experimental
(or theoretical) curve to a power law as shown in Fig. 12. As
it is seen here, the derivative Eq. (16) calculated along the
inflection-point line fits well to a power-law curve of exponent
−0.95, but only above roughly 2Tc. The same analysis of the
IPT results yields a slightly lower value of zν = 0.63.

Finally, an estimate of how well the scaling works can be
made by comparing the value of resistivity obtained by the
scaling formula and the one measured in experiment or, as it
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roughly 2Tc, it fits well to a power-law curve of exponent −0.95. This
can be used to evaluate the value of the scaling formula exponent.
At lower temperatures the decrease in resistivity is faster, and the
behavior deviates from the power law, and the scaling formula fails
at temperatures below 2Tc.

d logρ/dU =0
Scaling region
boundaries

 line

ρ
-ρ

D
M

FT
FO

R
M

U
LA

ρ
D

M
FT

Interaction U

Te
m

pe
ra

tu
re

 T

FIG. 13. (Color online) Relative error of the scaling formula color
coded in the U -T plane. The dotted lines are the boundary of the
scaling region. The two green filaments below 2Tc are where the
scaling formula intersects with the actual DMFT result.

is in our case, calculated from the DMFT solution. In Fig. 13
it is shown how the scaling formula works within the 5%
error bar in a large region, for the inflection-point line. This
result is qualitatively the same for the other crossover lines.
It is important to note that in the case of the instability line
(and all the other crossover lines other than the inflection-point
line), one is able to improve the quality of scaling by using
different exponents zν depending on sgn(δU ), and that way
compensate for the lack of exact mirror symmetry. Also, when
only the linear term in h(y) is used, slightly lowering the value
of zν obtained from the power-law fitting procedure typically
broadens the region of validity of such a scaling formula.

In conclusion, the log ρ(U ) inflection-point line is easily
observable in experiment and our calculations show that it
lies very close to the instability line. The analysis presented
here indicates that the quantum critical scaling previously
found to hold around the instability line should also be
observable around the inflection-point line. We show that the
scaling formula that is valid around this line displays almost
a perfect mirror symmetry of resistivity curves. In general,
mirror symmetry, or “duality,” should not be considered a
necessary ingredient for a quantum critical scaling. In fact, we
find that the scaling is of better quality around the instability
line, although it is slightly less symmetric.

It is also very important to examine how the resistivity
changes along the separatrix, and our results are presented in
Fig. 14. In this crossover region, the resistivity far exceeds the
Mott limit and is only weakly dependent on temperature. We
find that along the instability line, the resistivity is roughly a
linear, increasing function of T . Along the inflection-point line
and ρ(T ) = max lines, the resistivity is slowly decreasing. We
note that these results, however, must be model specific. Above
the critical end point, the resistivity is strongly dependent on
U , and a small change in the shape or position of these lines
can cause a significant change in the temperature dependences
of resistivity presented in Fig. 14.

VI. WIDOM LINES

The notion of a crossover line is very general and different
physical motivations can be used for its precise definition. The
concept of the Widom crossover line is, however, more strict
and relies on one fundamental principle.
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The Widom line was originally defined in the context
of liquid-gas phase transition,57 and as the line connecting
the maxima of the isobaric specific heat as a function of
pressure (∂Cp/∂p = 0), above Tc. It was conceived as a
logical continuation of the first-order phase transition line to
supercritical temperatures. Cp is divergent along the first-order
transition line, which directly causes the maxima in Cp

present above the critical temperature. This concept is easily
generalized to include all the lines that mark features directly
caused by nonanalyticities due to a phase transition.58 As
such, a Widom line can be defined for any quantity that
exhibits either a divergence or a discontinuity because of a
phase transition, and thus a maximum or an inflection point
above Tc.

Very recently,23 in the supercritical region of an argon
liquid-gas phase diagram, an unexpected nonanalyticity has
been found in sound velocity dispersion curves, precisely at
the Widom line. The authors give a new depth and physical
meaning to the concept, by observing that there is no single
supercritical fluid phase, and that the Widom line actually
separates two regimes of fluidlike and gaslike dynamical
behavior. This finding makes it clear that the Widom lines
should not be exclusively connected with the thermodynamics
of the system. The changes in transport that follow certain
features in thermodynamic quantities can also be used for
making a meaningful and possibly even equivalent definition
of the Widom line. The significance of this concept was
recognized once more24,59 in the context of hole-doped high-Tc

superconductors, where the characteristic temperature T ∗ of
the pseudogap phase is shown to correspond to the Widom line
arising above a first-order transition at critical doping.

In the above sense, we emphasize that the quantum
critical scaling observed in our model can also be easily
connected with the concept of Widom lines, giving them
new physical importance in the context of quantum-phase
transitions. One can immediately recognize that the log ρ(U )
inflection-point line and the instability line both qualify as
generalized Widom lines—they emanate from the critical end
point, separate regions of metallic and insulating behavior,

and mark features that are directly caused by nonanalyticities
due to the phase transition. The quality of the scaling and
the close proximity of these two lines may even indicate a
profound connection between them. As the proposed physical
concept may well surpass the scope of the Hubbard model
and Mott physics, a definition of the instability line can be
very useful. Contrary to the inflection-point line, it is based on
a purely thermodynamical quantity, i.e., the free energy, and
can be defined for an arbitrary model. It does not require the
presence of the finite-temperature critical point (which makes
a conceptual difference with the work24,59 on hole-doped
cuprates) and can be used to introduce the Widom line concept
to exclusively zero temperature quantum-phase transitions.

VII. CONCLUSIONS

In this paper we carefully investigated the finite-
temperature crossover behavior around the Mott transition,
with the goal to provide both theoretical insight and exper-
imental guidance for the search for quantum criticality in
this regime. To obtain quantitative and reliable results that
allow direct comparison with experiments, we performed
these studies within the framework of single-site dynamical
mean-field theory. From the conceptual point of view, this
approach offers an immediate advantage—it is physically very
clear what kinds of mechanisms and processes are captured
by such a theory, and which are not. Most importantly,
such an approach explicitly excludes all mechanisms directly
or indirectly associated with any ordering tendencies, in
agreement with the physical pictures for the Mott tran-
sition introduced by early pioneering ideas of Mott and
Anderson.

More specifically, we focused on a single band half-
filled Hubbard model, which, within DMFT, maps to solv-
ing a Kondo-Anderson magnetic impurity model in a self-
consistently determined bath. The formation of the heavy
Fermi liquid on the metallic side of the Mott transition
is described as a formation of a Kondo-like singlet in the
ground state, similarly as in the early work of Brinkmann
and Rice.60 In contrast to the Brinkmann-Rice theory, the
DMFT approach is able to quantitatively and accurately
describe the thermal destruction of such a correlated Fermi
liquid, and the resulting coherence-incoherence crossover.
The possibility to systematically and quantitatively describe
this incoherent regime is especially important to properly
characterize the high-temperature crossover behavior above
the coexistence dome, where we obtained clear and precise
signatures of quantum critical behavior. Our results show
remarkable agreement with several experimental systems,56

but future experiments should provide even more precise
tests for our predictions. We expect that close enough to the
quantum critical point all quantities should display appropriate
scaling behaviors. Our work has, so far, focused mostly on
the transport properties, and sufficiently detailed results for
thermodynamic and other quantities are not available at this
time to permit a scaling analysis. The investigation of these
interesting questions is beyond the scope of the present work,
and is left for future studies.

We should mention that ideas closely related to ours
have also been discussed in a series of papers by Senthil
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and collaborators,61–63 who also seek a description of Mott
quantum criticality unrelated to any ordering phenomena.
This approach, however, focuses on capturing the possible
effects of gapless “spinon” excitations, which may exist on the
insulating side of the Mott transition, but only in the presence
of sufficient and specific magnetic frustration, preventing the
familiar antiferromagnetic order. Because of their gapless
nature, they should remain long lived (e.g., well defined)
only at the lowest temperatures, inducing long-range spatial
correlations in the proposed spin liquid. The corresponding
theory, therefore, focuses on long-distance spatial fluctuations,
which, as in ordinary critical phenomena, are tackled by
appropriate renormalization-group methods. In contrast to our
DMFT approach, this theory implicitly disregards the strongly
incoherent Kondo-like processes, which may play a dominant
role at sufficiently high temperatures.

The key physical question thus remains: What is the
crossover temperature Tnonlocal below which the nonlocal
effects ignored by DMFT become significant? This important
question can, in principle, be investigated by computing sys-
tematic nonlocal corrections to single-site DMFT, a research
direction already investigated by several authors.31–33,64 The
recent work already provides some evidence that for a Hubbard
model on a square lattice the nonlocal corrections are very
small well above the coexistence dome (at T � Tc)64 and are
essentially negligible for a frustrated triangular lattice.33 On

the experimental side, the possible role of nonlocal effects such
as spinons can be investigated by systematic studies of a series
of materials with varying degrees of magnetic frustration.
Such studies are accessible in organic Mott systems,14,15 where
Tc ∼ 10–20 K, while the magnetic frustration may be varied
using different crystal lattices. In some cases the magnetic
ordering is completely suppressed on the insulating side,65

while in others it remains.66 If robust signatures of quantum
criticality in transport are observed at T � Tc in all of these
materials, this finding would provide strong support for the
“local quantum criticality” scenario we proposed that is based
on the DMFT approach.
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Phys. 79, 1015 (2007).

5S. Sondhi, S. Girvin, J. Carini, and D. Shahar, Rev. Mod. Phys. 69,
315 (1997).

6C. Panagopoulos and V. Dobrosavljević, Phys. Rev. B 72, 014536
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Phys. Rev. B 81, 075118 (2010).
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