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Mott domain walls: A (strongly) non-Fermi liquid state of matter
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Most Mott systems display a low-temperature phase coexistence region around the metal-insulator transition.
The domain walls separating the respective phases have very recently been observed displaying unusual
properties both in simulations and in experiments. First, they often cover a significant volume fraction, thus
cannot be neglected. Second, they resemble neither a typical metal nor a standard insulator, displaying unfamiliar
temperature dependence of (local) transport properties. Here we take a closer look at such domain wall matter
by examining an appropriate unstable solution of the Hubbard model. We show that transport in this regime is
dominated by the emergence of “resilient quasiparticles” displaying strong non-Fermi liquid features, reflecting
the quantum-critical fluctuations in the vicinity of the Mott point.
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Introduction. The Mott metal-insulator transition [1,2]
remains a subject of much controversy and debate, with dis-
agreement even concerning the physical mechanism [3] that
dominates its vicinity. One popular viewpoint [4] regards it
as a (strictly) second-order phase transition at T = 0, where
the dominant degrees of freedom are the intersite spin singlets
(e.g. the “spinon” excitations) arising in the vicinity of the
Mott insulating state. A complementary dynamical mean-field
theory (DMFT) perspective [5] builds on the seminal ideas of
Hubbard and Mott, focusing on local Kondo-like processes
that govern the condensation [6] of the strongly correlated
Fermi liquid on the metallic side. The latter viewpoint predicts
that the “evaporation” of the electron liquid at the transition
bears some analogy to conventional liquid-gas transitions,
with a phase coexistence region arising at low temperatures
[5]. While many experiments [7,8] indeed reported the pre-
dicted first-order transition within the paramagnetic phase,
other experiments [9,10] reported behavior consistent with
quantum criticality, which sometimes has been interpreted in
terms of the former picture [4].

Resolving this important issue in the context of real ma-
terials is further complicated by the emergence of various
magnetic, charge, or orbital orders in the vicinity of the Mott
point [2], which can often mask the basic underlying mech-
anism. Recent experimental work, however, has successfully
identified [11] a simpler class of model systems, where no
broken symmetry phases have been observed anywhere in the
phase diagram. This situation is best documented in “spin-
liquid” organic materials [12], where careful and precise
experiments are starting to paint a clearer picture of the gen-
uine Mott point. Most remarkably, experiments here provided
[13] clear evidence for quantum critical scaling [14] of the
resistivity curves at intermediate temperatures, with some evi-
dence for a resistivity jump at T < Tc ∼ 30K , consistent with

the DMFT prediction of a weekly first-order transition [15].
Still, direct evidence of the phase coexistence has emerged
only in the recent reports of a colossal enhancement of the
dielectric response [16] and the previous near-field infrared
imaging [17].

In parallel with the experimental progress, recent theo-
retical work provided complementary insight into the nature
of the metal-insulator coexistence region [18]. Surprisingly
“thick” domain walls were observed [19], which are likely
to play a central role in governing the observable response
in experiments. Indeed, the local transport properties of such
domain walls were found [18,19] to display a variety of un-
usual features, with properties not akin to either those of the
conventional metal nor of the insulator. To obtain clear and
precise insight into the physical nature of such domain wall
matter (DWM), we present in this paper model calculations
within the framework of the DMFT picture. We argue that,
similarly to conventional Landau theories for domain walls,
the central region of a domain wall corresponds to a “saddle
point” (unstable solution) of the spatially uniform DMFT
equations, at the top of the free-energy barrier separating the
two competing phases [20,21]. In dramatic contrast to the
conventional Landau theory (e.g., for the Ising model), here
the two solutions are not related by symmetry and display very
different physical behavior [22–24]. One is a Fermi liquid
metal with coherent quasiparicles (QP) and T 2 resistivity,
whereas the other is a Mott insulator with completely inco-
herent activated transport. What, then, should be the physical
properties of the unstable solution separating them? Should it
resemble more closely a metal or a Mott insulator? What are
the thermal properties of transport in this unfamiliar regime?
As a matter of fact, it is almost impossible to guess. Previous
studies of the unstable solution were restricted only to the near
vicinity of the critical end point (T ∼ Tc) [25–27], but they did
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not provide clear insight as to what happens through the phase
coexistence region.

In this paper we present a clear and yet somewhat sur-
prising answer to all these important questions, in a setup
which can be considered as a (numerically) exact solution of
one of the simplest toy models of strong correlations. Based
on a reliable numerical solution of the corresponding DMFT
equations we establish that (1) transport in DWM assumes
resilient quasiparticle (RQP) character [28,29] throughout the
coexistence region; and (2) the relevant RQPs display sur-
prising non-Fermi liquid T -dependence of the QP parameters
(see below). These results firmly establish that DWM is a
qualitatively different form of matter, which we associate with
quantum critical fluctuations around the Mott point.

Model calculations. To describe the Mott metal-insulator
transition (MIT), while suppressing all forms of magnetic
orders, we focus on the maximally frustrated Hubbard model
[5,14,30], given by the Hamiltonian,

H = −
∑
〈i, j〉σ

ti j (c
†
iσ c jσ + H.c.) + U

∑
i

ni↑ni↓, (1)

where c†
iσ and ciσ are the electron creation and annihilation

operators, niσ = c†
iσ ciσ , ti j are the hopping elements with

zero average and variance 〈t2
i j〉 = t2/

√
N , and U is the onsite

Coulomb potential. The energy unit is set to the half band
width, D = 2t . Similarly to the popular Sachdev-Ye-Kitaev
(SYK) model [31], such an infinite-range model can be ex-
actly solved in the limit where the number of sites N → ∞. In
this case, this is performed through self-consistently solving
an Anderson impurity model using the DMFT framework
[5]. To solve the impurity problem, we utilize well-known
continuous time quantum Monte Carlo (CTQMC) methods as
well as iterative perturbation theory (IPT) as impurity solvers
[32,33]. The analytical continuation to the real-frequency
axis is done using the maximum entropy method (MEM),
the fifth-order polynomial fitting for CTQMC, and the Padé
approximant for IPT [34,35]. The use of an appropriate N-
dimensional optimizer [26] is essential for the convergence to
the local saddle point of the free-energy functional (the unsta-
ble solution). In addition, an appropriate free-energy analysis
[23,36] allows us to identify the first-order transition line, as
well as the location of the unstable solution.

The DMFT phase diagram (obtained from IPT), Fig. 1(a),
features a second-order critical end point at T = Tc ∼ 0.045.
Below Tc, there emerges a phase coexistence region confined
by two spinodal lines Uc1(T ) and Uc2(T ), marking the re-
spective instabilities of the Mott insulator and the metallic
solutions. At T = 0, the first-order transition line merges with
the spinodal line Uc2(T ), and the insulating solution becomes
marginally unstable exactly at T = 0 [36]. Above Tc, Uc1(T )
and Uc2(T ) merge to form a single Widom line, determined
from the minimum of the Landau free energy [14].

Finding the unstable solution. In order to understand the
behavior of all three solutions of our DMFT theory (metal,
insulator, and unstable), we employ the Landau free-energy
functional method [23,36], which provides information about
the form of the free-energy landscape. Within DMFT, the
free energy can be considered as a functional of the local
Green function, G(iωn), which for our model assumes the

FIG. 1. (a) DMFT phase diagram for the half-filled Hubbard
model and the trajectories studied (see text). (b) Evolution of the
free-energy functional [36] as T varies for the fixed-U trajectory
(U = 2.83). Here l = 0 and l = 1 correspond to the insulating and
metallic solutions, respectively. The arrows mark the position of the
unstable solutions.

form F [G] = Fimp[G] − t2T
∑

n G2(iωn), where Fimp[G] is
the free-energy functional of the associated impurity problem.
When solving the DMFT equations by the standard iteration
method, one finds convergence [36] to a given local minimum
of the free-energy functional, depending on the initial guess
for G(iωn). Within the coexistence region, two stable solutions
separated by the unstable solution (saddle point) are found. To
illustrate this, we follow a “phase space path” [36] connecting
the two solutions, which can be parameterized as G(l ) =
(1 − l )Gins(iω) + lGmetal(iω) with a parameter l ∈ [0, 1]. The
corresponding variation of the free energy can be calculated
[36] by evaluating the line integral �F (l ) = t2T

∫ l
0 dl ′el ·

δG[G(l ′)], where el = (Gins − Gmet)/|Gins − Gmet| and δG =
Gimp(G) − G. Here, the dot product denotes a trace over Mat-
subara frequencies and Gimp is the impurity Green function
dependent on the initial condition of G.

The unstable solution we seek exists anywhere within the
phase coexistence region. To be concrete, however, we exam-
ine its evolution following two specific trajectories: (1) along
the first-order transition line (where the two stable solutions
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have the same free energy); and (2) a trajectory where we
vary T at constant U , Fig. 1(a). For illustration, in Fig. 1(b)
we follow Ref. [36] and plot the free energy along trajectory
(2) (constant U ). Here we observe how the unstable solution
shifts towards the insulating solution as we lower the temper-
ature and finally merges with the insulating solution at T = 0.
This confirms that the insulating solution becomes unstable
precisely at T = 0 throughout the phase coexistence region.

To be able to precisely converge to the desired unstable
solution, we should keep in mind that the standard iterative
method (essentially a “steepest descent” method) can only
find local minima of the free energy, i.e., only the stable
solutions. Instead, we use the Broyden method, which can
converge to any extremum of a given functional (including
saddle points) [26], if the initial guess is sufficiently close
to the given extremum. Indeed, we find that this method can
efficiently converge even to the unstable solution within only
a moderate number of iterations. We should stress that the
unstable solution found in this way is generally not restricted
to lie exactly on the phase space path connecting the two
stable solutions, except very close to T = Tc. Still, Broyden-
converging to the proper unstable solution is greatly facilitated
by using the phase space path to estimate an appropriate initial
guess for the root search.

Resistivity calculations and quasiparticle transport. To
study the transport properties, we utilize the Kubo formula
[29] for the DMFT-based DC conductivity,

σ = σ0

∫
dε�(ω)

∫
dω

(
−∂ f (ω)

∂ω

)
A(ε, ω)2, (2)

where the spectral function A(ε, ω) = −(1/π )Im[ω + μ −
ε − 
(ω)]−1, �(ω) = �(0)[1 − (ω/D)2]3/2, σ0 = 2πe2/h̄,
and f (ω) is the Fermi distribution function. Here 
(ω) is ob-
tained on the real axis using standard MEM for CTQMC and
the Padé approximant for IPT. The resistivity is ρ = 1/σ . To
normalize the resistivity, we use the Mott-Ioffe-Regel (MIR)
limit ρMIR = h̄D/e2�(0), which represents the scale where
the scattering process becomes incoherent and the mean free
path is comparable to the Fermi wavelength.

The resistivity calculation, based on Eq. (2), dramat-
ically simplifies in the quasiparticle regime [28], where
transport is dominated by only the leading low-energy ex-
citations. Here the Green function can be approximated as
G(ω, ε) � Z

ω−Zε+i�QP
, with the quasiparticle weight Z = (1 −

∂Re
(ω)
∂ω

)−1
ω=0 and scattering rate �QP = −ZIm
(ω = 0). A

further Sommerfeld approximation can be performed in sit-
uations where �QP < T and T < ZD, and the conductivity
can be expressed in terms of only two parameters: Z and
� = �QP/Z , viz.,

σ

σMIR
≈ 1

�
tanh

(
Z

2T

)
. (3)

We explicitly checked that these conditions are indeed obeyed
throughout the coexistence region, not only by our metallic
solution, but also by the unstable solution. As we explicitly
show below, the results obtained from numerically evaluating
the conductivity using our full DMFT solution and Eq. (2)
demonstrate remarkable qualitative and even semiquantita-
tive agreement with our QP approximation. This important

FIG. 2. The resistivity for the metallic (black circles), insulat-
ing (red squares), and unstable (green squares) solutions along the
first-order transition line in a logarithmic ρ scale for (a) CTQMC
and (b) IPT. The Sommerfeld approximations to the resistivities
[Eq. (3)] are shown in the corresponding dashed and dotted lines with
different analytic continuation methods (MEM for CTQMC and Padé
approximant for IPT). (c) The quasiparticle weight Z for the metallic
and unstable solutions analytic continued by MEM (black and green
symbols). (d) The scattering rate �, for the metallic and the unstable
solutions, obtained from MEM (black and green symbols).

result demonstrates the resilient quasiparticle character [29]
of transport even for our unstable solution, despite the very
unusual behavior of the QP parameters in question.

Following the first-order transition line. To investigate
how our three solutions evolve when approaching the
zero-temperature critical point Uc2(T = 0), we study the
transport properties along the first-order transition line con-
necting the two critical points, Uc(T = Tc) and Uc2(T =
0). In Figs. 2(a) and 2(b) we show the results ob-
tained from CTQMC and IPT, respectively. At the critical
end point T = Tc, the three solutions merge as expected,
and the resistivity is of the order of the MIR limit. Below
Tc, the three solutions trifurcate into different trajectories. The
unstable solution (green diamonds) displays higher resistivity
than the metallic solution (black circles), with values of the or-
der of the MIR limit, ρ ∼ ρMIR, indicating bad metal behavior
[37]. The insulating solution has much higher resistivity due
to standard activated transport.

Close to the zero-temperature critical point Uc2(T = 0)
the three solutions do not merge, in contrast to the situation
around the critical end point (T ∼ Tc). Instead, while the
resistivity of the metallic solution drops at low temperatures,
that of the unstable solution remains comparable to the MIR
limit, suggesting incoherent transport, despite these trends
being well captured by the QP approximation [see Figs. 2(a)
and 2(b)]. To better understand this behavior, in Fig. 2(c)
we show the quasiparticle weight Z for the unstable (green
diamonds) and metallic (black circles) solutions. The unstable
solution has significantly lower Z than the metal, displaying
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a more pronounced decrease at low temperatures, reminis-
cent of resilient quasiparticles [29]. Note that the increase
followed by the decrease of Z in the metallic solution may
be attributed to the position of the first-order transition line
in the coexistence region, which shifts towards the insulating
phase with lowering the temperature. Similar behavior is seen
in Fig. 2(d), where we display the behavior of the scattering
rate �, which for the unstable solution (green diamonds)
remains appreciable down to the lowest temperatures, again
signaling poorly developed (resilient) quasiparticles. Remark-
ably, such non-Fermi Liquid (NFL) behavior here persists
down to the lowest temperatures, in contrast to previously
identified examples of RQPs [29], which emerged only at
temperatures intermediate between the conventional Fermi
liquid metal at the lowest T and a fully incoherent conductor
at high T .

Constant U trajectory. In order to further understand the
behavior of the unstable solution in the entire coexistence
regime, we also study the resistivity as a function of T
along a constant U trajectory. From the free-energy analysis,
Fig. 1(b), we anticipate that the unstable solution gradually
shifts towards the insulator as T is reduced at fixed U , even-
tually merging with it at T = 0. In contrast, in Figs. 3(a)
and 3(b), we observe the metallic and insulating solutions
displaying conventional Fermi liquid and activated behaviors,
respectively. On the other hand, for the unstable solution,
we find that the resistivity (green diamonds) increases as
the temperature decreases, reaching values as much as two
orders of magnitude larger than the MIR limit. Nevertheless,
as shown in Figs. 3(c) and 3(d), we observe that the unstable
solution’s density of states (DOS) at the lowest temperature
still features a very small quasiparticle peak at the Fermi
level. This suggests that the unstable solution still retains
some metallic character, even though the resistivity is much
larger than the MIR limit. In some sense, this situation could
be characterized as an extreme example of bad metal (BM)
behavior [37], albeit in a setup which is dramatically different
than the familiar high-T BM behavior in correlated matter.
And indeed, the standard RQP-Sommerfeld approximation
again captures remarkably well all the transport trends, even
in this extreme high-resistivity regime.

To even more precisely characterize such RQP-NFL be-
havior, we next examine the corresponding QP parameters
and their evolution as a function of T . In Fig. 3(e) we show
the quasiparticle weight for Z for metallic (black circles)
and unstable (green diamonds) solutions. The metal has a
normal behavior with Z saturating at low temperatures, con-
sistent with the expected FL behavior. In dramatic contrast,
Z corresponding to the unstable solution decreases rapidly
with temperature, displaying power-law behavior Z ∼ T 2. Re-
markably, a similar but much weaker decrease of the form
Z ∼ 1/| log T |, dubbed a ‘marginal Fermi liquid” (MFL) [38],
was proposed as the key signature of the breakdown of Fermi
liquid theory in optimally doped cuprates. The behavior found
here is not even marginal. By analogy, it can be described as
“fully developed NFL” behavior, the like of which is seldom
seen in correlated matter. Analogously, the unstable solution’s
scattering rate increases at low temperatures [Fig. 3(f)], again
in power-law fashion � ∼ 1/T 2, well exceeding the MIR limit
and consistent with transport.

FIG. 3. The resistivity for the metallic (black circles), insulating
(red squares), and unstable (green diamonds) solutions along the
constant U trajectory in logarithmic ρ scale for (a) CTQMC and
(b) IPT. The Sommerfeld approximations to the resistivities [Eq. (3)]
are shown in the corresponding dashed and dotted lines with differ-
ent analytic continuation methods (MEM and polynomial fitting for
CTQMC and Padé approximant for IPT). The density of states at low
temperatures (c) T = 0.01 and (d) T = 0.019 near the spinodal line
Uc2 computed from the CTQMC impurity solver and MEM analytic
continuation. (e) The quasiparticle weightZ for the metallic and the
unstable solutions. (f) The scattering rate � for the metallic and the
unstable solutions.

Conclusions. In this paper, we identified what may be
a new state of correlated electronic matter, characteriz-
ing the domain walls within the metal-insulator coexistence
region around the Mott point. We showed that its low-
energy excitations display a number of unusual properties
which qualitatively differ from either a conventional metal
or an insulator. This paints a physical picture of ex-
otic quasiparticles barely persisting at the brink of an
insulating state. Conceptually, such non-Fermi liquid be-
havior can be viewed as reflecting the quantum critical
fluctuations associated with the metal-insulator transition
region.

Our solution was obtained within the framework of single-
site DMFT theory, which physically represents the limit
of large frustration, where all possible symmetry-breaking
fluctuations are suppressed. The MIT coexistence region,
however, is presently known [16] to persist in real physical
systems such as quasi-two-dimensional Mott organics, where
intersite spin correlations could also play a role [39]. The
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effects of such perturbations can be systematically studied
within cluster-DMFT theories [36,40], with indications that
the phase coexistence region can be significantly influenced.
Nevertheless, we expect the short-range correlation effects
will only modify quantitatively the behavior of the unstable
solutions revealed in this work. Interesting modifications can
also arise by introducing extrinsic disorder due to impurities
and defects, which in some cases can significantly reduce
the size of the entire coexistence region [41,42]. How these
perturbations will affect the stability and the relevance of the
domain wall matter we discussed here is a fascinating open
problem which remains a challenge for future experiments as
well as theory.
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[15] J. Vučičević, H. Terletska, D. Tanasković, and V.
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Dobrosavljević, J. H. Miller, and E. Miranda, Phys. Rev.
B 101, 235112 (2020).

[19] M. Y. Suárez-Villagrán, N. Mitsakos, T.-H. Lee, J. H. Miller,
E. Miranda, and V. Dobrosavljević, Phys. Rev. B 104, 155114
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1Department of Physics and National High Magnetic Field Laboratory,
Florida State University, Tallahassee, Florida 32306, USA

2Physics and Astronomy Department, Rutgers University, Piscataway, New Jersey 08854, USA
3Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

4Gleb Wataghin Physics Institute, The University of Campinas,
Rua Sérgio Buarque de Holanda, 777, CEP 13083-859, Campinas, Brazil

In this Supplemental Material, we review, in Sec. I, the Ginzburg-Landau theory and the φ 4 theory for dynamical mean-
field theory (DMFT) following Refs. [1–3] and the domain-wall solutions in the inhomogeneous Ginzburg-Landau theory. In
Sec. II, we provide a detailed comparison of different analytic continuation results for the quasiparticle parameters and transport
properties.

I. GINZBURG-LANDAU THEORY FOR DYNAMICAL MEAN-FIELD THEORY

We start from the Ginzburg-Landau free energy functional for DMFT [1]

FGL
[
G
]
= Fimp

[
G
]
− t2T

2 ∑
n

G2(iωn). (1)

Then, we expand the free energy functional around the critical point δG = G−Gcr leading to

FGL = F(0)
GL +F(1)

GL +F(2)
GL +F(3)

GL +F(4)
GL , (2)

where

F(0)
GL = FGL

[
Gcr
]
, (3)

F(l)
GL =

T
l ∑

k1,...,kl

Γ
(l)
k1,...,kl

[
Gcr
] l

∏
j=1

δGk j , (4)

Γ
(l)
k1,...,kl

[
G
]
=

1
T

l
l!

( l

∏
j=1

δ

δGk j

)
FGL
[
G
]
, (5)

k ≡ (k, iωn) is the momentum and frequency index, and F(1)
GL = 0 from the DMFT self-consistency condition.

A. φ 4-model for dynamical mean-field theory

The DMFT Ginzburg-Landau functional can be mapped to a φ 4-model around the critical point [2, 3]. We write

∑
k2

Γ
(2)
k1k2

[
Gcr
]
Ψλ ,k2 p = Ψλ ,pk1γ

(2)
λ ,p, (6)

where Ψλ ,k1 p and γ
(2)
λ ,p is the eigenbasis and the eigenvalues of Γ

(2)
k1k2

, respectively, and λ labels the eigenmodes. We then
introduce the φλ ,p defined by

δGk = ∑
λ ,p

Ψλ ,kpφλ ,p, (7)
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such that the Ginzburg-Landau free energy can be written in the eigenbasis as

F(2)
GL =

T
2 ∑

P
γ
(2)
P |φP|2 (8)

F(3)
GL =

T
3 ∑

P1P2P3

γ
(3)
P1P2P3

φP1φP2φP3 (9)

F(4)
GL =

T
4 ∑

P1...P4

γ
(4)
P1P2P3P4

φP1 φP2φP3 φP4 , (10)

where P≡ (λ , p) and

γ
(l)
P1...Pl

= ∑
k1...kl

Γ
(l)
k1...kl

[
Gcr
] l

∏
j=1

Ψλ j ,k j p j . (11)

As pointed out in Refs. [1–3], the critical behavior is dominated by the soft eigenmode so we can project the free energy
functional to this specific eigenbasis. Focusing on the static and uniform part of the free energy function, we can write down the
φ 4-model for DMFT

FGL

T
=

1
2 ∑

p
γ
(2)

φ
2
p +

1
3 ∑

p1 p2 p3

γ
(3)

φp1φp2φp3 +
1
4 ∑

p1 p2 p3 p4

γ
(4)

φp1φp2φp3φp4 . (12)

B. Domain-wall solution

To interpret the domain-wall solution, we write the Ginzburg-Landau free energy in the real space

FGL
[
φ
]

T
=

ˆ
dx
{

κ

2
(
∇φ(x)

)2
+

1
2

γ
(2)

φ(x)2 +
γ(4)

4
φ(x)4

}
, (13)

where the cubic term in Eq. 12 can be eliminated by properly shifting the field φ [2, 3]. The Euler-Lagrange equation of FGL is

γ
(2)

φ(x)+ γ
(4)

φ(x)3−κ∇
2
φ(x) = 0. (14)

For simplicity we consider the domain-wall forms along the x-direction, so the Euler-Lagrange equation becomes

γ
(2)

φ(x)+ γ
(4)

φ(x)3−κφ
′′(x) = 0. (15)

with the boundary condition φ(x→−∞) =−φ0 and φ(x→ ∞) = φ0 and φ0 =
√
−γ(2)/γ(4). Note that the uniform saddle-point

solution φ0 can be related to the double occupancy or the density of states at the Fermi level, where the positive and negative
values of φ0 correspond to the metallic and the insulating solutions, respectively [2]. One can show that the inhomogeneous
domain-wall solution is [4]

φ(x) = φ0tanh
[ x√

2ξ

]
, (16)

where ξ =
√
−κ/γ(2) is the correlation length. We can see that the domain-wall solution at φ(x) = 0 corresponds to the local

maximum of the uniform Landau free energy

f [φ ] =
1
2

γ
(2)

φ
2 +

γ(4)

4
φ

4 (17)

shown schematically in Fig. 1.
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(a)

ϕ/ϕ0

f[ϕ]

-1 1
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1

ϕ(x)/ϕ0

x

(b)

FIG. 1. (a) Schematic Landau free energy f [φ ] as a function of φ . (b) Schematic domain-wall solution profile φ(x) as a function of x.

II. COMPARISON OF MAXIMUM ENTROPY METHOD AND POLYNOMIAL FITTING ANALYTIC CONTINUATION

In this section, we compare the quasiparticle and transport properties obtained from two analytic continuation approaches:
maximum entropy method (MEM) and fifth-order polynomial fitting.
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FIG. 2. The resistivity for the metallic (black circles), insulating (red squares), and unstable (green squares) solutions along the first-order
transition line in a logarithmic ρ scale for (a) CTQMC and (b) IPT. The Sommerfeld approximations to the resistivities (Eq. (3)) are shown
in the corresponding dashed and dotted lines with different analytic continuation methods (MEM and polynomial fitting for CTQMC and
Padé approximation for IPT). (c) The quasiparticle weight, Z, for the metallic and unstable solutions analytic continued by MEM (black and
green symbols) and by polynomial fitting (black and green dashed lines). (d) The scattering rate Γ, for the metallic and the unstable solutions,
obtained from MEM (black and green symbols) and from polynomial fitting (black and green dashed lines).

First, we discuss the results along the first-order transition line. Figure 2(a) shows the resistivities computed from the Som-
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merfeld approximation (Eq. (3) in the main text) using MEM and polynomial fitting analytic continuations. We see that the two
analytic continuations agree at low temperatures. However, around Tc, the two methods show significant differences. This be-
havior is also observed in the quasiparticle weight Z (Fig. 2(c)) and the scattering rate Γ ((Fig. 2(d)). The difference between the
two analytic continuation methods stems from the breakdown of the polynomial fitting around Tc, where the polynomial fitting
of the first few Matsubara points of the self-energy does not yield reliable quasiparticle parameters Z and Γ. Therefore, around
Tc, one should trust the MEM results. On the other hand, the polynomial fitting should be more reliable at low temperatures,
where the first few Matsubara points are enough to determine the quasiparticle parameters, whereas the MEM is noisier.

We now discuss the results of different analytic continuation approaches along a constant U trajectory. In Fig. 3(a), we show
the resistivity calculated from the Sommerfeld approximation (Eq. (3) in the main text) using MEM and polynomial fitting
analytic continuation. We observe that the two analytic continuation approaches give semi-quantitatively similar behavior. In
Fig. 3(c), we show the quasiparticle weight Z calculated from the two analytic continuation approaches. We observe that the
two analytic continuations give the same behavior for the metallic solutions quantitatively. Note that the polynomial fitting is
expected to give a more reliable analytic continued Z at low temperature. On the other hand, for the unstable solutions, we see
that the two analytic continuation approaches yield different powers where the polynomial fitting gives Z ∼ T 1.5 and MEM gives
Z ∼ T 2. Both differ significantly from the Fermi-liquid saturation behavior shown in the metallic solutions. Finally, in Fig. 3(d),
we show the scattering rate Γ calculated from the two analytic continuation approaches. We observed that the two approaches
give semi-quantitatively the same behavior with similar power, Γ ∼ T 2 for the metallic solutions and Γ ∼ T−2 for the unstable
solutions. We note that the polynomial fitting is expected to yield more reliable analytic continued Γ for the metallic solutions
at low temperatures.
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FIG. 3. The resistivity for the metallic (black circles), insulating (red squares), and unstable (green diamonds) solutions along the constant U
trajectory in logarithmic ρ scale for (a) CTQMC and (b) IPT. The Sommerfeld approximations to the resistivities are shown in the correspond-
ing dashed and dotted lines with different analytic continuation methods (MEM and polynomial fitting for CTQMC and Padé approximation
for IPT). (c) The quasiparticle weight, Z, for the metallic and the unstable solutions. (d) The scattering rate Γ for the metallic and the unstable
solutions.
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