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The Luttinger-Ward functional (LWF) has been a starting point for conserving approximations in many-body
physics for 50 years. The recent discoveries of its multivaluedness and the associated divergence of the two-particle
irreducible vertex function � have revealed an inherent limitation of this approach. Here we demonstrate how
these undesirable properties of the LWF can lead to a failure of computational methods based on an approximation
of the LWF. We apply the nested cluster scheme (NCS) to the Hubbard model and observe the existence of an
additional stationary point of the self-consistent equations, associated with an unphysical branch of the LWF. In
the strongly correlated regime, starting with the first divergence of �, this unphysical stationary point becomes
attractive in the standard iterative technique used to solve DMFT. This leads to an incorrect solution, even in the
large cluster size limit, for which we discuss diagnostics.
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The Luttinger-Ward functional (LWF) � is a central object
in the quantum many-body theory of strongly correlated
fermionic systems. � [1] is defined as the interacting part of
the Legendre transform of the free energy with respect to the
bare propagator G0 [2]. It is a functional of the full propagator
G, formally equal to the sum of all vacuum skeleton diagrams
[3,4]. � has been the basis of many approximations in the field
over the last decades.

Dynamical mean-field theory (DMFT) [5,6] and its cluster
extensions [7–10] are a class of �-derivable approximations
with a systematic control parameter: the size Nc of the cluster.
They interpolate between DMFT (Nc = 1) and the exact
solution of the lattice model for Nc = ∞. Cluster methods
allow to treat the Mott physics à la DMFT and to include
short-range spatial correlations. They have led to significant
progress in recent years, in particular on the Hubbard model
[11–58]. Cluster DMFT methods are formulated in terms
of one (or a few) auxiliary quantum impurity models in a
noninteracting bath encoded in the bare propagator G. The
bath is determined self-consistently in such a way that the
impurity Green function Gimp coincides with some (local)
components of the Green function of the lattice model Glatt.
This representability property, i.e., the possibility to find G for
a given Gimp in a quantum impurity model lies at the very heart
of DMFT methods [6,59].

Surprisingly, it was recently discovered [60–62] in simple
strongly correlated models that the functional �[G] is in fact
multivalued, i.e., has multiple branches. As a consequence, the
relation G[G] cannot always be inverted in quantum impurity
models as several G yield the same Green function G. This has
deep consequences for numerical methods in some parameter
regimes. The crossing of two branches of � leads to diver-
gence of the two-particle irreducible vertex � [61,63–66] and

therefore the breakdown of the parquet decomposition
[65,67,68]. Moreover, at strong coupling, the bold diagram-
matic series can converge to an incorrect result, as was checked
explicitly using a bold quantum Monte Carlo algorithm [60].
Similar pathological behavior was observed in the context of
GW -like approximations of � [69].

In this paper, we show that the multivaluedness of �

has unexpected and severe consequences in certain cluster
DMFT methods, and can potentially lead to incorrect results.
Concretely, we study the nested cluster DMFT scheme (NCS)
[5,52,70], which is an early example of the recently introduced
self-energy embedding theory (SEET) [71–75]. NCS is a
particularly interesting scheme since it addresses the main
drawbacks of the most widely used cluster methods: cellular
DMFT (CDMFT) [9] and the dynamical cluster approximation
(DCA) [7]. It is a real-space cluster method which is transla-
tionally invariant (unlike CDMFT) and yields a continuous
self-energy in reciprocal space (unlike DCA). In the classical
limit, it reduces to the well-known Bethe-Kikuchi method of
classical statistical physics [5,52].

We solve the NCS for the Hubbard model and compare it to
benchmarks established with converged large DCA clusters.
At weak to moderate couplings the scheme is stable and
performs very well. Even at strong coupling, there is a physical
solution, which is very close to the benchmarks already at
moderate cluster size. However, (i) in the standard iterative
method used to solve the DMFT equations, this solution is
unstable towards an unphysical solution characterized by a
noncausal Weiss field; (ii) as the cluster size increases, this
stable unphysical solution converges to an incorrect result; and
(iii) this occurs in the strong-coupling regime as delimited by
the generalization of the divergences of the irreducible vertex
observed in Refs. [61–65,76,77].
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FIG. 1. For all panels, the temperature is T/D = 0.125. (a) Color plot of |δG| ≡ |Gcdmft
00 (iω0) − Grev

00 (iω0)|/|Gcdmft
00 (iω0)|; black crosses are

data points, red crosses are points where the reverse impurity solver does not converge. (Left inset) Slices for fixed doping, showing discontinuity
vs U for δ = 7% and 9%. (Right inset) Hybridization (local) of Gcdmft (top, green) and Grev (bottom, red), for U = 2 and δ = 0 showing its
causality violation. (b) Vertex divergences, where the real part of an eigenvalue εi of χ̃�=0

c crosses zero for single-site DMFT (dashed line)
and 2 × 2 CDMFT (colored circles). Color encodes Im εi at the given point; colored stripes are guides for the eyes. (Inset) Im εi vs doping
for the bottom two groups of circles for 2 × 2 CDMFT. (c) Color plot of |δ	| ≡ |Im	cdmft

00 (iω0) − Im	nested
00 (iω0)|/|Im	cdmft

00 (iω0)|, i.e., the
difference between the imaginary part of the local self-energy for 2 × 2 NCS and the 2 × 2 CDMFT (the latter is close to the exact solution,
see Appendix A 1 and Fig. 3).

We consider the Hubbard model on a square lattice:

H = −t
∑
〈ij〉σ

c
†
iσ cjσ − μ

∑
iσ

niσ + U
∑

i

ni↑ni↓, (1)

where c
†
iσ creates a fermion with spin σ at site i. The density

operator is niσ = c
†
iσ ciσ . The nearest-neighbor hopping ampli-

tude is t , the on-site interaction U and the chemical potential
μ. D = 4t is the unit of energy. We use the CT-INT algorithm
to solve the quantum impurity model [78,79].

Let us first address the representability issue of the Green
function G by a Weiss field G in a cluster impurity model.
We consider a 2 × 2 CDMFT calculation for T/D = 0.125
and various U and dopings δ, where it yields a quantitatively
good solution as compared to converged large cluster DCA
benchmarks (see Fig. 3). The CDMFT self-consistency equa-
tion reads [9] Gimp[G] = Gloc[G] with

Gloc[G](iωn) ≡
∑

k∈RBZ

(iωn + μ − ε̂k − 	imp[G](iωn))−1,

where ε̂k is the dispersion over the superlattice of clusters,
RBZ is the reduced Brillouin zone and 	imp (resp. Gimp) is
the impurity cluster self-energy (respectively, Green function).
The CDMFT equations are solved with the usual iterative
technique for DMFT; given G(i) at iteration i, the impurity
model yields 	imp[G(i)] and the next iteration G(i+1) is given
by

G(i+1) = (Gloc[G(i)]−1 + 	imp[G(i)])−1. (2)

Starting from the converged CDMFT solution Gcdmft we
then implement a reverse quantum impurity solver [60]: we
seek a bare propagator Grev of the cluster model such that
Gimp[Grev] = Gcdmft, with a similar iterative method as in

Eq. (2) but with Gloc[G(i)] replaced by Gcdmft, which remains
fixed in the calculation.

In Fig. 1(a), we present the relative difference between
the local component of the converged CDMFT Weiss field
Gcdmft and the result of the reverse impurity solver Grev. We
observe three regions. At weak coupling, the reverse impurity
solver yields Gcdmft as naively expected. At strong coupling
and high doping, the reverse solver does not converge. At
strong coupling and low doping, Grev progressively deviates
from Gcdmft, even though they both yield the exact same Green
function Gcdmft. As soon as Grev is different from Gcdmft it
acquires a noncausal hybridization function � [80] as shown
in the inset of Fig. 1(a). Indeed, �(τ ) is not concave over the
full [0,β] interval and therefore has a corresponding spectral
function with negative parts. This calculation demonstrates the
existence of multiple branches of � for the 2 × 2 impurity
problem by exhibiting explicitly two G (and hence 	) giving
the same G, see also Refs. [60,61,63–65,77]. We will see below
that a similar phenomenon occurs in NCS.

It is interesting to note that in the reverse impurity calcu-
lation at low doping δ < 5%, one first finds Grev = Gcdmft for
small interactions U < 1.25 and then continuously switches
to an unphysical solution for G as U is increased. This
means that the physical branch of � crosses the unphysical
branch. As has been discussed in the particle-hole sym-
metric case [61], this crossing has to be accompanied by
a divergence of the corresponding two-particle irreducible
vertex function �, since it is the second derivative of �

with respect to G. We generalize the results of Refs. [63–
65] to the doped case and map these divergences of � in
the 2 × 2 CDMFT case, to obtain a characterization of the
strong-coupling region, which is not linked to the details
of an iterative algorithm. Given the two-particle propagator
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Gωω′�
2,σσ ′,ijkl = 1

β
〈c†i,σ (ω)cj,σ (ω + �)c†k,σ ′(ω′ + �)cl,σ ′ (ω′)〉 and

the single-particle Green function G, � can be calculated with
the inverse Bethe-Salpeter equation

�
ω,ω′,�
c,ijkl = β2[[χ�

0

]−1 − [χ̃�
c

]−1]
ijω,klω′ , (3)

where χωω′�
0,ijkl = −Gli(iω)Gjk(iω + i�)βδω,ω′ , and χ̃ωω′�

c,ijkl =
Gωω′�

2,↑↑,ijkl + Gωω′�
2,↑↓,ijkl − 2Gji(ω)Glk(ω′)βδ�,0. The inverse is

assumed to be in combined indices (ijω) and (lkω′), where
ω,ω′ denote fermionic and � bosonic Matsubara frequencies.
If χ̃c(i�) as a matrix has an eigenvalue εi = 0, it is singular
and � diverges at the given i�. While in single-site DMFT
at particle-hole symmetry, the eigenvalues of χ̃c(i� = 0) are
purely real by symmetry, it is no longer necessarily true
here [65].

Figure 1(b) shows trajectories in the (δ,U ) plane where the
real part of an eigenvalue of χ̃c crosses zero for single-site
DMFT and 2 × 2 CDMFT. In single-site DMFT, at half-
filling, there are three � divergences in the examined range
of interaction, in agreement with Ref. [64]. As we go to finite
doping, the divergence close to U = 1.8 disappears immedi-
ately as the corresponding eigenvalue acquires an imaginary
part. However, the divergences close to U = 1.2 and 1.5
extend up to δ 
 5% where they merge. For higher doping, the
divergences disappear because the corresponding eigenvalues
acquire an imaginary part. In CDMFT, the behavior is very
similar except that each divergence is split into four, the two
middle ones occurring simultaneously. Hence we conjecture
(see also Refs. [61,63–65]) that the divergences in � are not
an artifact of the single-site model but rather survive and
multiply in the cluster impurity model. Finally, in the left inset
of Fig. 1(a), we see that for δ � 6%, the unphysical solution
appears discontinuously when U is increased, in agreement
with the absence of a divergence in �.

Let us now turn to the NCS. It approximates � by �(L),
defined as its restriction to the set of real-space two particle
irreducible (2PI) diagrams that involve lattice points lying
within a box of shape L × L. �(L) can be expressed as a
linear combination of the LWFs �L×L of a L × L cluster
and the LWF of its subclusters, with appropriate weights that
eliminate the double counting of diagrams. Each cluster LWF
is associated to an impurity model, via the representability
property. The lattice self-energy 	latt is therefore a linear
combination of the self-energies of the impurities. This couples
the impurity models together and the baths adjust so that, e.g.,
the impurity Green function is the same for every site of every
cluster. This method was introduced for a two site cluster (a
dimer) in Ref. [70], see also Refs. [5,52,81].

A priori, solving large nested clusters seems like a daunting
task, requiring to solve a large number of coupled impurity
problems, one for every subcluster of the L × L cluster.
However, as shown in Appendix C 2, it is sufficient to solve
only four coupled clusters since

�(L)[G] =
∑

i

�L×L

[
G|CL×L

i

]− �L−1×L

[
G|CL−1×L

i

]
−�L×L−1

[
G|CL×L−1

i

]+ �L−1×L−1
[
G|CL−1×L−1

i

]
,

(4)

where C
n×p

i is the cluster of shape n × p whose bottom-left
lattice point is i, and G|Cn×p

i
the restriction of the Green

function to this cluster (i.e., the set {Glm}l,m∈C
n×p

i
). If we

assume rotational invariance, the last two terms give the same
contribution and the method can be solved using three coupled
cluster impurity models. We present the full formalism for the
NCS with several examples in Appendix C.

We solve the NCS using the standard iterative method of
solution for DMFT equations as in Eq. (2). At weak coupling,
the NCS yields a solution in excellent agreement with large
DCA cluster benchmarks (see Fig. 3). However, at strong
coupling the situation is more complex. First, in Fig. 1(c),
we observe that the 2 × 2 NCS gives a poor result compared
to CDMFT in the strong-coupling region delimited by the
divergences of � discussed above. We then solve larger
clusters L = 2, 3, 4, and 6 to examine the convergence of
the method with the cluster size. We observe an unexpected
and severe problem: the nested cluster scheme converges for
L → ∞ but to an incorrect solution even though formally

�(L) L→∞−−−→ �. In Fig. 2(a) and Appendix A 4 we show the
momentum dependent self-energies obtained for L = 4 and 6;
they are very close to each other, indicating convergence, but
quite far from the benchmarks.

To gain further insight, we study the convergence of
the L = 4 case at strong coupling iteration by iteration. In
Fig. 2(b), we plot the difference between successive Gloc for
U/D = 1 and U/D = 2, δ = 0. At U/D = 1 convergence
is roughly exponential until the level of Monte-Carlo noise
is reached. However, for U/D = 2, we observe that the
self-consistency is almost converged after three iterations [the
green point on Fig. 2(b)] to an unstable solution before finally
converging to another solution of the equation (red point).
Remarkably, in Fig. 2(a), we see that this unstable (green)
solution is almost perfectly on top of the benchmark, contrary
to the stable (red) one.

Furthermore, we observe two pathologies of the stable (red)
solution, which can be used as diagnostics in the absence
of benchmarks. First, the inset of Fig. 2(b) shows the local
hybridization function of both solutions (at the corner of the
L × L cluster), �stable and �unstable. �stable clearly violates
causality at U/D = 2, similarly to the reverse impurity solver
studied above, while �unstable is fine. Moreover, we see in
Fig. 2(c) that this effect appears as a function of U for U > 1.2,
i.e., exactly when the solution deviates from the benchmark (or
CDMFT in this case). Second, the �stable bath does not decay
in the large L limit at strong coupling (U/D = 2), contrary
to U/D = 1, as illustrated in the inset of Fig. 2(a). Contrary
to CDMFT or DCA, the NCS does not impose � = 0 for
every converged solution for L → ∞, but only the weaker
condition 	latt = 	imp + � (see Appendix A 4 and Fig. 8 for
further discussion). For the physical solution, we conjecture
that � → 0 for L → ∞: the large cluster will be a Hubbard
model with no bath. The unphysical solution converges on the
other hand to a certain resummation of the bold diagrams series.

For CDMFT and DCA, the standard iterative method of
solution is iteratively causal [7,9], i.e., one can prove that the
bath stays causal at each iteration (and therefore at conver-
gence). Hence the causality violation of the bath cannot occur
and the solution stays on the physical branch. The NCS does
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FIG. 2. (a) Real part of 	k(iω0) − Un vs momentum k, in NCS for L = 4 (solid line, red), L = 6 (dashed line, blue); unstable solution at
the third iteration for L = 4 (solid line, green); the stars denote 98 sites DCA results. (Inset) Hybridization at the center of the L × L cluster at
the first Matsubara frequency vs L for U/D = 2 (circles, black), and U/D = 1 (circles, magenta). (b) Norm of the difference of Gloc between
iterations vs the iteration number i, for L = 4, U/D = 2 (circles, black), and U/D = 1 (circles, magenta). Green (resp. red) dot corresponds to
the unstable (respectively, stable) solution, cf. text. (Inset) Hybridization at the corner of the L × L cluster vs τ for the unstable and the stable
noncausal solution, with same convention as in (a). (c) Im 	loc(iω0) vs U/D for NCS L = 2 (square, blue online) and 2 × 2 CDMFT, (circle,
green online). The star is 98 sites DCA. (Inset) Local hybridization for L = 2 vs τ .

not have this property, which, as we have seen, has drastic
consequences on the stability of the physical solution in the
iterative procedure. In the dimer case, NCS was already known
to yield noncausal self-energies at low temperatures and strong
coupling [5,70]. However, in previous works [52,82], this was
simply interpreted as the signature of an insufficiently large
cluster, i.e., a defect that the large L should cure.

To summarize, the nested cluster is a translationally invari-
ant, real-space cluster method with a physical solution very
close to numerically exact benchmarks already at moderate
cluster sizes, both at weak and strong coupling. However,
the multivaluedness of the LWF leads to an instability of the
standard iterative procedure of solution in the strong-coupling
region (as delimited by the divergence of the irreducible vertex
�) towards an unphysical solution, even in the infinite cluster
limit. This failure is signaled by causality violations of the
hybridization function. All this points to the importance of
distinguishing between a cluster method and the iterative
procedure used to solve its equations. An important challenge
is therefore to design new ways of solving the cluster DMFT
equations that are guaranteed to stay on the physical branch of
the LWF and stabilize the “hidden” physical solution, e.g.,
by implementing the “shifted-action” [83] proposal in this
context. Alternatively, one can use cluster methods based on
higher-order functionals (TRILEX [54,56,57], QUADRILEX
[55]). We believe these are less likely to be multivalued, as
it would require the existence of two systems with identical
single-particle but also higher-order correlation functions,
which is a priori harder to achieve. Moreover, going to higher-
order functionals would correspond to adding more degrees
of freedom to the solution, which in itself could remove the
multivaluedness.
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APPENDIX A: BENCHMARKS

In this section, we present results for various cluster
DMFT methods applied to the two-dimensional square-lattice
Hubbard model as introduced in the main text. We pay
special attention to the nested cluster scheme (NCS), which
is discussed in detail in Appendix C. Detailed summary of
other cluster DMFT methods is provided in Appendix D.

We first present an extensive benchmark against exact
results (Appendix A 1), which we use in the main text to
determine the quality of solutions and to identify problematic
regimes. We then address in particular the causality violations
in the problematic region (subsection A 2). In Appendix A 3,
we provide a comparison between two variants of the nested
cluster scheme, differing in the nested quantity (self-energy
versus cumulant). In Appendix A 4, we discuss the stable and
unstable solution of the nested equations.

1. Comparison against exact results

In Fig. 3, we show the results of cluster DMFT methods
for the Hubbard model, at various cluster sizes, in the four
corners and the center of the phase diagram examined in
the main text. The temperature is T/D = 0.125. At half-
filling, Re	loc(iωn) = U/2 by symmetry, so we omit this
data. The nonlocal part 	̃k(iωn) = 	k(iωn) − 	loc(iωn) we
present at the lowest Matsubara frequency, along a triangular
path enclosing the irreducible Brillouin zone. With stars we
denote the best available result: at half-filling, we have DCA
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FIG. 3. Benchmark of DMFT and various cluster DMFT methods. Hubbard model square lattice, temperature T/D = 0.125. We present
separately the local and the nonlocal parts of self-energy, 	̃k = 	k − 	loc. Color denotes cluster size, symbols/line styles different methods.
Stars denote the best available result. Agreement is excellent in all points except point B: NCS converges to a wrong solution, PCDMFT 2 × 2
is considerably worse than in other points, and DCA+ converges very slowly with cluster size, while being a poor approximation at small cluster
size. In other points, NCS 4 × 4 performs well, but at 6 × 6 amplification of statistical noise becomes a problem (see text for details).

Nc = 98, and away from half-filling, the biggest cluster is
8 × 8 (Nc = 64). These results are converged with respect
to cluster size, and can be considered exact solutions of the
Hubbard model.

The presented CDMFT result is the self-energy periodized
by Eq. (D17) (in Appendix D 2 below). In DCA, we are
showing only the values at coarse-grained wave vectors K (see
Appendix D 4).

We first concentrate on the points other than point B. We
see excellent agreement of all methods. The local part is
captured correctly already at 2 × 2 cluster size. DCA typically
overestimates the amount of k dependence at 2 × 2, then
underestimates it at 4 × 4, and is mostly converged at 6 × 6.

DCA+ has a similar behavior (2 × 2 not shown for the sake of
clarity). CDMFT and PCDMFT give almost the same result,
and are on top of the benchmark except for the real nonlocal
part in point E, where the overall shape is correct, but the
amplitude is overestimated slightly; PCDMFT also noticeably
misses the local imaginary part in point A. Nested cluster
performs well, and at 4 × 4 cluster size is even more accurate
than DCA around k = (0,0). In point E, it does not converge
at any cluster size. Away from half-filling and at cluster size
6 × 6, statistical noise amplification in nested cluster becomes
significant (see Appenidx C 1 b for details). It is particularly
noticeable in the local part of self-energy at high Matsubara
frequencies, in points C and D. Also in these points, there is a
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FIG. 4. Hubbard model, square lattice, temperature T/D = 0.125. Relative difference in Im	loc from the reference method (CDMFT 2 × 2).
DCA, PCDMFT, and DCA+ clusters are 2 × 2. The red and blue stripes are the� divergence trajectories from CDMFT 2 × 2 calculation [Fig. 1(b)
in main text). In DCA and DMFT, performance is uniform across the phase diagram and appears unrelated to the divergence trajectories. In
PCDMFT and DCA+, the result is considerably poorer in the region roughly bounded by the divergence trajectories.

peaklike feature around k = (π,π ) in the nonlocal imaginary
part. It comes from the numerous long distance self-energy
components, which are small and comparable to the statistical
error bar. These fine details of the solution can not be perfectly
converged due to the statistical noise.

Now we turn to point B. CDMFT 2 × 2 is, again, on top
of the benchmark. DCA behaves no differently than in other
points, and is almost converged at 6 × 6; the local part is
correct already at 2 × 2. On the other hand, DCA+ is not on
top of the benchmark even at 8 × 8, and especially the local
part is strongly underestimated: at 8 × 8, it is still worse than
single-site DMFT. The nonlocal part is underestimated as well:
the 6 × 6 calculation is comparable to DCA 4 × 4. PCDMFT,
similarly, underestimates both the local and nonlocal part.
Nested cluster converges to a wrong solution with respect to
Nc: the local part is indistinguishable already between 2 × 2
and 4 × 4, and the nonlocal part between 4 × 4 and 6 × 6.
The local part is underestimated by about 50%, and imaginary
nonlocal part by almost an order of magnitude. The failure
of PCDMFT, NCS, and DCA+ in this particular point is
strongly reminiscent of the failure of bold-diagrammatic QMC
presented in Ref. [60], for the same model parameters: the self-
energy obtained in these methods is more metallic and much
more local than the exact solution. We note that the similar
phenomenon can also be observed in the original DCA+ paper
[48]—in the strongly coupled regime, the Nc = 16 DCA+

self-energy result is much more local and metallic than that
of the DCA at the same cluster size.

In conclusion, in this phase diagram, the best performing
2 × 2 method is CDMFT. We take it as a reference method
for benchmarking on a denser (δ,U ) grid [Fig. 1(c) in the
main text, and Fig. 4 below]. At 4 × 4 cluster size, in the
points where it works, NCS does have an advantage over
CDMFT and DCA. DCA 4 × 4 coarse-graining is still quite
crude—due to symmetries of the lattice, it yields only six
independent self-energy components; NCS at the same size
yields ten independent self-energy components, and captures
longer distance processes. In DCA, interpretation of the results
in real space is problematic; NCS results can be looked at in
both r and k space. CDMFT is also problematic at 4 × 4. At

this size, both the translational symmetry and the homogeneity
within a supercell are broken, and the periodization becomes
even less straight-forward. Finally, we note that in pointB, even
though NCS fails with forward substitution algorithm, there
still appears to be a stationary point of the NCS equations
(Fig. 2 in main text), which is in better agreement with the
exact result than DCA at the same cluster size.

We finalize our analysis by a high-resolution benchmark
of DMFT and 2 × 2 cluster methods (DCA, DCA+, and
PCDMFT), analogous to Fig. 1(c) in the main text. In Fig. 4,
we present the deviation from the exact result of these methods.
DMFT and DCA perform uniformly well across the phase
diagram, and are at most ≈5% away from the correct result. No
features can be associated with the � divergence trajectories.
On the other hand, NCS, DCA+ and PCDMFT all fail in
similarly shaped regions around point B, but give good results
in other regimes. In DCA+ and PCDMFT the coincidence of
the problematic region with the �-divergence trajectories is
less conclusive, but we can similarly connect the failure with
the noncausality of the hybridization function. It is, however,
unclear whether a correct stationary point is present in these
methods at all.

2. Causality properties

In this section, we analyze the causality properties of various
quantities in the cluster methods presented above. Quantities
like Green’s functions, self-energies, and hybridization baths
should have Lehmann spectral representation. The diagonal
components of these quantities, should satisfy in real frequency

ImXii(ω) < 0, (A1)

where X stands for G,	,G, or �. This has implications for
the shape of these objects in imaginary time:

Xii(τ ) = 1

π

∫
dω

e−τω

1 + e−βω
ImXii(ω), (A2a)

∂2n
τ Xii(τ ) = 1

π

∫
dω

ω2ne−τω

1 + e−βω
ImXii(ω).

< 0, n ∈ N (A2b)
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FIG. 5. Causality analysis of relevant quantities, in various cluster methods at 2 × 2 cluster size. Temperature T/D = 0.125, square lattice.
At strong coupling, DCA+ and NCS have pronounced inflection points in �(τ ), PCDMFT in the second derivative of �(τ ). Gray lines extrapolate
the linear component close to τ = 0 and β. Other quantities are all causal, including the bare propagator on the impurity. Increasing the cluster
size in DCA+ improves the causality in �, but not in NCS. In the upper right panel, NCS result is omitted for the sake of clarity [the noncausality
is already obvious in �00(τ )].

All even-order derivatives with respect to τ must be nega-
tive. This rules out the appearance of inflection points in Xii(τ )
and any of its even-order derivatives.

In Fig. 5, we present the results for the local G,	 on
the lattice, as well as the diagonal components of the bare
propagator G and the hybridization function � on the impurity,
all in imaginary time. All methods used are at 2 × 2 cluster size.
In NCS we present the impurity quantities only for the biggest
cluster. In all methods at 2 × 2, all the diagonal components of
G and � are the same by symmetry (in DCA/DCA+ this holds
at any cluster size).

We see that all the quantities except the hybridization
bath are causal. At U/D = 1, there is a slight violation of
(A2b) in the second derivative of � in NCS, PCDMFT and
DCA+, but it is a tiny effect. In this regime, small fluctuations
in the noncausal direction do not cause problems for these
methods and the result is correct. However, it is clear that
these methods do not impose causality on the hybridization
function strictly, which then leads to problems at strong
coupling. At U/D = 2, we see a strong violation of (A2b)
in NCS, a clear inflection point in �(τ ) in DCA+, and
in PCDMFT there is an inflection point in ∂2

τ �(τ ). Here
we observe a similar trend in DCA+, NCS and PCDMFT:
�00(τ ∼ β/2) is generically overestimated (by absolute value)
with respect to DCA and CDMFT, respectively (note that the
difference in the bath between DCA/DCA+ on one side and
CDMFT/PCDMFT/NCS on the other is due to a different way
of closing self-consistency in these two groups of methods:
k-space versus r-space clusters; see Appendix D). The bigger
�00(τ ∼ β/2) translates to having a bigger bath at the low
frequency—the observed noncausal bath is also bigger, and as
we see in Fig. 2 in the main text, in NCS it does not even decay
with increasing cluster size.

3. Cumulant versus self-energy nesting

In Fig. 6, we compare the two variants of the NCS: one
embeds either the cumulant g, or the self-energy 	 (for details
see Appendix C 4). The results are compared to a 50-site DCA
calculation. The temperature is T/D = 0.0625 and the (hole)
doping is 20%.

We present results for the simplest dimer calculation (2 × 1,
see Appendix C 5 a), the double dimer 2 + 2 [see Eq. (C42)
and the corresponding section], and the 2 × 2 calculation
(Appendix C 5 c). We see that the result is solid already at 2 + 2,
and is overall improved at 2 × 2. However, it is clearly not yet
converged, and looking at the nonlocal part, the convergence
is not monotonic. This is clearly expected at such small cluster
size.

We observe that the cumulant variant performs slightly
better, but the difference is almost negligible. We have checked
that none of the features of the failure of NCS depend on the
choice of the nested quantity (g or 	). In the problematic
region, the cumulant variant converges to almost exactly the
same wrong solution as the self-energy variant.

4. Unstable and unphysical solutions

In Fig. 7, we present the self-energy for the apparently
unstable (green line) and the stable solution (red line) in NCS
4 × 4, compared to the exact benchmark (from Fig. 3). We
observe that the unstable solution is in excellent agreement
with the exact benchmark, even better than DCA of the same
size cluster. The stable solution on the other hand, is much more
metallic and much more local. However, it does have the correct
asymptotics and is apparently causal (see Appendix A 2).

Even in the large cluster limit, NCS does not guarantee
	imp → 	latt , and therefore at large cluster size, a principal
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FIG. 6. Benchmark of the two variants of NCS (cumulant vs self-energy embedding) at small-cluster sizes. Stars denote the best available
result (50-site DCA). The cumulant variant performs only slightly better. 2 × 2 calculation is already very close to the benchmark data.

solution is possible,

	imp,C[�C] + �C ≈ FC	latt[	imp], (A3)

where FC projects a lattice quantity onto impurity degrees
of freedom of the cluster C. We check this explicitly in our
unphysical solution in Fig. 8 and find excellent agreement.

APPENDIX B: VERTEX DIVERGENCES

The irreducible vertex function �r contains all possible two-
particle scattering processes that are two-particle irreducible
[2,3,85] in the given channel r (see Fig. 9 for an illustration
of the two-particle reducibility concept). The reducibility
channels are particle-hole (ph), transverse particle-hole (ph),
and particle-particle (pp), depending on which of the exter-
nal indices remain connected after cutting two propagator
lines [85]. �ph in particular corresponds to the second-order
functional derivative of the LWF:

�ph,αβγ δ = δ	δγ [G]

δGαβ

∣∣∣∣
G=G[G0,	]

= δ2�[G]

δGαβδGγδ

∣∣∣∣
G=G[G0,	]

. (B1)

The greek indices combine the orbital and spin index and the
imaginary time, e.g., α = (iα,σα,τα). This relation is illustrated
in Fig. 10 for diagrams of the second order.

The connection between � and � is the reason why � is
sensitive to the multivaluedness of the LWF: it diverges along
the lines in the phase diagram where two branches of the LWF
cross [61] [see Fig. 1(a) in the main part]. However, note that
also �pp can diverge in some cases [63,64]. One can define the
irreducible vertex function in the “charge” channel as �c =
�ph,↑↑↑↑ + �ph,↑↑↓↓ where we have omitted the time/frequency
and orbital indices for clarity.

In this paper, we are interested in identifying divergences of
�c. It does not appear explicitly in the cluster DMFT equations,
so we only need to calculate it at the end of the self-consistency
loop. Note that due to the LWF construction of the methods, we
calculate it only from the correlation functions on the impurity.

1. The Bethe-Salpeter equation

In general, �ph can be calculated from the Green’s function
G and the four-point correlation function

χωω′�
4,σσ ′,ijkl = 1

β
〈c†i,σ (ω)cj,σ (ω + �)c†k,σ ′(ω′ + �)cl,σ ′ (ω′)〉

−Gji(ω)Glk(ω′)βδ�,0

+ δσ,σ ′Gli(ω)Gjk(ω + �)βδω,ω′ , (B2)

FIG. 7. Temperature T/D = 0.125, U/D = 2, δ = 0, NCS 4 × 4. Red line: converged solution (stable, unphysical); green line: solution
after 3 iterations (almost converged, physical, unstable); stars: DCA 98A (exact benchmark).
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FIG. 8. Temperature T/D = 0.125, U/D = 2, δ = 0, NCS 4 ×
4. The unphysical solution retains a finite hybridization function even
in the large cluster limit, such that 	latt = 	imp + �. Quantities are
presented at the center of the biggest cluster.

where we have assumed SU(2) symmetry and absence of spin-
orbit interactions. First, we calculate the general χ4, and then
calculate the charge channel simply via

χ4,c = χ4,↑↑ + χ4,↑↓. (B3)

From this object, one can obtain the full vertex function Fc,
which contains all the possible two-particle scattering pro-
cesses (including the reducible ones). It is identical to the four-
point correlation function with amputated incoming/outgoing
two-point propagators

Fωω′�
c,ijkl =

∑
mnop

G−1
mi (ω)G−1

ok (ω′ + �)χωω′�
4,c,mnop

×G−1
jn (ω + �)G−1

lp (ω′). (B4)

�c is linked to F by the corresponding Bethe-Salpeter equation
(BSE). The BSE can be understood as a Dyson Equation at the
two-particle level [86], and it reads

Fωω′�
c,ijkl = �ωω′�

c,ijkl − 1

β

∑
ω′′

∑
mnop

�ωω′′�
c,ijmn Gon(ω′′)

×Gmp(� + ω′′) Fω′′ω′�
c,opkl . (B5)

FIG. 9. Scattering diagrams can be classified according to their
two-particle reducibility. If after cutting two Green’s function lines,
the diagram is separated into two vertex diagrams, with the external
indices α and β in one and γ and δ in the other, the diagram is reducible
in the ph channel.

FIG. 10. (Top) Second-order functional derivative of the second-
order contribution to � generates diagrams reducible in the pp and ph
channel. (Bottom) The ph-reducible diagrams can only be obtained
by functional derivatives of nonskeleton vacuum diagrams which are
not found in �.

The diagrammatic representation of BSE is presented in
Fig. 11.

One can invert the BSE to obtain a closed expression for �.
After rewriting the vertex quantities as matrices with respect
to the properly grouped indices for a given transfer frequency
�, V̂ �

(i,j,ω),(l,k,ω′) = V ωω′�
ijkl , the BSE becomes a matrix equation

F̂ �
c = �̂�

c + 1

β2
�̂�

c χ̂�
0 F̂ �

c , (B6)

where

χωω′�
0,ijkl = −Gli(iω)Gjk(iω + i�)βδω,ω′ . (B7)

A few algebraic steps then yield

�̂�
c = β2

[[
χ̂�

0

]−1 − [χ̃�
c

]−1]
, (B8)

where we have defined the so-called generalized susceptibility
[85]

χ̃c = χ̂0 + χ̂4,c. (B9)

The matrix χ̂�
0 is always invertible. This does not necessarily

hold for the generalized susceptibility χ̃c. As it approaches a
singular matrix, �c diverges.

While the analysis of � divergences can be performed for
an arbitrary transfer frequency �, we here focus only on the
� = 0 case. χ̃�=0

c is a symmetric matrix. In a single-site model
at particle-hole symmetry, it is also purely real, which makes it
Hermitian, and its eigenvalues purely real. In cluster-impurity
models, and/or away from ph symmetry, it can have complex
elements, and its eigenvalues are no longer necessarily real
[65].

FIG. 11. Diagrammatic representation of the Bethe-Salpeter
equation in the charge channel. Empty circles denote an ingoing
connector of a vertex function, while black dots correspond to
outgoing ones.
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2. Eigenvalues and divergences

In this part, we present the procedure for determining the
divergence trajectories of the irreducible vertex function, �c.
At a fixed temperature T/D = 0.125, in the (δ,U ) phase
diagram discussed in the main text, we determine trajectories
Ud=1,2,3,...(δ), where d indexes different divergences, counting
from the low U (Ud < Ud ′

, d < d ′).
From Eq. (B8), it is clear that ��=0

c diverges when an
eigenvalue of χ̃�=0

c goes through zero. The dimension of the
matrix is M = Nω × N2

c , where Nω is the number of fermionic
frequencies stored, and Nc is the number of sites in the cluster.
We start by solving the eigenproblem for χ̃�=0

c . We fully diag-
onalize this matrix at each discrete value of U (Ul) at a fixed
doping δ, and obtain a set of M eigenvectors and eigenvalues
{(vl

i ,ε
l
i)}i∈[0,M). In single-site DMFT, at the lowest U , the real

part of all eigenvalues is positive (Reεi > 0). Therefore, as we
iterate over the interaction values Ul , it is straightforward to
detect when the real part of an eigenvalue crosses zero—it is
whenever a new eigenvalue with the negative real part appears.
However, with this simple method, the error bar for Ud (δ)
is given by the interaction step Ul+1 − Ul . Furthermore, this
method could potentially miss an event where between twoUl’s
two eigenvalues cross zero, one becoming negative, the other
one positive. This is particularly important in CDMFT 2 × 2
where there are many negative eigenvalues present already at
the lowest U . Furthermore, we would like to know the exact
value of the imaginary part of the eigenvalue (Imεi) when its
real part is crossing zero—if it is nonzero (Imεi �= 0), Ud (δ)
at that point does not correspond to an actual divergence of �.

One can do better by connecting the eigenvalues εl
i ac-

cording to matching eigenvectors and then interpolating εl
i →

εi(U ). Ud (δ) is then defined by Reεi(Ud ) = 0. We start from
the lowest U (l = 0), and for each eigenvector vl

i we search
for an eigenvector vl+1

j , such that |vl
i · vl+1

j | is maximal. After
this is done for all eigenvectors vl

i , one proceeds with the
next l until all the eigenvector/eigenvalue pairs are connected
across the entire range of U . This procedure is, however, not
entirely straightforward, especially when the step in U is big.
The eigenbasis rotates with changing U , and in a given U

step, different eigenvectors may “exchange.” In the single-site
DMFT calculation, we had to additionally require that εl

i is
smooth to avoid getting eigenvalues mixed up. In CDMFT
2 × 2, the vector space is much bigger and we encountered
no such problems. Note also that, as doping is changed, the
eigenvectors change considerably, and we were unable to
reliably connect the eigenvalues at the same U , but different
values of doping.

In Fig. 12, we present the results from the single-site
DMFT calculation. Here we have data at δ = 0,2%,6%,

10%, and 16%. On the top left panel, results for Ud (δ) are
presented with colored circles; the color represents the imag-
inary part of the eigenvalue crossing zero (color code is in
the inset). The dashed lines are guides for the eye, and are
also presented on Fig. 1(a) in the main text. The total count
of negative eigenvalues as a function of Ul is given on the
top right panel. We see that at δ = 0,2%, eigenvalues cross
zero one by one. Then at δ = 6% and 10%, we see that two
eigenvalues cross zero in the same U step. In the bottom panels,
we plot the interpolation εi(U ) obtained after connecting the

eigenvalues at different values of U . We present only the first
two eigenvalues to cross zero in the examined range of U .
We note that these eigenvalues are the highest valued ones at
the lowest U . At δ = 16%, no eigenvalues have the real part
cross zero, and instead we present the two mutually complex
conjugate eigenvalues, which are the biggest ones at the lowest
U , and thus apparently correspond to the two eigenvalues
crossing zero at the lower δ’s. We see that at low δ we have
two separate eigenvalues which are purely real and cross zero at
different values of U . Then at 6% doping, the two eigenvalues
crossing zero are mutually complex conjugate, and cross zero
at the same time, but with finite imaginary parts of opposite
signs. As doping is further increased, the two eigenvalues
remain mutually complex conjugate and have the real part grow
towards positive values such that at δ = 16% they no longer
cross zero. The imaginary part grows with both doping and
interaction.

In Fig. 13, we present the result from CDMFT 2 × 2.
We show the result for the first eight eigenvalues to cross
zero. These are separated in two groups of four (yielding
Ud (δ) with d = 1–4 and d = 5–8), and each group apparently
corresponds to one of the two eigenvalues crossing zero in
single-site DMFT. At higher U , there is another group of four
eigenvalues crossing zero (d = 8–11, not shown), apparently
corresponding to the 3rd divergence in single-site DMFT. The
two middle eigenvalues in all groups are mutually complex
conjugate [the ones yielding Ud (δ) with d = 2,3, d = 6,7, and
d = 10,11]. At δ = 3%, we see that the first two groups merge
at around U = 1.8 (d = 1 with d = 5, 2 with d = 6, and so
on). This point is denoted with the vertical gray dashed line.
The merging of eigenvalues occurs at different U for various
dopings, along the gray dashed line on the phase diagram in the
inset. At δ = 8%, there are still eight eigenvalues crossing zero,
but they have only three distinct real parts: first and last doubly
degenerate and the middle one is four times degenerate. After
merging, the imaginary part of the eigenvalues grows from
zero, both with U and δ, similarly to the single-site DMFT
case.

Note that we have performed the analogous analysis also
in DCA, DCA+, and PCDMFT. The overall picture is very
similar. The only qualitative difference is the presence of
additional crossings of zero at low U in DCA/DCA+. These,
however, occur with a very big imaginary part and do not
correspond to singular behavior of �.

APPENDIX C: NESTED CLUSTER SCHEME

In this section, we present the fully general formalism of
the self-energy embedding theory (SEET) and then focus on
its application to infinite lattice systems (NCS). The main idea
is to approximate the Luttinger-Ward functional � (LWF)
by a sum of functionals, including counter terms to cancel
double counting of diagrams. By now it is clear that combining
different LW functionals is a very general approach, and can
lead to a great variety of approximations. For example, one can
rederive within the SEET framework also the GW+EDMFT
method [75,87]. Moreover, CDMFT can be viewed as a special
case of NCS, where no counter terms are needed in the
construction of the LWF.
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FIG. 12. Single-site DMFT calculation. Temperature T/D = 0.125, square lattice. Upper left: the colored points denote where the real part
of an eigenvalue of χ̃c(i� = 0) crosses zero; the color denotes the imaginary part at that point, with respect to the color bar in the inset; gray
dashed lines are eye-guides, used also in the Fig. 1 in the main text. Upper right: the number of negative eigenvalues; at δ > 5% two eigenvalues
cross zero at the same time. Bottom panels: evolution of the first two eigenvalues crossing zero, with U and δ. They remain purely real before
becoming mutually complex conjugate. No eigenvalues cross zero at δ = 16%.

We develop a general algorithm to obtain NCS based LWF
approximations and the corresponding self-energy expressions
with no doubly counted diagrams, given a set of independent
clusters one wishes to solve. Also, it was not clear previously
whether pushing the cluster size will also increase the number
of impurity problems one needs to solve. Here we prove that in
the simplest scheme (square clusters), one needs to solve only
three impurity problems, regardless of the cluster size.

1. General formulation

Consider a system with single-particle degrees of freedom
i ∈ L. At this point these may be lattice sites, or more general
orbitals, and the system may or may not be infinite. The exact
Luttinger-Ward functional depends on all the components of

the Green’s function

�[G] ≡ �[{Gij }i,j∈L]. (C1)

Consider now an approximation of the Luttinger-Ward func-
tional, such that it is a sum of functionals, each depending
on components of G that connect only a certain subset C of
orbitals i, i.e., components of G within a “cluster” C ⊂ L:

� ≈
∑
C∈C

�C[G|C] (C2)

with

G|C ≡ {Gij }ij∈C, (C3)

where |C denotes the restriction of the orbital-space domain
of the Green’s function to the cluster C. It is assumed that the
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FIG. 13. 2x2 CDMFT calculation. Temperature T/D = 0.125,
square lattice. Evolution of first eight eigenvalues to cross zero, with
U and δ.

clusters are mutually independent,

C � C ′,∀C,C ′ ∈ C,

and cover the entire system⋃
C∈C

C = L.

However, if any of the clusters are overlapping,

∃C,C ′ ∈ C : C ∩ C ′ �= {}, (C4)

then we are double-counting diagrams constructed entirely
from G components connecting the orbitals present in both C

and C ′. To avoid this, we need to add functional counter terms,
each dependent only on Gij within an overlap of clusters in C.

FIG. 14. Illustration of reasoning in SEET. C sets of orbitals
are chosen. O are all possible overlaps. U are sets independent by
symmetry that one needs to solve in practice.

In general,

�[G] ≈
∑
C∈C

�C[G|C] +
∑
C∈O

pC �C[G|C] (C5)

whereO is the set of all possible overlaps between any number
of nonidentical clusters in set C, i.e.,

O =
⋃

n∈[2,NC ]

{
n⋂

a=1

Ca

}
Ca∈C

∖
C,

which is ilustrated on Fig. 14. NC is the size of the set C. pC

are appropriately chosen integer prefactors, possibly negative
or even zero.

We emphasize that NCS is defined only by the choice of C;
the set O and prefactors pC are then determined uniquely by
the requirement that no diagrams are counted more than once.
We can rewrite more simply

�[G] ≈
∑

C∈C∪O
pC�C[G|C], (C6)

where pC∈C = 1. Hereinafter, summation
∑

C is assumed to
go over C ∪ O unless stated differently. Finally, the prefactors
pC must satisfy for each C∑

C ′ ∈ C ∪ O
C ′ ⊇ C

pC ′ = 1, (C7)

which means that the contribution of diagrams that involve
orbitals from a given cluster C are taken into account exactly
once. In Appendix C 3, we present an algorithm to find pC

which satisfy this requirement.

a. Obtaining self-energy from the functional

Anticipating that the formalism will be used for the lattice
systems below, and to avoid introducing new notation, here we
assume that the system is a lattice, with lattice sites {i}. Note,
however, that the considerations presented here are still fully
general.

The self-energy is given by the functional derivative with
respect to the Green’s function

	αβ =
∑
C

pC

∂�[{Gγδ}iγ ,iδ∈C]

∂Gβα

∣∣∣∣
G=G[G0,	]

, (C8)

125141-12



PRACTICAL CONSEQUENCES OF THE LUTTINGER-WARD … PHYSICAL REVIEW B 97, 125141 (2018)

where α,β, . . . are combined indices defined in Appendix B.
We can obtain it by solving a set of impurity problems

SC =
∑

IJ∈C,σ

∫∫
dτdτ ′c+

σ,I (τ )
[−(ĜC)−1

σ

]
IJ

(τ − τ ′)cσ,J (τ ′)

+U
∑
I∈C

∫
dτc+

↑,I (τ )c+
↓,I (τ )c↓,I (τ )c↑,I (τ ) (C9)

corresponding to each cluster C, under the condition that

G
imp C

IJ (iωn) = Glatt
iC,I jC,J

(iωn), (C10)

where iC,I is the mapping between the index I of a site within a
cluster C and its index i within the lattice. The Green’s function
on the lattice is a matrix in site indices

Ĝlatt(iωn) = [(iωn + μ)Î − 	̂latt]−1 (C11)

and the self-energy approximation on the lattice is given by

	latt
ij =

∑
C⊇{i,j}

pC 	
imp C

IC,iJC,j
, (C12)

where IC,i is the mapping between the site index on the lattice
and in the cluster C, inverse of the previously defined iC,I .
Note that up to now we have not used any lattice symmetries.
Therefore, this prescription can be used for solving (finite-size)
disordered and inhomogenous lattice models (e.g., one could
write down a cluster extension of real-space DMFT).

b. Application to lattice models

When there are symmetries in the system Hamiltonian,
one should choose C in a way that does not artificially
break those symmetries. For example, if there is translational
symmetry on the lattice, clusters must be arranged uniformly
across the entire lattice; if there is rotational symmetry, the
arrangement must be the same along equivalent directions. A
simple realization of a translationally and rotationally invariant
set C for a square lattice would include 2 × 2 plaquettes on
all possible positions on the lattice. On the contrary, if the
plaquettes are only tiled over the system, with no overlaps (as is
the case in CDMFT), the translational symmetry is artificially
broken.

If translational, rotational, and mirror symmetry are present,
the number of clusters one actually needs to solve is reduced—
one solves only one cluster of each different shape and/or
size. Due to translational invariance, the position of the cluster
on the lattice does not make a difference, just its shape/size.
Due to rotational symmetry, quantities on clusters of the same
(nonsquare) shape, but different orientation, can be inferred
one from another.

Translational symmetry also allows to rewrite the lattice
quantities as functions of the real-space vector rather than
matrices in site index. The self-consistency condition can be
rewritten as

G
imp C

IJ (iωn) = Glatt
r=riC,I

−rjC,J
(iωn). (C13)

The Green’s function on the lattice, again, is calculated from
the approximated self-energy

Glatt
r =

∑
k∈BZ

e−ik·rGlatt
k =

∑
k∈BZ

e−ik·r

G−1
0,k(iωn) − 	latt

k (iωn)
,

(C14)

	latt
k =

∑
r∈BL

eik·r	latt
r , (C15)

which is given by a general expression

	latt
r =

∑
C∈U

∑
IJ

ar,C,I,J 	
imp C

IJ . (C16)

The sum runs only over a set of clusters U ⊂ C independent
by lattice symmetry, as illustrated on Fig. 14. If both trans-
lational and rotational symmetries are present, U contains a
single choice of a cluster, of each size and shape, and the
sum over IJ accounts for all the shifts and rotations of the
same cluster on the lattice. Note that

∑
CIJ ar,C,I,J = 1 and

ar,C,I,J ∼ δr, riC,I
−rjC,J

. Because some bonds on the cluster
correspond to the same real-space vector and can have the same
self-energy due to the symmetries of the cluster, one is free to
choose which one to use, so ar,C,I,J is not uniquely defined.
More importantly,

∑
CIJ |ar,C,I,J | ∼ Nc. This is a problematic

property of the method and is the reason why the limitNc → ∞
does not guarantee the exact solution, and is the reason for an
undesirable amplification of statistical noise when clusters are
big.

Large-cluster limit. As cluster size increases, the difference
in self-energy between different clusters becomes smaller, and
the self-energy on the clusters becomes more uniform. On the
other hand, the coefficients ar,C,I,J grow by absolute value
roughly proportionally to Nc, while their total sum remains
1. This means that in the limit Nc → ∞, an infinitesimal
difference between the self-energies in different clusters and
at different positions in the same cluster, all corresponding to
the same real-space vector, can in principle be amplified such
that

	latt
r=riC,I

−rjC,J
− 	

imp C

IJ ∼ 1. (C17)

Whether this happens or not depends on whether the coeffi-
cients ar,C,I,J grow more quickly than do decay the difference
between clusters and the inhomogeneity within them. On
the other hand, in the Nc → ∞ limit, we have G

imp
0 → G0,

where G
imp
0 denotes the static part of the bare propagator on

the impurity (G = [[Gimp
0 ]−1 − �]−1). So, if 	latt �= 	imp, we

must have a nonzero � to satisfy the self-consistency condition
[recall Eq. (C10)][[

G
imp
0

]−1 − � − 	imp
]−1 = [[G0]−1 − 	latt]−1. (C18)

Because of this, NCS does not guarantee that in the Nc → ∞
limit we arrive at the exact solution. A way of checking is to
see whether the hybridization function falls off with increasing
cluster size.

Amplification of noise. Having the property∑
CIJ ar,C,I,J = 1, when coefficients are large by absolute

value, leads to amplification of QMC statistical error. The
problem can be reduced by using symmetries of the clusters,
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but may prove prohibitive at very large cluster sizes. On the
other hand, an approximate solution not involving a stochastic
impurity solver, can be safely pushed to bigger cluster sizes.

2. Square cluster case

For the special case that C contains all L × L square clusters
of the lattice, the nested cluster approximation for � can be
written down explicitly for arbitrary size L. It turns out that the
only overlaps C ∈ O with pC �= 0 are the clusters of shape L −
1 × L,L × L − 1 and L − 1 × L − 1, i.e., � is approximated
by [Eq. (4) from the main text]

�(L) =
∑

i

�L×L

[
G|CL×L

i

] + �L−1×L−1
[
G|CL−1×L−1

i

]
−�L−1×L

[
G|CL−1×L

i

]− �L×L−1
[
G|CL×L−1

i

]
. (C19)

Here, G|C denotes the Green’s function with the orbital-
domain restricted to the sites within cluster C [recall Eq. (C3)].
The notation C

Lx×Ly

i denotes a rectangular cluster with width
Lx and height Ly with its bottom left site sitting at lattice site i.
In the following, we prove that �(L) contains only the diagrams
which can fit in a cluster L × L, and counts each exactly once.

a. Proof of Eq. (4)

Let us consider any one diagram of �latt in real space. This
defines the (finite) set of lattice sites D = {i} contained in it.
Denoting the coordinate as i = (ix,iy), we define

n = max
i∈D

(ix) − min
i∈D

(ix) + 1, (C20)

p = max
i∈D

(iy) − min
i∈D

(iy) + 1. (C21)

Then (n,p) is the shape of the smallest rectangular cluster
containing the diagram (with n = p = 1 in the local case).

Let us first count the number of times the diagram appears
in
∑

i �Lx×Ly
[G|

C
Lx×Ly

i

]. This count is identical to the number
of ways to place a cluster of shape (n,p) into one of shape
(Lx,Ly), i.e., f (Lx + 1 − n)f (Ly + 1 − p), where f (x) =
xθ (x) and θ is the Heaviside function. Therefore the number
of times the diagram appears in �(L), with proper weights, is
given by

R = f (L + 1 − n)f (L + 1 − p) + f (L − n)f (L − p)

− f (L − n)f (L + 1 − p) − f (L + 1 − n)f (L − p).

Whenever n � L and p � L we have (denoting a ≡ L + 1 −
n,b ≡ L + 1 − p)

R = (L + 1 − n)(L + 1 − p) + (L − n)(L − p)

− (L − n)(L + 1 − p) − (L + 1 − n)(L − p)

= ab + (a − 1)(b − 1) − (a − 1)b − a(b − 1)

= 1

while otherwise R = 0 by the definition of f . QED.
Note that even with the knowledge of pC for all subclusters,

one still needs to write down the expression for 	latt[	imp].
We discuss the way this is done in the following sections,
including nested schemes more general than the square cluster
case discussed here.

3. Algorithm for self-energy coefficients

Deriving expressions for the self-energy when C clusters
are taken to be bigger than 2 × 2 becomes very cumbersome,
and should not be done by hand. Here we present a general
algorithm for a uniform and rotationally invariant arrangement
of solid rectangular clusters (solid meaning there are no sites
missing in the rectangle; a more general algorithm can be
devised, but we don’t present it here). No symmetries are
assumed in the beginning, and the first part of the algorithm
gives the fully general expression for 	latt

ij at a given choice
of ij . In the second part, the symmetries of the lattice and the
clusters are used to fully simplify the expressions.

The algorithm finds the subset of clusters and the cor-
responding coefficients pC that appear in the expression
Eq. (C12), for a given ij on the lattice. The prefactors pC

are determined so as to satisfy Eq. (C7). The algorithm finds
all the clusters in C and their overlaps O containing the given
two sites i and j (i = j allowed), orders them by size, and
then assigns the prefactors starting from biggest clusters, i.e.,
the ones in C for which we know pC∈C = 1. For the rest of
the clusters C, the prefactors pC ′ of their superclusters C ′ ⊃ C

are taken into account to ensure that the contribution of C is
taken exactly once. The procedure is “one pass” because the
coefficients of smaller clusters cannot affect the coefficients
for the bigger ones.

(1) Define the nested scheme by picking a set of independent
rectangular clusters, defined by the size in each direction
(Lx,Ly) (independent meaning no cluster can be fit into
another). Note that the placement of these clusters on all
possible positions on the lattice, with all possible orientations,
constructs the set of clusters C.

(2) For each pair of the lattice indices ij (“bond” if i �=
j or “site” if i = j ), perform the following (if you know
there are symmetries, this part can be performed for only the
independent bonds/sites).

(i) Determine all possible positions of all the clusters such
that they contain the bond/site in question ij . These form a set
of clusters defined by size and position (x,y,Lx,Ly), and the
position is assumed to correspond to the left-bottom site of the
cluster.

(ii) Determine all the overlaps between the clusters obtained
in the previous step. Overlaps themselves form a set of clusters
defined by size and position (x,y,Lx,Ly). Note that under
present assumptions, any overlap of clusters from O is also
an overlap of clusters in C (C ∩ C ′ ∈ O,∀C,C ′ ∈ O).

(iii) Group by shape all the clusters obtained in the pre-
vious two steps, independently of position and rotation, i.e.,
(x1,y1,Lx,Ly) goes together with (x2,y2,Ly,Lx).

(iv) Order the groups according to Nc = LxLy [or
max(Lx,Ly)], from biggest to smallest clusters, and place them
“left to right,” so that no cluster contains a cluster to the left
of it, but may or may not contain clusters to the right of it.
Because clusters in the same group are of the same size, but
different position and/or orientation, no cluster can contain a
different cluster in the same group.

(v) Assign a prefactor p(c) to each cluster c in each group.
(vi) For each group g, starting from biggest clusters (left-

most). (a) For each cluster c in the group g, do a weighted count
of how many times it is contained in the clusters in the groups
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FIG. 15. Four snapshots of the algorithm for getting the self-
energy coefficients; 4 × 4 nested scheme; coefficients are calculated
for an ij bond (red line) corresponding to the real-space vector
r = (2,1); clusters are sorted by size; the prefactors pC are determined
starting from the biggest clusters for which we know pC = 1; the red
cluster is the one for which pC is determined at the given step; green
clusters are the ones that contain the red cluster. See text for details.

left to it. Weighted means to take into account the prefactor of
the cluster in which c is found to be contained. In other words,
obtain the number P =∑c′ p(c′), where the sum goes over all
clusters c′, which contain c. Then set the prefactor of c to be
p(c) = 1 − P . This assures that the total contribution of the
cluster c is 1. The coefficients of the smaller clusters, which
are yet to change cannot affect this value. By construction, the
clusters in C have p(c) = 1; they are not contained in any other
clusters, so P = 0.

(vii) For the bond ij , the expression for self-energy is now

	ij =
∑

c

p(c)	c
Ic,i ,Jc,j

,

where c runs over all clusters in all groups, and Ic,i and Jc,j

are determined trivially for each cluster c. The algorithm is
visualized in Fig. 15.

a. Use of symmetries

When there are symmetries, we want to simplify the expres-
sion for self-energy by identifying identical contributions in
the sum over clusters. First, if there is translational symmetry,
clusters of the same shape but different position will have
the same self-energy. If there is rotational symmetry, again,
clusters of the same shape but different orientation must have
the same 	̂C . We therefore only solve clusters of different
shape/size, and the sum over all C is replaced by the sum
over independent clusters and a sum over the bonds IJ [recall

2 2 2

-2 -2-2 -1

2

FIG. 16. After the use of symmetries, the result from the final step
in Fig. 15 simplifies to what is shown in this figure. One needs to solve
only three different clusters, and take into account a smaller number
of bonds on each cluster, for a given real-space vector.

Eq. (C16)]. Second, 	
imp C

IJ may not be the same for every IJ

corresponding to the same real-space vector, but clusters will
in general have some symmetries, and one is able to use them to
simplify the expressions further. It is straightforward to identify
groups of identical bonds/sites. Then, the sum over all IJ is
replaced by a sum over only the independent bonds/sites IJ

on a given cluster, and the prefactors are adjusted accordingly.
Recall now the self-consistency condition in the nested

cluster scheme Eq. (C13). Unlike GC and 	imp C , when con-
vergence is reached, G

imp C

IJ will be the same for any choice
of IJ corresponding to the same real-space vector. We find it
beneficial for the stability of the loop and the maximal level of
convergence reached if this symmetry of Gimp C is imposed in
each iteration, and if the cluster symmetries are imposed on GC

and 	imp C . The simplification of the self-energy expression
one obtains after using cluster symmetries is visualized in
Fig. 16 (see caption).

4. Nesting the cumulant

Here we discuss a different variant of the nested cluster
approximation, corresponding to cumulant embedding rather
than self-energy embedding theory. The benchmark of this
method in comparison with the self-energy nesting variant is
presented in Fig. 6.

One can in principle define a functional � of the Green’s
function such that its derivative yields the cumulant, instead of
self-energy

ĝ = ∂�[Ĝ]

∂ĜT
. (C22)

The cumulant is the full-Green’s function stripped of the bare
hopping processes, so that

Ĝ(iωn) = ĝ(iωn) + ĝ(iωn) t̂ Ĝ(iωn), (C23)

i.e.,

Ĝ(iωn) = [ĝ−1(iωn) − t̂]−1, (C24)

where t̂ is the hopping matrix. In k space,

Gk(iωn) = gk(iωn) + gk(iωn) εk Gk(iωn) (C25)

Gk(iωn) = 1

g−1
k (iωn) − εk

, (C26)

which leads to the identity

ĝ(iωn) = [(iωn + μ)Î − 	̂(iωn)]−1 (C27)
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FIG. 17. Clusters contributing to the local self-energy in different kinds of simple nested schemes.

and the inverse is

	̂(iωn) = (iωn + μ)Î − ĝ−1(iωn). (C28)

So, we can construct the cumulant on the lattice gk from
the cumulants on the impurities, the same way we did for the
self-energy. The self-energy on the lattice can be obtained as

	latt
k (iωn) = iωn + μ − (glatt

k (iωn)
)−1

, (C29)

but this expression is ill-defined at high frequency, so it is
important to avoid using it in the DMFT loop. Therefore, in
each iteration, we construct Glatt directly from the cumulant
using Eq. (C26), and calculate the self-energy only in the post-
processing of the results.

We expect that the cumulant variant works better whenever
the cumulant is shorter ranged than the self-energy. In practice,
we find that the cumulant version does a slightly better job, but
the difference is not big (see Appendix A 3).

5. Simple examples and summary of equations

a. 2 × 1

This example was originally presented in Ref. [70]. We
rederive it only for pedagogical purposes.

For simplicity, we introduce a shorthand notation i + x to
denote the index of the nearest neighbor of the site i in the +x

direction, and similarly i − x,i + y, . . . .Recall also the cluster
notation C2×1

i ≡ {i,i + x}, C1×2
i ≡ {i,i + y} and C1×1

i ≡ {i}.
Let us approximate LW functional such that it contains

diagrams that involve at most two nearest-neighboring lattice
sites

C = {C2×1
i

}
∀i

∪ {C1×2
i

}
∀i

. (C30)

This means we want to solve at most a two-site impurity
problem. As for all possible overlaps of the clusters in C, one
can easily verify

O = {C ∩ C ′}∀C,C ′∈C = {C1×1
i

}
∀i

, (C31)

which means we will need to take care of double counting.
Each overlap cluster is contained in four clusters in C,

C1×1
i ⊂ C2×1

i , C1×1
i ⊂ C2×1

i−x ,

C1×1
i ⊂ C1×2

i , C1×1
i ⊂ C1×2

i−y , (C32)

which means that we are counting diagrams which involve only
the local Green’s function four times at each site. To have them

taken into account only once, we need to subtract the DMFT
functional (D1) three times at each site, i.e., pC∈O = −3,

� ≈
∑

i

(
�2
[
G
∣∣
C2×1

i

]+ �2
[
G
∣∣
C1×2

i

]− 3�1
[
G
∣∣
C1×1

i

])
.

(C33)

Now we write the clusters explicitly to perform the derivatives
that yield the self-energy. The local component is given by

	ii = ∂

∂Gii

∑
l

⎛
⎝ ∑

δ∈{x,y}
�2[{Gl′m′ }l′m′∈{l,l+δ}] − 3�1[Gll]

⎞
⎠

=
∑

δ∈{x,y,−x,−y}

∂�2[{Glm}lm∈{i,i+δ}]
∂Gii

− 3
∂�1[Gii]

∂Gii

(C34)

and the nearest-neighbor components (with δ = x,y)

	i,i+δ = ∂

∂Gi+δ,i

⎛
⎝∑

l′

∑
δ′∈{x,y}

�2[{Glm}lm∈{l′,l′+δ′}]

− 3
∑

l

�1[Gll]

)

= ∂�2[{Glm}lm∈{i,i+δ}]
∂Gi+δ,i

. (C35)

When there is translational, mirror, and rotational symmetry,
the contribution to the local part coming from four different
nearest-neighbor pairs will be the same, and the self-energy on
all nearest-neighbor bonds will be the same (see Fig. 17),

	latt
r=(0,0) = 4	

imp 2×1
00 − 3	

imp 1×1
00 , 	latt

r=(0,1) = 	
imp 2×1
01 ,

(C36)

and the self-consistency is

G
imp 2×1
00/11 = G

imp 1×1
00 = Glatt

r=(0,0), G
imp 2×1
01/10 = Glatt

r=(1,0).(C37)

b. Long-distance dimers

In this section, we present a nested cluster scheme where
self-energy at an arbitrary real-space vector is approximated by
the self-energy of a corresponding two-site impurity problem.
The expression for � and 	latt can be worked out analytically.

Let us define i + nx + ny to be the index of the lattice
site at the real-space vector r = ri + nxex + nyey . We can
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FIG. 18. Illustration of Eq. (C38). By placing the green set of
dimers starting from each site, one covers all the dimers on the lattice,
up to Manhattan distance 2(L − 1). Each site is involved in (2L −
1)2 − 1 different dimers (red site goes with all the sites in the red
square).

approximate the LW functional in such a way that it contains
diagrams which involve at most two sites, but at a distance not
bigger than L − 1 in both directions (maximum Manhattan
distance 2L − 2). We define the cluster notation C

(nx,ny )
i ≡

{i,i + nx + ny}. Analogously to Eq. (C33), one can prove the
following approximation has no double counting:

� ≈
∑

i

⎛
⎜⎜⎜⎝

∑
nx∈(−L,L)
ny∈(0,L)

+
∑

nx∈(0,L)
ny=0

⎞
⎟⎟⎟⎠�2

[{
G
∣∣
C

(nx ,ny )
i

]

+ (2 − (2L − 1)2)
∑

i

�1
[
G
∣∣
C1×1

i

]
. (C38)

This is illustrated in Fig. 18. For example, the site with red
outline is involved in dimers with all the sites within the red
square, of which there are (2L − 1)2 − 1.

With translational/rotational/mirror symmetry, we get for
the self-energy

	latt
r=(0,0) =

∑
nx∈(0,L)
ny∈[0,nx ]

mnx,ny
	

imp (nx,ny )
00

+ (2 − (2L − 1)2)	imp 1×1
00 ,

	latt
r=(nx,ny ) = 	

imp (nx,ny )
01 , (C39)

where in the bottom row, 0 < nx < L, 0 � ny � nx . mnx,ny
is

the multiplicity of the (nonzero) real-space vector r = nxex +
nyey

mnx,ny
=
{

4, nx = 0 ∨ ny = 0 ∨ nx = ny

8, otherwise (C40)

and the self-consistency reads

G
imp (nx,ny )
00/11 = G

imp 1×1
00 = Glatt

r=(0,0), G
imp (nx,ny )
01/10 = Glatt

r=(nx,ny ).

(C41)

The simplest example is the 2 + 2 scheme corresponding to
L = 2, where we just take the dimer as in the previous example,
and add the diagonal one {i,i + x,i + y} (see Fig. 17):

	latt
r=(0,0) = 4	

imp (0,1)
00 + 4	

imp (1,1)
00 − 7	

imp 1×1
00 ,

	latt
r=(0,1) = 	

imp (0,1)
01 , (C42)

	latt
r=(1,1) = 	

imp (1,1)
01 .

Here we are solving three impurity problems: two of them
two-site and one single-site.

c. 2 × 2

Here we discuss the special case of the square clusters
scheme presented in Appendix C 2, with L = 2. It corresponds
to placing a square 2 × 2 cluster on all possible positions on the
lattice. The � approximation is given by Eq. (4) with L = 2.

We can write it more explicitly

�(L=2) =
∑

i

�4[{Glm}lm∈{i,i+x,i+y,i+x+y}]

−
∑

i

∑
δ∈{x,y}

�2[{Glm}lm∈{i,i+δ}] +
∑

i

�1[Gii].

(C43)

Now let us apply the derivative with respect to different
components of the Green’s function to get the expressions for
self-energy:

	ii = ∂

∂Gii

⎡
⎣ ∑

l∈{i,i−x,i−y,i−x−y}
�4[{Gl′m′ }l′m′∈{l,l+x,l+y,l+x+y}]

−
∑

δ∈{x,y}

∑
l∈{i,i−δ}

�2[{Gl′m′ }l′m′∈{l,l+δ}] + �1[{Gii}]
⎤
⎦,

(C44)

	i,i+x = ∂

∂Gi+x,i

⎡
⎣ ∑

l∈{i,i−y}
�4[{Gl′m′ }l′m′∈{l,l+x,l+y,l+x+y}]

− �2[{Glm}lm∈{i,i+x}]

⎤
⎦.

	i,i+x+y = ∂

∂Gi+x+y,i

�4[{Glm}lm∈{i,i+x,i+y,i+x+y}]. (C45)

With full translational/rotational/mirror symmetry, clusters
with same size and shape must give identical contributions
to the self-energy. Following considerations analogous to
Eqs. (C34) and (C35), we arrive at the final expression which
connects the self energy on the lattice with the one in three
different impurity problems (2 × 2, 2 × 1, and 1 × 1, see
Fig. 17):

	latt
r=(0,0) = 4	

imp 2×2
00 − 4	

imp 2×1
00 + 	

imp 1×1
00 ,

	latt
r=(1,0) = 2	

imp 2×2
01 − 	

imp 2×1
01 ,

	latt
r=(1,1) = 	

imp 2×2
03 , (C46)
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and the self-consistency condition is given by

G
imp 2×2
00/11/22/33 = G

imp 2×1
00/11 = G

imp 1×1
00 = Glatt

r=(0,0), G
imp 2×2
01/13/32/20/10/... = G

imp 2×1
01/10 = Glatt

r=(0,1), G
imp 2×2
03/30/12/21 = Glatt

r=(1,1). (C47)

d. 4 × 4

Using the algorithm (C 3) and lattice symmetries, we can now automatize the derivation of expressions for the self energy.
Here we present as an example the expressions for the 4 × 4 nested scheme, where C contains all possible positions of a 4 × 4
cluster, and � approximation is given by Eq. (4) with L = 4.

6 7 8
3 4 5
0 1 2

12 13 14 15
8 9 10 11
4 5 6 7
0 1 2 3

8 9 10 11
4 5 6 7
0 1 2 3

	latt
r=(0,0) = +4	

imp 4×4
0 0 + 8	

imp 4×4
1 1 + 4	

imp 4×4
5 5 − 8	

imp 4×3
0 0 − 4	

imp 4×3
4 4 + 4	

imp 3×3
0 0 − 8	

imp 4×3
1 1

+ 4	
imp 3×3
1 1 − 4	

imp 4×3
5 5 + 	

imp 3×3
4 4 ,

	latt
r=(1,0) = +4	

imp 4×4
0 1 + 4	

imp 4×4
1 5 + 2	

imp 4×4
1 2 + 2	

imp 4×4
5 6 − 4	

imp 4×3
0 1 − 2	

imp 4×3
4 5

− 4	
imp 4×3
0 4 + 4	

imp 3×3
0 1 − 4	

imp 4×3
1 5 + 2	

imp 3×3
1 4 − 2	

imp 4×3
1 2 − 	

imp 4×3
5 6 ,

	latt
r=(1,1) = +2	

imp 4×4
0 5 + 4	

imp 4×4
1 6 + 2	

imp 4×4
1 4 + 	

imp 4×4
5 10 − 4	

imp 4×3
0 5 − 4	

imp 4×3
1 4 + 2	

imp 3×3
0 4 − 4	

imp 4×3
1 6 + 2	

imp 3×3
1 3 ,

	latt
r=(2,0) = +4	

imp 4×4
0 2 + 4	

imp 4×4
1 9 − 4	

imp 4×3
0 2 − 2	

imp 4×3
4 6 − 2	

imp 4×3
0 8 + 2	

imp 3×3
0 2 − 2	

imp 4×3
1 9 + 	

imp 3×3
1 7 ,

	latt
r=(2,1) = +2	

imp 4×4
0 6 + 2	

imp 4×4
1 10 + 2	

imp 4×4
1 7 − 2	

imp 4×3
0 6 − 2	

imp 4×3
1 7 − 2	

imp 4×3
0 9 + 2	

imp 3×3
0 5 − 	

imp 4×3
1 10 ,

	latt
r=(2,2) = +2	

imp 4×4
0 10 + 2	

imp 4×4
1 11 − 4	

imp 4×3
0 10 + 	

imp 3×3
0 8 ,

	latt
r=(3,0) = +2	

imp 4×4
0 3 + 2	

imp 4×4
1 13 − 2	

imp 4×3
0 3 − 	

imp 4×3
4 7 ,

	latt
r=(3,1) = +2	

imp 4×4
0 7 + 	

imp 4×4
1 14 − 2	

imp 4×3
0 7 ,

	latt
r=(3,2) = +2	

imp 4×4
0 11 − 	

imp 4×3
0 11 ,

	latt
r=(3,3) = +	

imp 4×4
0 15 . (C48)

In practice, we calculate self-energy for all vectors r = (x,y) such that y � x, up to x = maxCLx(C) − 1, and the rest is filled
by lattice symmetry (analogously to Eq. (D17d) further below). In Eq. (C48), we have also used the symmetries of the clusters.
The groups of equivalent bonds on all three clusters are given below in curly brackets (inversion symmetry ij = ji is implicit):

3 × 3 :
6 7 8
3 4 5
0 1 2

{(0,0), (2,2), (6,6), (8,8)}; {(0,1), (0,3), (2,1), (2,5), (6,3), (6,7), (8,5), (8,7)};
{(0,2), (0,6), (2,8), (6,8)}; {(0,4), (2,4), (6,4), (8,4)}; {(0,5), (0,7), (2,3), (2,7), (6,1), (6,5), (8,1), (8,3)};
{(0,8), (2,6)}; {(1,1), (3,3), (5,5), (7,7)}; {(1,3), (1,5), (3,7), (5,7)};
{(1,4), (3,4), (5,4), (7,4)}; {(1,7), (3,5)}; {(4,4)}. (C49)

4 × 3 :
8 9 10 11
4 5 6 7
0 1 2 3

{(0,0), (3,3), (8,8), (11,11)}; {(0,1), (3,2), (8,9), (11,10)}; {(0,2), (3,1), (8,10), (11,9)};
{(0,4), (3,7), (8,4), (11,7)}; {(0,5), (3,6), (8,5), (11,6)}; {(0,6), (3,5), (8,6), (11,5)};
{(0,7), (3,4), (8,7), (11,4)}; {(0,8), (3,11)}; {(0,3), (8,11)}; {(0,9), (3,10), (8,1), (11,2)};
{(0,10), (3,9), (8,2), (11,1)}; {(0,11), (3,8)}; {(1,2), (9,10)}; {(1,1), (2,2), (9,9), (10,10)};
{(1,4), (2,7), (9,4), (10,7)}; {(1,5), (2,6), (9,5), (10,6)}; {(1,6), (2,5), (9,6), (10,5)};
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{(1,7), (2,4), (9,7), (10,4)}; {(1,9), (2,10)}; {(1,10), (2,9)}; {(4,4), (7,7)}; {(4,5), (7,6)};
{(4,6), (7,5)}; {(4,7)}; {(5,5), (6,6)}; {(5,6)}. (C50)

4 × 4 :

12 13 14 15
8 9 10 11
4 5 6 7
0 1 2 3

{(0,0), (3,3), (12,12), (15,15)}; {(0,1), (0,4), (3,2), (3,7), (12,8), (12,13), (15,11), (15,14)};
{(0,2), (0,8), (3,1), (3,11), (12,4), (12,14), (15,7), (15,13)}; {(0,3), (0,12), (3,15), (12,15)};
{(0,5), (3,6), (12,9), (15,10)}; {(0,6), (0,9), (3,5), (3,10), (12,5), (12,10), (15,6), (15,9)};
{(0,7), (0,13), (3,4), (3,14), (12,1), (12,11), (15,2), (15,8)}; {(0,10), (3,9), (12,6), (15,5)};
{(0,11), (0,14), (3,8), (3,13), (12,2), (12,7), (15,1), (15,4)}; {(0,15), (3,12)};
{(1,1), (2,2), (4,4), (7,7), (8,8), (11,11), (13,13), (14,14)}; {(1,2), (4,8), (7,11), (13,14)};
{(1,4), (2,7), (8,13), (11,14)}; {(1,5), (2,6), (4,5), (7,6), (8,9), (11,10), (13,9), (14,10)};
{(1,6), (2,5), (4,9), (7,10), (8,5), (11,6), (13,10), (14,9)}; {(1,7), (2,4), (4,13), (7,14), (8,1), (11,2),

(13,11), (14,8)}; {(1,9), (2,10), (4,6), (7,5), (8,10), (11,9), (13,5), (14,6)};
{(1,10), (2,9), (4,10), (7,9), (8,6), (11,5), (13,6), (14,5)};
{(1,11), (2,8), (4,14), (7,13)}; {(1,13), (2,14), (4,7), (8,11)}; {(1,14), (2,13), (4,11), (7,8)};
{(5,5), (6,6), (9,9), (10,10)}; {(5,6), (5,9), (6,10), (9,10)}; {(5,10), (6,9)}. (C51)

APPENDIX D: CLUSTER DMFT METHODS

Here we summarize the (cluster) DMFT methods used in
this paper.

The forward-substitution algorithm for the generic clus-
ter DMFT scheme is presented in Fig. 19. Cluster DMFT
methods differ in the cluster-impurity action, self-consistency
condition, and the self-energy mapping 	latt[	imp]—these
properties we state for each method in the following sections.
Where possible, we also state the LW functional approximation
which leads to the given method.

1. Single-site DMFT

Single-site DMFT [5] is the limiting case of all cluster
DMFT methods, corresponding to cluster size Nc = 1. It can
be derived as the local approximation of the LW functional.
While the exact LW functional depends on all components of
the Green’s function, in DMFT it depends only on the local
components Gii :

�[{Gij }∀i,j ] ≈ �[{Gii}∀i] =
∑

i

�[Gii]. (D1)

The second step is specific to local interactions, and is crucial to
obtain a self-consistent scheme involving a single-site impurity
problem.

The impurity action involves degrees of freedom of a single
lattice site

S =
∑

σ

∫∫
dτdτ ′c+

σ (τ )[−G−1
σ ](τ − τ ′)cσ (τ ′)

+U

∫
dτc+

↑ (τ )c+
↓ (τ )c↓(τ )c↑(τ ). (D2)

The self-consistency condition requires that the local Green’s
function on the lattice is the same as the one on the impurity,

Gimp(iωn) = Glatt
ii (iωn) ≡

∑
k∈BZ

Glatt
k (iωn), (D3)

where

Glatt
k (iωn) = (G−1

0,k(iωn) − 	latt
k (iωn)

)−1
. (D4)

The self-energy approximation reads

	latt
k (iωn) ≈ 	imp(iωn) (D5)

as ∂
∑

l �[Gll]/∂Gij ∼ δij ∂�[Gii]/∂Gii . The bare-
propagator on the lattice

G0,k(iωn) = 1

iωn + μ − εk
(D6)

is determined by the chemical potential μ and the bare
dispersion εk. On the square-lattice with only nearest-neighbor
hopping, it is given by

εk = −2t(cos kx + cos ky). (D7)

2. Cellular DMFT (CDMFT)

Cellular DMFT rewrites the lattice problem in terms of
supercells, as illustrated on Fig. 20 [9,11–26,88]. The lattice-
site index is replaced by a double index: the index of the
supercell and the index of the site within the supercell:

i → (i,I ), Gij → GiI,jJ .

We denote with i,j, . . . the index of the supercell, and with
I,J, . . . the index of the site within the supercell. From here,
the derivation proceeds just as in single-site DMFT—one may
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FIG. 19. Forward substitution solution of a generic cluster DMFT method. NU is the number of independent impurity problems one needs
to solve. In all methods except nested cluster, NU = 1. In nested cluster, it can be any number, but in the simplest scheme NU = 3 independently
from the cluster size. The loop starts with an initial guess for 	imp. FC[Glatt] project Glatt onto degrees of freedom of impurity C. Convergence
is reached when Gimp C = FC[Glatt] for each C.

view CDMFT as “single-supercell DMFT.” The approximated
LW functional then depends only on Green’s function compo-
nents within a single supercell

�[{Ĝij }∀i,j ] ≈ �[{Ĝii}∀i] =
∑

i

�[Ĝii], (D8)

where with “hat” we denote matrix objects: Ĝij is a matrix in
the space of the I,J indices. Impurity action is given by

S =
∑
IJ,σ

∫∫
dτdτ ′c+

σ,I (τ )
[−Ĝ−1

σ

]
IJ

(τ − τ ′)cσ,J (τ ′)

+U
∑

I

∫
dτc+

↑,I (τ )c+
↓,I (τ )c↓,I (τ )c↑,I (τ ) (D9)

and the self-consistency condition reads

Ĝimp(iωn) = Ĝlatt
ii (iωn) ≡

∑
k∈RBZ

Ĝlatt
k (iωn), (D10)

where RBZ stands for “reduced Brilloun zone.” Note however,
that in the derivation below we also rescale the lattice constant
a → a/2 so that no extra prefactors appear in the expressions,

FIG. 20. Gray circles are lattice sites. Light gray squares are
supercells. A site is denoted by the supercell index i and its index
within the supercell I . In CDMFT, the self-energy is nonzero only
between sites within a single supercell (green and red lines). In
PCDMFT, it is copied by hand onto intercell bonds (dashed green
and red lines). t is the hopping amplitude, a the lattice spacing, and
ex,y are the superlattice vectors.

and the RBZ extends from 0 to 2π along both axes. The lattice
Dyson equation now involves a matrix inversion

Ĝlatt
k (iωn) = (Ĝ−1

0,k(iωn) − 	̂latt
k (iωn)

)−1
. (D11)

The self-energy approximation is simply

	̂latt
k (iωn) ≈ 	̂imp(iωn). (D12)

Note that, physically, the self-energy is put exclusively on
bonds within a supercell, and not on bonds between supercells.
This artificially breaks the translational symmetry of the lattice.

The bare propagator and the dispersion need to be rewritten
in the supercell language. Here we present the expressions in
the simple 2 × 2 tiling (ex,y/a → 2ex,y/a):

Ĝ0,k(iωn) = [(iωn + μ)Î − ε̂k]−1, (D13)

ε̂k = t · ûk, (D14)

ûk =

⎡
⎢⎢⎣

u(kx) u(ky)
u∗(kx) u(ky)
u∗(ky) u(kx)

u∗(ky) u∗(kx)

⎤
⎥⎥⎦, (D15)

u(k) = 1 + e−ik. (D16)

The drawback of this approach is that no simple interpre-
tation of the result in terms of the original, translationally
invariant lattice is possible. To obtain a translationally invariant
self-energy, which can be plotted in the original BZ requires a
post-processing step, or “periodization.” In the present case,

	
per
r=(0,0) = 	

imp
00 , (D17a)

	
per
r=(0,1) = 	

imp
01 , (D17b)

	
per
r=(1,1) = 	

imp
03 . (D17c)

The real-space vectors r are given in the basis of the original
lattice vectors. The rest of the real-space vectors can be filled
in by symmetry

	
per
r=(x,y) = 	

per
r=(±x,±y) = 	

per
r=(±y,±x) (D17d)
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and then we can Fourier transform to k space:

	
per
k =

∑
r

eik·r	per
r . (D17e)

Note that periodization is an ad hoc procedure that does not
have a clear physical interpretation in terms of the LW approx-
imation. Also, the physical quantity that is being periodized
can be chosen arbitrarily, and different choices will in general
lead to different results.

3. Periodized CDMFT (PCDMFT)

The idea of PCDMFT [6,8,49,50,52] is that the periodiza-
tion should be performed in each DMFT iteration, and that
the self-consistency should be closed using the translationally
invariant Green’s function, rather than the superlattice one.
This scheme cannot be simply derived from an approximation
of the LW functional. The impurity action remains the same as
in CDMFT, Eq. (D9).

The idea of PCDMFT can be achieved either by placing the
missing self-energies on the superlattice (see Fig. 20)

	̂latt
k (iωn) ≈ 	

imp
00 (iωn)Î + 	

imp
01 (iωn)ûk + 	

imp
03 (iωn)ŵk

= 	̂imp(iωn) ◦ (Î + ûk + ŵk), (D18)

where ◦ denotes element-wise product, and

ŵk =

⎡
⎢⎣

w1(k)
w2(k)

w∗
2(k)

w∗
1(k)

⎤
⎥⎦, (D19)

w1(k) = 1 + e−ikx + e−iky + e−i(kx+ky ), (D20)

w2(k) = 1 + e−ikx + e−iky + e−i(kx−ky ), (D21)

or, equivalently, by periodizing the self-energy with Eq. (D17)
and rewriting the self-consistency condition with

Ĝimp =

⎡
⎢⎢⎢⎢⎣

G
per
r=(0,0) G

per
r=(0,1) G

per
r=(0,1) G

per
r=(1,1)

G
per
r=(0,1) G

per
r=(0,0) G

per
r=(1,1) G

per
r=(0,1)

G
per
r=(0,1) G

per
r=(1,1) G

per
r=(0,0) G

per
r=(0,1)

G
per
r=(1,1) G

per
r=(0,1) G

per
r=(0,1) G

per
r=(0,0)

⎤
⎥⎥⎥⎥⎦, (D22)

where

Gper
r =

∑
k∈BZ

e−ik·rGper
k =

∑
k∈BZ

e−ik·r

G−1
0,k(iωn) − 	

per
k (iωn)

.

(D23)

The final result is the translationally invariant self-energy,
which solves Eq. (D22).

Note there is another variant of PCDMFT method (proposed
in Ref. [51]) where the self-energy is periodized with additional
coefficients, so that it is rigorously causal. In the present
case, this method would correspond to restoring translational
invariance on the lattice the following way:

	̂latt
k (iωn) ≈ 	̂imp(iωn) ◦ (Î + 1

2 ûk + 1
4 ŵk

)
.

We observe that this method corrects the local part of self-
energy in the difficult regime compared to regular PCDMFT,

but the nonlocal part is strongly underestimated throughout the
phase diagram (results not shown).

4. Dynamical cluster approximation (DCA)

In DCA [7,27–45] method, the conservation of momentum
in LW diagrams is approximated by [27,33]

k′ − k = q −→ K(k′) − K(k) = K(q), (D24)

where K represents the “coarse-grained” BZ points, which is
illustrated on Fig. 21. The coarse-grained BZ contains only a
certain finite and discrete subset of wave vectors. The notation
K(k) means “the coarse grained wave vector closest to the
wave vector k.” Because of the relaxation of momentum
conservation, the diagrams factorize: the LW functional still
depends on all G components, but only through their sums:

�[{Gk}∀k] ≈ �

⎡
⎣
⎧⎨
⎩
∑

k∈P(K)

Gk

⎫⎬
⎭

∀K

⎤
⎦ ≡ �[{GK}∀K]. (D25)

Here, P(K) is the set of fine-grain wave vectors k that are
closest to the coarse-grained wave vector K (Voronoi patch [89]
around K). This approximation leads to a piecewise-constant
self-energy in k space, because of

∂�[GK]

∂Gk
= ∂�[GK]

∂GK

∂GK

∂Gk
= ∂�[GK]

∂GK
δk∈P(K). (D26)

The impurity action is given by

S =
∑
K,σ

∫∫
dτdτ ′c+

σ,K(τ )
[− G−1

σ,K(τ − τ ′)
]
cσ,K(τ ′)

+U
∑

K,K′,Q

∫
dτc+

↑,K+Q(τ )c+
↓,K′−Q(τ )c↓,K′ (τ )c↑,K(τ ),

(D27)

and it corresponds to a finite cyclic cluster in real space R.

FIG. 21. DCA approximates momentum-conservation. Lattice
self-energy at wave vector k is obtained from the impurity self-energy
at the closest coarse grained wave vector K. Therefore it is constant
within each Voronoi patch P(K). The example presented is the 4 × 4
scheme.
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Self-consistency condition reads

G
imp
K (iωn) = Glatt

K (iωn) ≡
∑

k∈P(K)

Glatt
k (iωn). (D28)

As already mentioned, the self-energy on the lattice is simply

	latt
k (iωn) = 	

imp
K(k)(iωn). (D29)

Note that more general coarse-graining schemes exist, and that
P(K) does not necessarily present a Voronoi patch around the
wave vector K. Patches may have different shapes [29], and
may even be interlaced [46]. In the present paper, we only use
the simplest scheme where patches are Voronoi patches, and
all have the same shape.

5. Continuous self-energy DCA (DCA+)

DCA+[46–48] aims at improving the interpretation of the
impurity self-energy in terms of the self-energy on the lattice.
A piecewise constant self-energy is strongly counter intuitive
and hard to compare to other methods. It is a natural step to
try and interpolate the coarse-grained self-energy to obtain a
smooth self-energy on the lattice. However, this scheme does
not have a clear derivation as a LW functional approximation.
Furthermore, the interpolation can be done in various ways, and
the method is not uniquely defined. In this paper we implement
(and present here) the version of the method as proposed in the
original paper, Ref. [48].

The impurity action is the same as in DCA, Eq. (D27).
The difference from DCA is the addition of a self-

consistency condition that needs to be satisfied:

	
imp
K (iωn) = 	latt

K (iωn) ≡
∑

k∈P(K)

	latt
k (iωn). (D30)

Here, 	latt is a smooth function of k. Note that for a given
	

imp
K , 	latt is not uniquely defined. This self-consistency con-

dition imposes

	latt
loc = 	

imp
loc , (D31)

but in general

	latt
k=K �= 	

imp
K . (D32)

While a general interpolation of 	
imp
K is unlikely to satisfy

the condition (D30), a Bayesian approach can be employed
to find the most probable interpolation that does satisfy it.
The method used is Richardson-Lucy deconvolution, and it
is performed with respect to an interpolation of 	

imp
K → 	̄

imp
k

such that

	̄
imp
k=K = 	

imp
K . (D33)

One starts from an initial guess for 	latt (say, 	latt
k = 	̄

imp
k ),

and iterates

	latt
k ← 	latt

k

∑
k′∈P(k)

	̄
imp
k′∑

k′′∈P(k′) 	
latt
k′′

(D34)

until convergence is reached. Here,P(k) denotes a patch of the
same shape/size as the Voronoi patches of the coarse-grained
BZ, but centered at the fine-grain wave vector k. The final

FIG. 22. Example of various quantities appearing in DCA+. Pa-
rameters of the calculation: U/D = 1.4, δ = 8%, and T/D = 0.125.

result has the property

	̄
imp
k =

∑
k′∈P(k)

	latt
k′ , ∀k, (D35)

which satisfies a stronger requirement than necessary.
Note also that the actual interpolation is performed not on

	imp, but on an auxiliary quantity � which is by construction
more local than the self-energy. The method of interpolation
proposed is the Wannier interpolation

�K(iωn) = (
	

imp
K (iωn) − sgn(ωn

)
iα
)−1

, (D36)

�R =
∑

K

e−iK·R�K, (D37)

�̄k =
∑

R

eik·R�R, (D38)

	̄
imp
k (iωn) = �̄−1

k (iωn) + sgn(ωn)iα, α > 0. (D39)

Note that �̄k does not necessarily satisfy all the lattice sym-
metries. One way to restore lattice symmetries is to calculate
it as

�̄k = 1

NM

∑
M̂

∑
R

eik·M̂R�R, (D40)

where M̂ runs over all the symmetry operations on the lattice,
of which there are NM . On the square lattice there are NM = 8
operations (Rx,y → ±R(x,y),(y,x)), which restore the eightfold
symmetry in �̄k. Examples of different self-energy quantities
appearing in DCA+ are given in Fig. 22 and compared to the
piecewise-constant interpolation that is used in standard DCA.
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