Symmetry reduction in multiband Hamiltonians for semiconductor quantum dots: The role of interfaces and higher energy bands

Stanko Tomić1 and Nenad Vukmirović2,a)

1Joule Physics Laboratory, School of Computing, Science and Engineering, University of Salford, Salford M5 4WT, United Kingdom
2Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

(Received 17 April 2011; accepted 25 July 2011; published online 12 September 2011)

The role of interfaces and higher bands on the electronic structure of embedded semiconductor quantum dots (QDs) was investigated. The term in the multiband \(\mathbf{k} \cdot \mathbf{p} \) Hamiltonian that captures the effect of interface band mixing was derived starting from the microscopic theory. It was shown, analytically and numerically, that, with such a term included, the right symmetry of the QD system can be captured. It leads to splitting of otherwise degenerate energy levels of the order of several meV. The inclusion of additional higher bands beyond the ones from the standard eight-band model also leads to the reduction of symmetry from an artificially high one to the true atomistic symmetry of the system, however their quantitative effect is weaker. These results prove that the multiband \(\mathbf{k} \cdot \mathbf{p} \) Hamiltonians are fully capable of describing the correct symmetry of a QD. © 2011 American Institute of Physics. [doi:10.1063/1.3631048]

I. INTRODUCTION

Semiconductor quantum dots (QDs) are highly interesting physical systems both as a platform for fundamental studies of interaction of charges, spins and photons on the nanoscopic scale,1–3 and due to various possible applications.4,16 While certain physical effects in QDs can be qualitatively understood solely based on discreteness of energy levels or using simple particle-in-a-box models, for most purposes an accurate treatment of the electronic structure of QDs is necessary. Typical self-assembled QDs have millions of atoms and therefore the methods based on \textit{ab initio} density functional theory, the workhorse of modern electronic structure calculations, are far beyond the reach of present day computational capabilities.17 All the methods developed so far are therefore to a lesser or larger extent semiempirical.18–30 In the multiband envelope function methods (including the \(\mathbf{k} \cdot \mathbf{p} \) method) the system Hamiltonian is represented through a matrix of operators that act upon a vector of envelope functions of several bands. Such a representation where all the relevant quantities are slowly varying continuous functions may lead one to believe that the model is a continuous one and that it cannot capture the full symmetry of the nanostructure.31 The multiband \(\mathbf{k} \cdot \mathbf{p} \) Hamiltonians32–49 are capable of reproducing the bulk band structure more accurately than the standard 8-band Hamiltonian. Some of these, that include a large number of bands (\(\geq 15 \) or \(\leq 30 \) after incorporation of the spin degree of freedom), are even capable of reproducing the bulk band structure throughout the whole Brillouin zone. Unfortunately, these Hamiltonians have been rarely applied to nanostructures and have not been applied to QDs at all.

The effect of interface band mixing50–54 has also so far been analyzed only for a single interface or a quantum well structure. There is even a lack of appropriate framework for a description of the effect of interface induced band mixing in quantum dot heterostructures. The goal of this work is to explore the effects of higher bands and interfaces on the electronic structure of QDs.

The most widely used form of the multiband Hamiltonians for the description of III-V material nanostructures with zinc blende crystal structure is the 8-band \(\mathbf{k} \cdot \mathbf{p} \) Hamiltonian.55,56 This Hamiltonian indeed yields a higher symmetry of the nanostructure than the true atomistic one. When one is not interested in very fine details of the electronic structure, such a shortcoming can be converted into a strength from the computational point of view, as the existing symmetry (not necessarily the correct one) can be exploited to block-diagonalize the Hamiltonian and therefore reduce the computational time.57–60 There is however a widespread belief61 that the mentioned deficiency is a general feature of multiband \(\mathbf{k} \cdot \mathbf{p} \) Hamiltonians and that these cannot be used if one needs to capture the true symmetry of the nanostructure. If this were true, this would be indeed a serious issue. For example, models with high symmetry lead to degeneracies of eigenstates that would be otherwise split and as a consequence lead to inaccuracies in the prediction of polarization dependence of interaction with electromagnetic radiation or the distribution of the excitonic state population and their dynamics.

We find no reason that the mentioned shortcomings of the 8-band \(\mathbf{k} \cdot \mathbf{p} \) Hamiltonian would manifest also in multiband \(\mathbf{k} \cdot \mathbf{p} \) Hamiltonians in general. In this work, we therefore analyze the \(\mathbf{k} \cdot \mathbf{p} \) Hamiltonians beyond the standard 8-band one, which either include the effect of higher energy bands or include the effect of interface induced band mixing. For the latter, we derive the analytical form of the appropriate Hamiltonian for all interfaces present in the model QD structure and use it in the calculation to understand its role both

a)Author to whom correspondence should be addressed. Electronic mail: nenad.vukmirovic@ipb.ac.rs.
qualitatively and quantitatively. We show both analytically and numerically that beyond 8-band Hamiltonians are capable of capturing the correct atomic symmetry of QDs and quantify their effect on the electronic structure of QDs.

II. METHODS

As a model system, we consider a QD in the shape of a square-based pyramid, with base to height ratio $b/h = 2$, which is the most conventional shape assumed in previous theoretical considerations. The coordinate system is chosen so that vertices of the pyramid are at the points $(b/2, -b/2, 0)$, $(b/2, b/2, 0)$, $(-b/2, b/2, 0)$, $(-b/2, -b/2, 0)$, and $(0, 0, h)$. The $k\cdot p$ Hamiltonians discussed in this paper have a general form:

$$H_{kp} = H_k + H_{so} + H_r + H_{px} + H_{if}$$ \hspace{1cm} (1)

where H_k is the kinetic part, H_{so} is the part arising from spin-orbit interaction, H_r is the strain part, H_{px} is the piezoelectric part of the Hamiltonian that depends on strain, and H_{if} describes the interface induced band-mixing contribution to the Hamiltonian H_{kp}. To identify the effect of the Hamiltonians beyond the standard 8-band one, we have analyzed our model system using several different Hamiltonians that include only certain terms from Eq. (1), each with a different level of sophistication.

(a) The 8-band $k\cdot p$ Hamiltonian consisting of the kinetic part only (without the spin-orbit interaction and strain).

(b) The 8-band $k\cdot p$ Hamiltonian consisting of the kinetic part with the spin-orbit interaction taken into account (but without strain).

(c) The 8-band $k\cdot p$ Hamiltonian consisting of the kinetic part with the interface band-mixing effects taken into account (but without spin-orbit interaction and strain).

(d) The standard 8-band $k\cdot p$ Hamiltonian consisting of the kinetic part with the spin-orbit interaction and strain, as well as the strain-induced piezoelectric potential. It was assumed that piezoelectric polarization depends linearly on strain, though there are some recent suggestions that quadratic effects should be included as well.

(e) The 8-band $k\cdot p$ Hamiltonian consisting of the kinetic part with the spin-orbit interaction and strain, as well as the strain-induced piezoelectric potential and the interface Hamiltonian.

(f) The 14-band $k\cdot p$ Hamiltonian consisting of the kinetic part only (without the spin-orbit interaction and strain).

(g) The 16-band $k\cdot p$ Hamiltonian consisting of the kinetic part only (without the spin-orbit interaction and strain).

(h) The 14-band $k\cdot p$ Hamiltonian consisting of the kinetic part with the spin-orbit interaction and strain (as well as the strain-induced piezoelectric potential).

(i) The 16-band $k\cdot p$ Hamiltonian consisting of the kinetic part with the spin-orbit interaction and strain (as well as the strain-induced piezoelectric potential).

The explicit forms of the multiband Hamiltonians used in this work and the corresponding material parameters are given in Sec. I of the supplementary information.

The $kppw$ code, appreciably extended to treat the multiband Hamiltonians and the effect of interfaces, was used for all electronic structure calculations presented. Whenever possible, the symmetry of the Hamiltonian was exploited to reduce the computational effort, as described in our previous work. It is in particular important to note that our numerical implementation in a plane wave basis does not reduce the symmetry of the problem; therefore, all energy level splittings that we report originate from the Hamiltonian itself and not from numerical artifacts. In all calculations where strain is taken into account, it has been modeled using the continuum mechanical model.

III. INTERFACE TERM IN K·P HAMILTONIAN

In the derivation of the interface-induced band mixing terms in the 8-band $k\cdot p$ Hamiltonian applied to our model QD system, we follow the approach of Foreman outlined in Ref. 54. The envelope function Hamiltonian at a point R in space (in the absence of strain and spin-orbit interaction) is equal to:

$$H_{mn}(R) = \frac{\hbar^2 k^2}{2m_0} \delta_{mn} + \frac{\hbar}{m_0} \mathbf{k} \cdot \mathbf{p}_{mn} + [u_m H_a | u_n]_R.$$ \hspace{1cm} (2)

In this equation, u_m and u_n are the periodic Bloch functions of band m and n of a bulk reference crystal, $H_a = p^2/2m_0 + V(r)$ is the microscopic Hamiltonian that we model using the local empirical pseudopotentials, the square brackets denote the averaging over a unit cell centered on R, $\mathbf{k} = -i\nabla$ and $\mathbf{p}_{mn} = [u_m | p | u_n]_R$, where p is the momentum operator.

The term $[u_m V | u_n]_R$ in the Hamiltonian [Eq. (2)] is a constant of a given material when R is far away from the interface, when the averaging does not include the interface region. Let the interface be perpendicular to the z-direction and located in the $z = 0$ plane. The “length” of the interface L_{if} is determined by the region of space that consists of all R-vectors such that the average $[u_m V | u_n]_R$ encompasses the interface region. In the case of the [001] interface $L_{if} = a/2$ and in the case of other interfaces considered in this work $L_{if} = a/(2\sqrt{2})$, where a is the lattice constant of the bulk.

Since the interface region is small and the envelope functions are slowly varying, the details of the variations of the $[u_m V | u_n]_R$ are not of primary importance; it is only the integral of this term over the interface region that determines its role in the envelope function Hamiltonian. In the flat interface model, the pseudopotentials are modeled to be equal to those of material A at one side of interface and moving sharply to those of material B at the other side of an interface. We then obtain:

$$\int_{-L_{if}/2}^{+L_{if}/2} [u_m H_A | u_n]_R \, dz_0 = \int_{-L_{if}/2}^{+L_{if}/2} \left[u_m \frac{p^2}{2m_0} + V | u_n \right]_R \, dz_0$$

$$\quad - [u_m \frac{p^2}{2m_0}] + V_A | u_n]_{L_{if}/2}$$

$$\quad + [u_m \frac{p^2}{2m_0}] + V_B | u_n]_{-L_{if}/2} + [u_m \frac{p^2}{2m_0}]$$

$$\quad + V_B | u_n]_{-L_{if}/2}. \hspace{1cm} (3)$$

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp
In the Eq. (3), the last two terms on the right hand side represent the bulk contribution to the Hamiltonian, while the first two terms are the interface contribution. This implies that for each interface, the envelope function Hamiltonian contains an additional term of the form $\Omega_{mn}\delta(z)$, with Ω_{mn} given by the expression:

$$\Omega_{mn} = \int_{-L/2}^{L/2} \left[|u_m|^2/2m_0 + V|u_n|_{z_0} dz_0 - |u_m|^2/2m_0 + V_A + V_B/2 |u_n|L_{if}. \right]$$

When one chooses the bulk reference crystal as a virtual crystal being the “average” of crystals A and B, the last expression reduces to

$$\Omega_{mn} = \int_{-L/2}^{L/2} \left[|u_m|^2/2m_0 + V|u_n|_{z_0} dz_0 - E_m\delta_{mn}L_{if}, \right]$$

where E_m is the energy of band m at the Γ point. The actual interface matrices are given in Appendix A, while the crucial steps needed to evaluate the elements of these matrices are outlined in Sec. II of the supplementary information. The total interface Hamiltonian is then given by the equation

$$H_{if} = \Omega(001)\delta\theta(z) + \Omega(101)\delta\theta(r \cdot n_1 - l) + \Omega(011)\delta\theta(r \cdot n_2 - l) + \Omega(110)\delta\theta(r \cdot n_3 - l).$$

In the above equation, $\delta\theta(z)$ function represents the delta function at a given interface, with an additional constraint that the function is nonzero only at the face of the pyramid. The vectors n_i are the unit vectors perpendicular to the faces of the pyramid and are given as $n_1 = 1/\sqrt{2} \cdot (1, 0, 1)$, $n_2 = 1/\sqrt{2} \cdot (0, 1, 1)$, $n_3 = 1/\sqrt{2} \cdot (-1, 0, 1)$, $l = b/(2\sqrt{2})$. The integrals needed to represent H_{if} in the plane wave basis are given in Sec. IV in the supplementary material.

IV. RESULTS AND DISCUSSION

To understand the role of interfaces and/or higher energy bands, we start by analyzing the conventional 8-band $k \cdot p$ Hamiltonian. We consider first its version in the absence of spin-orbit interaction. The symmetry group of such a Hamiltonian applied to a pyramidal square-based QD is the C_{4v} group. To show analytically that this is really the case, one needs to prove that the representations of the generators of the group, $D(g)$, commute with the Hamiltonian H, i.e., $[D(g), H] = 0$. The generators of the C_{4v} group are the rotation by $\pi/2$ about the z axis, R_z, and the reflection with respect to the $x = y$ plane σ_x. Equality of the operators $D(g)H$ and $HD(g)$ can be established by showing that they yield the same results when they act on any of the plane wave basis vectors that span the Hilbert space of the system. Indeed, we have shown that $[D(R_z), H_{sk \cdot p}] = 0$ for $\varphi = n\pi/2$ and $[D(\sigma_x), H_{sk \cdot p}] = 0$ (see Sec. III of the supplementary material for a detailed proof).

Several prominent features of the energy level structure [Table I(a)] and the wavefunctions [Fig. 1(a)] arise as a consequence of high symmetry of the system. The pairs of energy levels (e_1, e_2), (h_5, h_6) and (h_8, h_9) are degenerate. The presence of degenerate energy levels is a consequence of the fact that the C_{4v} group has a two dimensional representation E (the notation of Ref. 71). Therefore, the states that transform according to that representation come in pairs and are degenerate. The high symmetry of the system can also be witnessed from the shape of the probability density isosurfaces [Fig. 1(a)]: All of them exhibit perfect C_{4v} symmetry.

Next, we include the spin-orbit interaction in the 8-band $k \cdot p$ Hamiltonian, case (b). The eigenstates now transform according to a representation of the double C_{4v} group which is a direct product of the representation of the single C_{4v} group and the representation $D_{1/2}$ according to which the spin functions transform (Ref. 71, p. 142). If the representation obtained from the direct product is reducible, the inclusion of spin-orbit interaction leads to the removal of degeneracy of energy levels. Indeed, the product $E \times D_{1/2}$ is equal to $E_1 + E_2'$ (the notation of Ref. 71). It is well understood that the effect of spin-orbit interaction on the states in the valence band is rather strong. Here we would, however, like to emphasize a less known fact that the spin-orbit interaction also causes the splitting of the e_1 and e_2 states [shown in Table I(b)]. The existence of this splitting was established in Ref. 57 for pyramidal QDs and later on analyzed again in Ref. 72 for lens-shaped QDs. It

<table>
<thead>
<tr>
<th>State</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
<th>(f)</th>
<th>(g)</th>
<th>(h)</th>
<th>(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e3</td>
<td>1.08163</td>
<td>1.06746</td>
<td>1.08878</td>
<td>1.30684</td>
<td>1.30772</td>
<td>1.03852</td>
<td>1.20462</td>
<td>1.30421</td>
<td>1.30463</td>
</tr>
<tr>
<td>e2</td>
<td>0.99336</td>
<td>0.96795</td>
<td>1.00170</td>
<td>1.25044</td>
<td>1.25570</td>
<td>0.97301</td>
<td>0.97477</td>
<td>1.24429</td>
<td>1.24514</td>
</tr>
<tr>
<td>e1</td>
<td>0.99336</td>
<td>0.96724</td>
<td>1.00074</td>
<td>1.23439</td>
<td>1.23943</td>
<td>0.97298</td>
<td>0.97746</td>
<td>1.22810</td>
<td>1.22900</td>
</tr>
<tr>
<td>e0</td>
<td>0.84346</td>
<td>0.81808</td>
<td>0.85115</td>
<td>1.12013</td>
<td>1.12543</td>
<td>0.83509</td>
<td>0.83754</td>
<td>1.11712</td>
<td>1.11768</td>
</tr>
<tr>
<td>h0</td>
<td>-0.06722</td>
<td>-0.03427</td>
<td>-0.06475</td>
<td>-0.05230</td>
<td>-0.05052</td>
<td>-0.06512</td>
<td>-0.06495</td>
<td>-0.05086</td>
<td>-0.05066</td>
</tr>
<tr>
<td>h1</td>
<td>-0.06722</td>
<td>-0.03680</td>
<td>-0.06698</td>
<td>-0.06827</td>
<td>-0.06699</td>
<td>-0.06517</td>
<td>-0.06500</td>
<td>-0.06703</td>
<td>-0.06673</td>
</tr>
<tr>
<td>h2</td>
<td>-0.07389</td>
<td>-0.03765</td>
<td>-0.07248</td>
<td>-0.07840</td>
<td>-0.07843</td>
<td>-0.08326</td>
<td>-0.07763</td>
<td>-0.07743</td>
<td>-0.07717</td>
</tr>
<tr>
<td>h3</td>
<td>-0.07883</td>
<td>-0.04244</td>
<td>-0.07078</td>
<td>-0.09115</td>
<td>-0.09046</td>
<td>-0.07700</td>
<td>-0.07675</td>
<td>-0.08865</td>
<td>-0.08827</td>
</tr>
<tr>
<td>h4</td>
<td>-0.08518</td>
<td>-0.04582</td>
<td>-0.08119</td>
<td>-0.10517</td>
<td>-0.10565</td>
<td>-0.08124</td>
<td>-0.08117</td>
<td>-0.10282</td>
<td>-0.10241</td>
</tr>
<tr>
<td>h5</td>
<td>-0.08518</td>
<td>-0.04614</td>
<td>-0.08360</td>
<td>-0.10888</td>
<td>-0.10859</td>
<td>-0.08270</td>
<td>-0.08242</td>
<td>-0.10730</td>
<td>-0.10698</td>
</tr>
</tbody>
</table>

TABLE I. Energies (in eV) of top six hole energy levels and bottom four electron levels, for a square-based pyramidal InAs/GaAs QD with base width $b = 100$ Å, and base to height ratio $b/h = 2$ calculated using different models. The letters in the first row in the table specify the model used in the calculation.
is important to note here that this energy level splitting effect is not a signature of symmetry reduction. Indeed, it can be seen from Fig. 1(b) that the wavefunction moduli still exhibit a perfect C_{4v} symmetry.

We proceed to understand the role of interfaces on the energy level structure and the symmetry of the system, case (c). For that purpose we calculate the electronic structure of a QD using the 8-band $k\cdot p$ Hamiltonian in the absence of spin-orbit interaction and the presence of interface effects [Fig. 1(c) and Table I(c)]. Our analytical derivations, demonstrate that both the [001] interface and the joint effect of the other interfaces independently lead to the reduction of symmetry from C_{4v} to C_{2v} since both commutators $[D(R_{\varphi}), H_{[001]}] = 0$ and $[D(R_{\varphi}), H_{[if]}] = 0$ only if $\varphi = n\pi$ (see Sec. III of Ref. 65). The C_{2v} group has one dimensional irreducible representations only and cannot exhibit the doubly degenerate eigenstates. As a consequence, interface effects lead to splitting of the degenerate eigenstates by typically 1–3 meV, as shown in Table I(c). The low symmetry of the system can also be evidenced from the shape of the wavefunction isosurfaces. All the isosurfaces reduce their symmetry from C_{4v} [Fig. 1(a)] to C_{2v} [Fig. 1(c)]. The symmetry breaking is most pronounced for wavefunctions that were originally degenerate, while it is weaker, but still present, for the other ones.

To quantify the role of the dot size on the magnitude of interface induced effects, we compare the electronic

<table>
<thead>
<tr>
<th>E4</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
<th>(f)</th>
<th>(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIG. 1. (Color online) The wavefunctions squared for top six hole states and bottom five electron states for a square-based pyramidal InAs/GaAs QD with base width $b = 100$ Å, and base to height ratio $b/h = 2$ calculated using different models. The letters (a)–(c), (e)–(g) specify the model used in the calculation. The isosurfaces are plotted at 25% (transparent) and 75% of the maximal charge density.
structure of the Hamiltonians (a) and (c) for several different QDs sizes. We use the splitting of the e_1 and e_2 states as a quantitative measure of interface effects. The results are summarized in Fig. 2. We find that the interface induced splitting of the e_1 and e_2 states decreases as the dot dimensions and the dot volume to surface ratio increase. The interface effects become less important for dots with large volume to surface ratio.

To identify the role of higher energy bands, we have extended the Hamiltonian to include 14 bands, case (f). We have found analytically that the 14 band $k \cdot p$ Hamiltonian commutes with the operators of the C_{4v} group representation, i.e., $[D(R_{\phi}), H_{14k \cdot p}] = 0$ only for $\phi = n\pi$ (see Sec. III of Ref. 65). The terms that contain the P_2 element which couples the top of the valence band, Γ_{5v}, [that originates from the p bonding states (denoted as p_b) of atoms in the bulk] with the second conduction band, Γ_{5c}, [that originates from the p antibonding states (denoted as p_a) of atoms in the bulk] are the only terms that prevent the C_{4v} symmetry. Therefore, the P_2 element can be identified as the symmetry breaking term in the 14-band $k \cdot p$ Hamiltonian. This term introduces the splittings, Table I(f), which are however less pronounced than these of the interface terms; for example, the splitting of e_1 and e_2 is less than 0.1 meV. The effect of symmetry breaking on the wavefunctions is generally similar [see Fig. 1(f)] as in the case of interface-induced symmetry breaking. The inclusion of the additional band that gives the 16-band $k \cdot p$ Hamiltonian does not lead to any significant qualitative or quantitative changes in the results, Table I(g).

It has been previously established57 that the piezoelectric effect also reduces the symmetry from C_{4v} to C_{2v}. The results shown in Tables I(d), I(e), I(h) and I(i) indicate that splitting of e_1 and e_2 states induced by the piezoelectric effect is stronger than the splittings induced by other effects. One should also stress that in the absence of piezoelectric effect, the strain would also give rise to symmetry reduction if it were modeled using the Valence force field model.26,66–68,70

There is an interest to understand the role of other QD materials on the symmetry breaking and energy level splitting effects. We have therefore calculated the electronic structure of a QD based on a different material, namely, virtually strain free GaAs/Al$_{0.15}$Ga$_{0.85}$As QD. This type of quantum dots cannot be realized via a conventional Stranki-Krastanov growth technique which requires lattice-mismatched materials. Nevertheless, there has been an increasing interest in this quantum dot material system in recent years due to the introduction of techniques for controllable realization73–75 of such quantum dots. The energy levels of this dot are summarized in Table II. These results suggest that the splitting of e_1 and e_2 levels due to spin-orbit interaction and higher energy bands is of the similar order of magnitude as for InAs/GaAs. On the other hand, interface effects are much weaker in this material. This can be understood from the fact that AlGaAs and GaAs are more similar materials than InAs and GaAs.

V. CONCLUSION

In contrast to a popular belief that multiband envelope function $k \cdot p$ Hamiltonians cannot capture the right symmetry of QDs, we showed here the opposite. We put our conclusions into numbers for the case of square-based pyramidal QDs based on III-V materials with zinc blende crystal structure. We showed that the inclusion of interface band mixing effects leads to the reduction of symmetry from an artificial C_{4v}, to the correct C_{2v}. The main manifestation of interface effects are the energy level splittings between (e_1, e_2), (h_0, h_1), and (h_2, h_3) states of the order of 1–3 meV in InAs/GaAs material system, which are much weaker in the AlGaAs/GaAs system. The splittings decrease as the dot size and consequently the volume to surface ratio increase. The inclusion of the additional bands beyond the standard 8 bands also leads to symmetry reduction to C_{2v}, with splittings which are however weaker than the ones due to interfaces. We have found that that the lowest order multiband Hamiltonian whose kinetic part has the correct C_{2v} symmetry is the 14-band $k \cdot p$ Hamiltonian. This symmetry reduction originates from the coupling between the top of the valence

\begin{center}
\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
State & (a) & (b) & (c) & (d) & (f) \\
\hline
e3 & 1.87820 & 1.87153 & 1.87826 & 1.87158 & 1.87773 \\
e2 & 1.86355 & 1.85915 & 1.86428 & 1.85981 & 1.85947 \\
e1 & 1.86355 & 1.85866 & 1.86426 & 1.85932 & 1.85936 \\
e0 & 1.75534 & 1.75191 & 1.75641 & 1.75291 & 1.75234 \\
h0 & 0.07545 & 0.08834 & 0.07512 & 0.08818 & 0.07445 \\
h1 & 0.07545 & 0.09647 & 0.07551 & 0.09632 & 0.07461 \\
h2 & 0.08848 & 0.11788 & 0.08834 & 0.11756 & 0.08792 \\
h3 & 0.09860 & 0.12268 & 0.09519 & 0.12255 & 0.09346 \\
h4 & 0.10508 & 0.13360 & 0.09844 & 0.13340 & 0.09749 \\
h5 & 0.10508 & 0.14167 & 0.10486 & 0.14149 & 0.10347 \\
\hline
\end{tabular}
\caption{Energies (in eV) of top six hole energy levels and bottom four electron levels, for a square-based pyramidal GaAs/AlGaAs QD with base width $b = 100$ Å, and base to height ratio $b/h = 2$ calculated using different models. The letters in the first row in the table specify the model used in the calculation.}
\end{table}
\end{center}
(Γ5a) and the second conduction (Γ5c) band. The observed splittings are comparable to the ones that originate from spin-orbit coupling (these do not reduce the symmetry) and are much smaller than the ones from piezoelectric effect in strained systems. One can further note that other effects that the ones considered in this work can also affect the symmetry of the system, such as the atomic-scale randomness in QDs made of alloys, as well as the irregularity of the shape of the dot. Unfortunately, the mentioned symmetry reduction effects cannot be independently measured since in a given QD, they all act jointly. Despite that, our work provides a very important conceptual message: With appropriate treatment of relevant effects, the multiband envelope function Hamiltonians are fully capable of capturing the right symmetry of QD structures.

ACKNOWLEDGMENTS

S.T. thanks the STFC’s UK e-Science SCARF facility for providing computer resources. N.V. was supported in part by the Ministry of Science and Technological Development of the Republic of Serbia, under project No. ON171017, and the European Commission under EU FP7 projects PRACE-1IP, HP-SEE and EGI-InSPIRE.

APPENDIX A: INTERFACE HAMILTONIAN MATRICES

To evaluate the Ωmn terms, Eq. (5), we represent the pseudopotentials using the plane waves, where the form factors from Ref. 77 for InAs/GaAs, and Ref. 52 for GaAs/AlAs are used. In the basis

\[
\{ |X_0⟩, |p_{x,0}⟩, |p_{y,0}⟩, |p_{z,0}⟩ \},
\]

we obtain the following expressions for the Ωmn terms for the interfaces of interest in this paper:

\[
Ω([011]) = \begin{pmatrix}
0 & 0 & -c & -c \\
0 & d & d & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}, \quad (A4)
\]

\[
Ω([101]) = \begin{pmatrix}
0 & c & 0 & -c \\
0 & d & 0 & -d \\
0 & 0 & 0 & 0
\end{pmatrix}, \quad (A5)
\]

\[
Ω([110]) = \begin{pmatrix}
0 & 0 & c & -c \\
0 & d & 0 & -d \\
0 & 0 & 0 & 0
\end{pmatrix}. \quad (A6)
\]

The values of the parameters a, b, c, and d for the interfaces considered in this work are given in Table III.

Supplement: The influence of interface band mixing and higher bands on the electronic structure of semiconductor quantum dots

Stanko Tomić

Computational Science and Engineering Department,
STFC Daresbury Laboratory, Cheshire WA4 4AD, United Kingdom

Nenad Vukmirović*

Scientific Computing Laboratory, Institute of Physics Belgrade,
University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
I. THE HAMILTONIANS

A. 8 band Hamiltonian

The 8-band \(k \cdot p \) Hamiltonian in the basis that consists of states that originate from \(p \) bonding (denoted as \(p_b \)) and \(s \) antibonding (denoted as \(s_a \)) states of the atoms in the bulk:

\[
\{ |s_a \uparrow\rangle, |p_{x,b} \uparrow\rangle, |p_{y,b} \uparrow\rangle, |p_{z,b} \uparrow\rangle, |s_a \downarrow\rangle, |p_{x,b} \downarrow\rangle, |p_{y,b} \downarrow\rangle, |p_{z,b} \downarrow\rangle \}\tag{1}
\]

reads

\[
H = \begin{pmatrix} |\uparrow\rangle & |\downarrow\rangle \\ G & 0 \\ 0 & G \end{pmatrix} + \begin{pmatrix} G_{so} & \Gamma \\ -\Gamma^* & G_{so}^* \end{pmatrix}, \tag{2}
\]

where

\[
G_{so} = \begin{pmatrix} |s_a\rangle & |p_{x,b}\rangle & |p_{y,b}\rangle & |p_{z,b}\rangle \\ E_{s_a} & iP_0k_x & iP_0k_y & iP_0k_z \\ E_{p_{x,b}} & W_1 & W_2 \\ E_{p_{y,b}} & W_3 \\ E_{p_{z,b}} \end{pmatrix}, \tag{3}
\]

\[
G_{so} = \begin{pmatrix} |s_a\rangle & |p_{x,b}\rangle & |p_{y,b}\rangle & |p_{z,b}\rangle \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 \\ -\frac{1}{3}s_{so}(p_b) & -\frac{i}{3}s_{so}(p_b) & 0 \\ -\frac{1}{3}s_{so}(p_b) & 0 \\ -\frac{1}{3}s_{so}(p_b) \end{pmatrix} \tag{4}
\]

and

\[
\Gamma = \begin{pmatrix} |s_a\rangle & |p_{x,b}\rangle & |p_{y,b}\rangle & |p_{z,b}\rangle \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{3}s_{so}(p_b) \\ 0 & 0 & 0 & -\frac{1}{3}s_{so}(p_b) \\ 0 & -\frac{1}{3}s_{so}(p_b) & \frac{i}{3}s_{so}(p_b) & 0 \end{pmatrix}. \tag{5}
\]

The terms in the previous equations are given as:
\[E_{p_x,b} = -(P + Q) - \frac{\sqrt{3}}{2}(R^* + R) \]
\[E_{p_y,b} = -(P + Q) + \frac{\sqrt{3}}{2}(R^* + R) \]
\[E_{p_z,b} = -(P - 2Q) \]
\[E_{s_a} = E(\Gamma_{1c}) + \left(\frac{\hbar^2}{2m_0} \right) \gamma_c k^2 \]
\[E_{g0} = E(\Gamma_{1c}) - E(\Gamma_{5v}) \]
\[W_1 = -i\frac{\sqrt{3}}{2}(R - R^*) \]
\[W_2 = -\sqrt{\frac{3}{2}}(S + S^*) \]
\[W_3 = -i\frac{\sqrt{3}}{2}(S - S^*) \]
\[P = P_k + P_\epsilon \]
\[Q = Q_k + Q_\epsilon \]
\[R = R_k + R_\epsilon \]
\[S = S_k + S_\epsilon \]
\[P_k = \left(\frac{\hbar^2}{2m_0} \right) \gamma_1 (k_x^2 + k_y^2 + k_z^2) - E(\Gamma_{5v}) \]
\[Q_k = \left(\frac{\hbar^2}{2m_0} \right) \gamma_2 (k_x^2 + k_y^2 - 2k_z^2) \]
\[R_k = \left(\frac{\hbar^2}{2m_0} \right) \sqrt{3}[\gamma_2 (k_x^2 - k_y^2) - 2i\gamma_3 k_x k_y] \]
\[S_k = \left(\frac{\hbar^2}{2m_0} \right) \sqrt{6}\gamma_3 (k_x - ik_y)k_z \]
\[P_\epsilon = -a_v(\epsilon_{xx} + \epsilon_{yy} + \epsilon_{zz}) \]
\[Q_\epsilon = -\frac{b_x}{2}(\epsilon_{xx} + \epsilon_{yy} - 2\epsilon_{zz}) \]
\[R_\epsilon = -\frac{\sqrt{3}}{2}b_{ax}(\epsilon_{xx} - \epsilon_{yy}) + id_{ax}\epsilon_{xy} \]
\[S_\epsilon = -\frac{d_{ax}}{\sqrt{2}}(\epsilon_{xx} - i\epsilon_{yz}) \]
\[P_0 = P(s_a, p_{x,b}) = P(s_a, p_{y,b}) = P(s_a, p_{z,b}) \]
\[E_{F0} = 2m_0P^2_0/\hbar^2 \]
\[\gamma_c = \frac{1}{m^*} - \frac{E_{F0}}{\frac{2}{3}E_{g0} + \frac{1}{3}E_{g0} + \Delta_{so}(p_b)} \]
\[\gamma_1 = \gamma_1^L - \frac{E_{F0}}{3E_{g0} + \Delta_{so}(p_b)} \]
\[\gamma_2 = \gamma_2^L - \frac{E_{F0}}{6E_{g0} + 2\Delta_{so}(p_b)} \]
\[\gamma_3 = \gamma_3^L - \frac{E_{F0}}{6E_{g0} + 2\Delta_{so}(p_b)} \]

B. 14 Band Hamiltonian

The 14-band \(\mathbf{k} \cdot \mathbf{p} \) Hamiltonian in the basis

\[
\{ |p_{x,a} \uparrow\rangle, |p_{y,a} \uparrow\rangle, |p_{z,a} \uparrow\rangle, |s_a \uparrow\rangle, |p_{x,b} \uparrow\rangle, |p_{y,b} \uparrow\rangle, |p_{z,b} \uparrow\rangle, \}
\]
where \(p_a \) originate from antibonding atomic \(p \) states in the bulk, is defined by the following submatrices in Eq. (2):

\[
\Gamma = \begin{pmatrix}
|p_{x,a}\rangle & |p_{y,a}\rangle & |p_{z,a}\rangle & |s_a\rangle & |p_{x,b}\rangle & |p_{y,b}\rangle & |p_{z,b}\rangle \\
0 & 0 & \frac{1}{3}\Delta_{so}(p_a) & 0 & 0 & 0 & -\frac{1}{3}\Delta_{cf} \\
0 & 0 & -\frac{2}{3}\Delta_{so}(p_a) & 0 & 0 & 0 & -\frac{1}{3}\Delta_{cf} \\
-\frac{1}{3}\Delta_{so}(p_a) & \frac{1}{3}\Delta_{so}(p_a) & 0 & 0 & \frac{1}{3}\Delta_{cf} & -\frac{4}{3}\Delta_{cf} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{3}\Delta_{cf} & 0 & 0 & 0 & -\frac{1}{3}\Delta_{so}(p_b) \\
0 & 0 & \frac{4}{3}\Delta_{cf} & 0 & 0 & 0 & \frac{1}{3}\Delta_{so}(p_b) \\
\frac{4}{3}\Delta_{cf} & -\frac{4}{3}\Delta_{cf} & 0 & 0 & -\frac{1}{3}\Delta_{so}(p_b) & \frac{4}{3}\Delta_{so}(p_b) & 0 \\
\end{pmatrix}
\]

(9).
In this case, Luttinger parameters are given as:
\[
\gamma_c = \frac{1}{m^*} - \frac{E_{p_a}}{3} \left[\frac{2}{E_{g_0} + E_{g_0} + \Delta_{so}(p_b)} \right] + \frac{E_{p_1}}{3} \left[\frac{1}{E_{g_1} - E_{g_0} + E_{g_1} - E_{g_0} + \Delta_{so}(p_a)} \right],
\]
\[
\gamma_1 = \frac{1}{E_{g_0} + \Delta_{so}(p_b)/3} - \frac{2}{3} E_{g_1 + \Delta_{so}(p_b)}/3 + 2 \Delta_{so}(p_a)/3,
\]
\[
\gamma_2 = \frac{1}{E_{g_0} + \Delta_{so}(p_b)/3} + \frac{1}{6} E_{g_1 + \Delta_{so}(p_b)/3 + 2 \Delta_{so}(p_a)/3},
\]
\[
\gamma_3 = \frac{1}{E_{g_0} + \Delta_{so}(p_a)/3} - \frac{1}{6} E_{g_1 + \Delta_{so}(p_a)/3 + 2 \Delta_{so}(p_a)/3},
\]
where
\[
E_{p_a} = E(\Gamma_{5c}) - E(\Gamma_{5c})
\]
\[
P_1 = P(p_{x,a}, s_a) = P(p_{y,a}, s_a) = P(p_{z,a}, s_a)
\]
\[
P_2 = P(p_{x,a}, p_{y,b}) = P(p_{x,a}, p_{z,b}) = P(p_{y,a}, p_{z,b})
\]
\[
E_{P_1} = 2m_0 P_1^2/h^2
\]
\[
E_{P_2} = 2m_0 P_2^2/h^2
\]

C. 16 band Hamiltonian

The 16-band \(k \cdot p \) Hamiltonian in the basis
\[
\{ |p_{x,a} \uparrow\rangle, |p_{y,a} \uparrow\rangle, |p_{z,a} \uparrow\rangle, |s_a \uparrow\rangle, |p_{x,b} \uparrow\rangle, |p_{y,b} \uparrow\rangle, |p_{z,b} \uparrow\rangle, |s_b \uparrow\rangle, |p_{x,a} \downarrow\rangle, |p_{y,a} \downarrow\rangle, |p_{z,a} \downarrow\rangle, |s_a \downarrow\rangle, |p_{x,b} \downarrow\rangle, |p_{y,b} \downarrow\rangle, |p_{z,b} \downarrow\rangle, |s_b \downarrow\rangle \},
\]
where \(s_b \) originate from bonding atomic \(s \) states in the bulk is determined from the following submatrix in Eq. (2):

\[
G = \begin{pmatrix}
E_{p_a} & 0 & 0 & iP_1k_x & 0 & -iP_2k_z & -iP_3k_y & iP_3k_x \\
0 & E_{p_a} & iP_1k_y & -iP_2k_z & 0 & -iP_3k_x & iP_3ky \\
0 & iP_1k_x & E_{p_a} & -iP_2k_y & -iP_2k_x & 0 & iP_3k_z \\
iP_0k_x & iP_0k_y & iP_0k_z & E_{p_{x,b}} & W_1 & W_2 & iP_4k_x \\
iP_0k_x & iP_0k_y & iP_0k_z & W_3 & iP_4k_y & E_{p_{y,b}} \\
iP_0k_x & iP_0k_y & iP_0k_z & iP_4k_z & E_{p_{z,b}} \\
0 & 0 & 0 & iP_4k_x & E_{s_b}
\end{pmatrix},
\]

5
while G_{so} and Γ are the same as in the 14-band Hamiltonian, except that they have to be extended with additional column and row associated with $|s_b\rangle$, in which all elements are set to zero. In this case, Luttinger parameters are given as:

\[
\begin{align*}
\gamma_c &= \frac{1}{\sqrt{m^*}} - \frac{E_{P2}}{3} \left[\frac{2}{E_{g0}} + \frac{1}{E_{g0} + E_{\alpha_0}(p_0)} \right] + \frac{E_{P1}}{3} \left[\frac{1}{E_{g1} - E_{g0}} + \frac{2}{E_{g1} - E_{g0} + E_{\alpha_0}(p_0)} \right], \\
\gamma_1 &= \frac{\gamma_1^L}{6} - \frac{1}{E_{g0} + E_{\alpha_0}(p_0)/3} + \frac{2}{3} \frac{E_{P2}}{E_{P1}} \left[\frac{1}{E_{g1} + E_{\alpha_0}(p_0)/3 + 2E_{\alpha_0}(p_0)/3} + \frac{1}{6} \frac{E_{P4}}{E_{P1}} \right], \\
\gamma_2 &= \frac{\gamma_2^L}{6} - \frac{1}{6} \frac{E_{P0}}{E_{P1}} \left[\frac{1}{E_{g1} + E_{\alpha_0}(p_0)/3 + 2E_{\alpha_0}(p_0)/3} + \frac{1}{6} \frac{E_{P4}}{E_{P1}} \right], \\
\gamma_3 &= \frac{\gamma_3^L}{6} - \frac{1}{6} \frac{E_{P0}}{E_{P1}} \left[\frac{1}{E_{g1} + E_{\alpha_0}(p_0)/3 + 2E_{\alpha_0}(p_0)/3} + \frac{1}{6} \frac{E_{P4}}{E_{P1}} \right], \\
\end{align*}
\]

and

\[E_{sb} = E(\Gamma_1 v) \]
\[E_{g2} = E(\Gamma_5 v) - E(\Gamma_1 v) \]
\[P_3 = P(p_{x,a}, s_b) = P(p_{y,a}, s_b) = P(p_{z,a}, s_b) \]
\[P_4 = P(p_{x,b}, s_b) = P(p_{y,b}, s_b) = P(p_{z,b}, s_b) \]
\[E_{P3} = 2m_0 P_3^2 / h^2 \]
\[E_{P4} = 2m_0 P_4^2 / h^2 \]

The parameters of binary compound semiconductors GaAs, InAs and AlAs are given in Table I.

II. EVALUATION OF THE $[u_m|V|u_n]_R$ TERM

To evaluate $[u_m|V|u_n]_R$ term, one can represent the Bloch functions and the pseudopotential in the plane wave basis, $G_1 = \frac{2\pi}{a} n_1$, as $u_m(r) = \sum G_0 C_m G_0 e^{iG_0 \cdot r}$, $u_n(r) = \sum G_1 C_n G_1 e^{iG_1 \cdot r}$, and $V(r) = \sum G_2 V G_2 e^{iG_2 \cdot r}$. Consequently

\[[u_m|V|u_n]_R = \sum_{G_0, G_1, G_2} C_{mG_0} C_{nG_1} \langle e^{i(G_1 + G_2 - G_0) \cdot r} V G_2(r) \rangle R. \] (13)

One therefore needs to evaluate terms of the form $\langle e^{i\frac{2\pi}{a} n \cdot f(r)} \rangle R$, where $n = (n_x, n_y, n_z)$ is the plane wave number and $f(r)$ function that changes abruptly across the interface. An arbitrary vector within the unit cell centered at $R = (x_0, y_0, z_0)$ can be expressed in the form

\[r = R + \alpha a_1 + \beta a_2 + \gamma a_3, \] (14)

where $r = (x, y, z)$, $\alpha, \beta, \gamma \in (-1/2, 1/2)$, and a_1, a_2, a_3 are the lattice vectors. The choice of lattice vectors is somewhat arbitrary, therefore we select them in such a way to ease the integration; the
TABLE I. Relevant material parameters of binary compound semiconductors GaAs, InAs, and AlAs.
a_0 are the lattice constants, α and β are the Varshni parameters that describe the temperature dependence of the band gap (a temperature of 4K was assumed in all calculations), E_{g1} are the band gaps, E_{P1} are the energies related to interband matrix elements of the velocity operator P_i as $E_{P1} = 2m_0P_i^2/\hbar^2$, $E_{v,av}$ is the average valence band edge energy at the Γ point, m^*_c is the conduction band effective mass. $\Delta_{so}(p_a)$ is the spin-orbit splitting in the seccond conduction band, $\Delta_{so}(p_b)$ is the spin-orbit splitting in the valence band and Δ_{cf} the crystal field splitting. c_{ij} are the elastic constants. a_c, a_v, b_{ax}, d_{ax} are the deformation potentials, e_{14} is the piezoelectric constant. γ_1^L, γ_2^L, γ_3^L are the Luttinger parameters in the 6-band model. ϵ_r is the static dielectric constant.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>GaAs</th>
<th>InAs</th>
<th>AlAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0 [Å]</td>
<td>5.6503</td>
<td>6.0553</td>
<td>5.661</td>
</tr>
<tr>
<td>α [meV/K]</td>
<td>0.5405</td>
<td>0.276</td>
<td>0.885</td>
</tr>
<tr>
<td>β [K]</td>
<td>204</td>
<td>93</td>
<td>530</td>
</tr>
<tr>
<td>$E_{g0} = E(\Gamma_{1c}) - E(\Gamma_{5v})$ [eV]</td>
<td>1.518</td>
<td>0.405</td>
<td>3.099</td>
</tr>
<tr>
<td>$E_{g1} = E(\Gamma_{5c}) - E(\Gamma_{5v})$ [eV]</td>
<td>4.488</td>
<td>4.38</td>
<td>4.54</td>
</tr>
<tr>
<td>$E_{g2} = E(\Gamma_{5v}) - E(\Gamma_{1v})$ [eV]</td>
<td>12.50</td>
<td>12.64</td>
<td>11.95</td>
</tr>
<tr>
<td>E_{P0} [eV]</td>
<td>25.7</td>
<td>21.846</td>
<td>21.1</td>
</tr>
<tr>
<td>E_{P1} [eV]</td>
<td>0.19</td>
<td>0.03</td>
<td>0.16</td>
</tr>
<tr>
<td>E_{P2} [eV]</td>
<td>14.79</td>
<td>19.0</td>
<td>16.8</td>
</tr>
<tr>
<td>E_{P3} [eV]</td>
<td>2.3</td>
<td>0.6</td>
<td>0.1</td>
</tr>
<tr>
<td>E_{P4} [eV]</td>
<td>0.2</td>
<td>2.55</td>
<td>0.0 (n/a)</td>
</tr>
<tr>
<td>$E_{v,av}$ [eV]</td>
<td>-6.920</td>
<td>-6.747</td>
<td>-7.49</td>
</tr>
<tr>
<td>m^*_c</td>
<td>0.0667</td>
<td>0.02226</td>
<td>0.15</td>
</tr>
<tr>
<td>$\Delta_{so}(p_a)$ [eV]</td>
<td>0.340</td>
<td>0.380</td>
<td>0.280</td>
</tr>
<tr>
<td>$\Delta_{so}(p_b)$ [eV]</td>
<td>0.170</td>
<td>0.190</td>
<td>0.150</td>
</tr>
<tr>
<td>Δ_{cf} [eV]</td>
<td>0.085</td>
<td>0.085</td>
<td>0.085</td>
</tr>
<tr>
<td>c_{11} [GPa]</td>
<td>118.8</td>
<td>83.3</td>
<td>125.0</td>
</tr>
<tr>
<td>c_{12} [GPa]</td>
<td>53.8</td>
<td>45.3</td>
<td>53.4</td>
</tr>
<tr>
<td>c_{44} [GPa]</td>
<td>59.4</td>
<td>39.6</td>
<td>54.2</td>
</tr>
<tr>
<td>a_c [eV]</td>
<td>-8.013</td>
<td>-5.08</td>
<td>-5.64</td>
</tr>
<tr>
<td>a_v [eV]</td>
<td>0.220</td>
<td>1.00</td>
<td>2.47</td>
</tr>
<tr>
<td>b_{ax} [eV]</td>
<td>-1.824</td>
<td>-1.800</td>
<td>-2.3</td>
</tr>
<tr>
<td>d_{ax} [eV]</td>
<td>-5.062</td>
<td>-3.600</td>
<td>-3.4</td>
</tr>
<tr>
<td>e_{14} [C m$^{-2}$]</td>
<td>0.160</td>
<td>0.045</td>
<td>0.225</td>
</tr>
<tr>
<td>γ_1^L, γ_2^L, γ_3^L</td>
<td>7.10, 2.02, 2.91</td>
<td>19.67, 8.40, 9.30</td>
<td>3.76, 0.82, 1.42</td>
</tr>
<tr>
<td>ϵ_r</td>
<td>13.18</td>
<td>14.6</td>
<td>10.1</td>
</tr>
</tbody>
</table>

lattice vectors a_1, a_2 are chosen to lie in the plane of the interface in all cases, i.e., the interface is always perpendicular to the z–direction of the rotated reference frame and located in the $z = 0$ plane.

To maintain this notation, we introduce the rotation matrix:
\[
\begin{pmatrix}
u' \\
u'
\end{pmatrix} = \begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix} \begin{pmatrix}
u \\
u
\end{pmatrix}.
\] (15)

• [001] interface: for this interface \(a_1 = (a/2, a/2, 0), a_2 = (a/2, -a/2, 0), a_3 = (0, a/2, a/2), u = x, v = y, \theta = 0, \) and \(z' = z\). After replacing those values in Eqs. (14) and (15): \(x = x_0 + (\alpha + \beta)(a/2), y = y_0 + (\alpha - \beta + \gamma)(a/2), z = z_0 + \gamma(a/2)\), and after integration over \(\alpha, \beta\) and \(\gamma\) one gets:

\[
\langle e^{i\frac{2\pi}{a} n \cdot r} f(r) \rangle_R = e^{i\frac{2\pi}{a} n \cdot R} J(n_x + n_y) J(n_x - n_y) \left[f_A J(n_y + n_z) + \Delta f I(-2z_0/a, n_y + n_z) \right].
\] (16)

• [101] interface: the lattice vectors are chosen as \(a_1 = (0, a, 0), a_2 = (-a/2, 0, a/2), a_3 = (0, a/2, a/2),\) and \(u = x, v = z, \theta = \pi/4, \) and \(y' = y\). After replacing those values in Eqs. (14) and (15): \(x = x_0 + (2\alpha + \gamma)(a/2), y = y_0 + (2\alpha + \gamma)(a/2), z = z_0 + (\beta + \gamma)(a/2),\) and after integration over \(\alpha, \beta\) and \(\gamma\) one gets:

\[
\langle e^{i\frac{2\pi}{a} n \cdot r} f(r) \rangle_R = E \left(\frac{x'_0 + z'_0}{\sqrt{2}}, \frac{-x'_0 + z'_0}{\sqrt{2}} \right) J(2n_y) J(n_x - n_z) \left[f_A J(n_y + n_z) + \Delta f I(-2\sqrt{2}z_0/a, n_y + n_z) \right].
\] (17)

• [011] interface: the lattice vectors are chosen as \(a_1 = (0, a, 0), a_2 = (0, -a/2, a/2), a_3 = (a/2, a/2, 0),\) and \(u = y, v = z, \theta = \pi/4, \) and \(x' = x\). After replacing those values in Eqs. (14) and (15): \(x = x_0 + (2\alpha + \gamma)(a/2), y = y_0 - (\beta - \gamma)(a/2), z = z_0 + \beta(a/2),\) and after integration over \(\alpha, \beta\) and \(\gamma\) one gets:

\[
\langle e^{i\frac{2\pi}{a} n \cdot r} f(r) \rangle_R = E \left(\frac{x'_0, \frac{y'_0 + z'_0}{\sqrt{2}}, \frac{-y'_0 + z'_0}{\sqrt{2}}}{\sqrt{2}} \right) J(2n_x) J(n_z - n_y) \left[f_A J(n_x + n_y) + \Delta f I(-2\sqrt{2}z_0/a, n_x + n_y) \right].
\] (18)

• [\bar{0}11] interface: the lattice vectors are chosen as \(a_1 = (0, a, 0), a_2 = (a/2, 0, a/2), a_3 = (0, a/2, a/2),\) and \(u = x, v = z, \theta = -\pi/4, \) and \(y' = y\). The expressions for \(\langle e^{i\frac{2\pi}{a} n \cdot r} f(r) \rangle_R\) can be obtained from Eq. (17), by replacing \(x_0 \to -x_0\) and \(n_x \to -n_x\).

• [\bar{0}01] interface: the lattice vectors are chosen as \(a_1 = (a, 0, 0), a_2 = (0, a/2, a/2), a_3 = (a/2, -a/2, 0),\) \(u = y, v = z, \theta = -\pi/4, \) and \(x' = x\). The expressions for \(\langle e^{i\frac{2\pi}{a} n \cdot r} f(r) \rangle_R\) can be obtained from Eq. (18), by replacing \(y_0 \to -y_0\) and \(n_y \to -n_y\).

In the above equations \(\Delta f = f_B - f_A, f_A (f_B)\) is the value of \(f(z)\) at each side of the interface, i.e., for \(z < 0 \ (z > 0); I(\tau, n) = \int_{-\tau}^{\tau} dt e^{i\omega t}, J(n) = I(-1/2, n),\) and \(E(d_1, d_2, d_3) = e^{i\frac{\pi}{a} (n_x d_1 + n_y d_2 + n_z d_3)}\).
III. PROOFS OF SYMMETRY OF THE HAMILTONIANS

Here, we would like to identify the symmetries that each of the Hamiltonians considered in this work satisfy. To simplify the derivations, we will consider only the direct terms (no remote, Lowdin-type terms). The conclusions remain unaffected by the inclusion of Lowdin terms.

Most of the Hamiltonians considered contain 4×4 blocks, that in the basis

$$\{u_1, \ldots, u_4\} = \{|s_a\rangle, |p_{x,b}\rangle, |p_{y,b}\rangle, |p_{z,b}\rangle\}$$

(19)

read

$$H_4 = \begin{pmatrix}
E_c(r) & ik_x P_0 & ik_y P_0 & ik_z P_0 \\
E_v(r) & 0 & 0 & 0 \\
E_v(r) & 0 & 0 & 0 \\
E_v(r) & 0 & 0 & 0
\end{pmatrix}$$

(20)

where $E_c(r) = E_{s_a}(r)$ and $E_c(r) = E_{p_{y,b}}(r)$. We will show that this Hamiltonian applied to square-based pyramidal QDs has C_{4v} symmetry. To do this, it is sufficient to show that the Hamiltonian commutes with the generators of the group - the rotation $R_{\pi/2}$ and the reflection σ_v, where R_φ is the rotation about the z-axis by an angle φ and σ_v is the reflection with respect to the plane $x = y$.

To represent the actions of the rotation operators on the envelope function spinors, it is more convenient to work in the basis of eigenstates of the z-component of the orbital quasi-angular momentum

$$\{u_1, \ldots, u_4\} = \{|s_a\rangle, \frac{1}{\sqrt{2}} (|p_{x,b}\rangle + i|p_{y,b}\rangle), \frac{1}{\sqrt{2}} (|p_{x,b}\rangle - i|p_{y,b}\rangle), |p_{z,b}\rangle\},$$

(21)

where the same Hamiltonian reads

$$H_4 = \begin{pmatrix}
E_c(r) & ik_x P_0 & ik_y P_0 & ik_z P_0 \\
E_v(r) & 0 & 0 & 0 \\
E_v(r) & 0 & 0 & 0 \\
E_v(r) & 0 & 0 & 0
\end{pmatrix}$$

(22)

where $k_\pm = \frac{1}{\sqrt{2}} (k_x \pm ik_y)$. The action of the representation of the rotation R_φ, where $\varphi = n\pi/2$ on
the spinors is given as

\[
D(R_\varphi) \begin{pmatrix}
\psi_1(r) \\
\psi_2(r) \\
\psi_3(r) \\
\psi_4(r)
\end{pmatrix} = \begin{pmatrix}
\psi_1(R_\varphi r) \\
e^{-i\varphi} \psi_2(R_\varphi r) \\
e^{i\varphi} \psi_3(R_\varphi r) \\
\psi_4(R_\varphi r)
\end{pmatrix}.
\] (23)

To prove that \(D(R_\varphi)\) commutes with \(H_4\) it is sufficient to show that operators \(H_4 D(R_\varphi)\) and \(D(R_\varphi) H_4\) give the same result when acting on the basis states \((e^{i\mathbf{k} \cdot \mathbf{r}}, 0, 0, 0)^T, (0, e^{i\mathbf{k} \cdot \mathbf{r}}, 0, 0)^T, (0, 0, e^{i\mathbf{k} \cdot \mathbf{r}}, 0)^T, (0, 0, 0, e^{i\mathbf{k} \cdot \mathbf{r}})^T\) that span the Hilbert space of spinors. By explicitly performing the calculation one gets on the one hand

\[
H_4 D(R_\varphi) \begin{pmatrix}
e^{i\mathbf{k} \cdot \mathbf{r}} \\
0 \\
0 \\
0
\end{pmatrix} = H_4 \begin{pmatrix}
e^{i(R_\varphi^{-1} \mathbf{k}) \cdot \mathbf{r}} \\
0 \\
0 \\
0
\end{pmatrix} = \begin{pmatrix}
E_c(r) \\
-iP_0(R_\varphi^{-1} \mathbf{k})_- \\
-iP_0(R_\varphi^{-1} \mathbf{k})_+ \\
-iP_0(R_\varphi^{-1} \mathbf{k})_z
\end{pmatrix} e^{i(R_\varphi^{-1} \mathbf{k}) \cdot \mathbf{r}}
\] (24)

and on the other hand

\[
D(R_\varphi) H_4 \begin{pmatrix}
e^{i\mathbf{k} \cdot \mathbf{r}} \\
0 \\
0 \\
0
\end{pmatrix} = D(R_\varphi) \begin{pmatrix}
E_c(r) \\
-iP_0k_- \\
-iP_0k_+ \\
-iP_0k_z
\end{pmatrix} e^{i\mathbf{k} \cdot \mathbf{r}} = \begin{pmatrix}
E_c(R_\varphi r) \\
e^{-i\varphi}(-i)P_0k_- \\
e^{i\varphi}(-i)P_0k_+ \\
-iP_0k_z
\end{pmatrix} e^{i(R_\varphi^{-1} \mathbf{k}) \cdot \mathbf{r}}.
\] (25)

Due to the symmetry of the dot shape it follows that \(E_c(r) = E_c(R_\varphi r)\). Furthermore, one can straightforwardly show that \((R_\varphi^{-1} \mathbf{k})_- = e^{-i\varphi} \mathbf{k}_-\) and \((R_\varphi^{-1} \mathbf{k})_+ = e^{i\varphi} \mathbf{k}_+\). From these identities, it follows that

\[
[D(R_\varphi) H_4 - H_4 D(R_\varphi)] \begin{pmatrix}
e^{i\mathbf{k} \cdot \mathbf{r}} \\
0 \\
0 \\
0
\end{pmatrix} = 0.
\] (26)

Using the same procedure, one can also show that \(D(R_\varphi) H_4\) and \(H_4 D(R_\varphi)\) give the same result when acting on the other basis vectors \((0, e^{i\mathbf{k} \cdot \mathbf{r}}, 0, 0)^T, (0, 0, e^{i\mathbf{k} \cdot \mathbf{r}}, 0)^T, (0, 0, 0, e^{i\mathbf{k} \cdot \mathbf{r}})^T\), which completes the proof that \(D(R_\varphi) H_4\) and \(H_4 D(R_\varphi)\) commute.

Next, we proceed with the proof that \(H_4\) commutes with the operator \(D(\sigma_v)\). For this proof, it is
convenient to work in the basis

\[\{u_1, \ldots, u_4\} = \{|s_a\rangle, \frac{1}{\sqrt{2}} (|p_{x,b}\rangle + |p_{y,b}\rangle), \frac{1}{\sqrt{2}} (|p_{x,b}\rangle - |p_{y,b}\rangle), |p_{z,b}\rangle \}, \quad (27) \]

The Hamiltonian in this basis reads

\[
H_4 = \begin{pmatrix}
E_c(r) & i\frac{1}{\sqrt{2}}(k_x + k_y)P_0 & i\frac{1}{\sqrt{2}}(k_x - k_y)P_0 & i k_z P_0 \\
E_v(r) & 0 & 0 & 0 \\
E_v(r) & 0 & 0 & 0 \\
E_v(r) & 0 & 0 & 0
\end{pmatrix}.
\]

(28)

In this basis, the action of the operator \(D(\sigma_v) \) on the spinor is given as

\[
D(\sigma_v) \begin{pmatrix}
\psi_1(x, y, z) \\
\psi_2(x, y, z) \\
\psi_3(x, y, z) \\
\psi_4(x, y, z)
\end{pmatrix} = \begin{pmatrix}
\psi_1(y, x, z) \\
\psi_2(y, x, z) \\
-\psi_3(y, x, z) \\
\psi_4(y, x, z)
\end{pmatrix}.
\]

(29)

It follows

\[
H_4 D(\sigma_v) \begin{pmatrix}
e^{ikr} \\
0 \\
0 \\
0
\end{pmatrix} = H_4 \begin{pmatrix}
e^{i(k_x y + k_y x + k_z z)} \\
0 \\
0 \\
0
\end{pmatrix} = \begin{pmatrix}
E_c(r) \\
-i P_0 \frac{1}{\sqrt{2}}(k_x + k_y) \\
-i P_0 \frac{1}{\sqrt{2}}(k_y - k_x) \\
-i P_0 k_z
\end{pmatrix} e^{i(k_x y + k_y x + k_z z)}.
\]

(30)

On the other hand

\[
D(\sigma_v)H_4 \begin{pmatrix}
e^{ikr} \\
0 \\
0 \\
0
\end{pmatrix} = D(\sigma_v) \begin{pmatrix}
E_c(r) \\
-i P_0 \frac{1}{\sqrt{2}}(k_x + k_y) \\
-i P_0 \frac{1}{\sqrt{2}}(k_y - k_x) \\
-i P_0 k_z
\end{pmatrix} e^{ikr} = \begin{pmatrix}
E_c(y, x, z) \\
-i P_0 \frac{1}{\sqrt{2}}(k_x + k_y) \\
-i P_0 \frac{1}{\sqrt{2}}(k_y - k_x) \cdot (-1) \\
-i P_0 k_z
\end{pmatrix} e^{i(k_x y + k_y x + k_z z)}
\]

(31)

and consequently

\[
[D(\sigma_v)H_4 - H_4D(\sigma_v)] \begin{pmatrix}
e^{ikr} \\
0 \\
0 \\
0
\end{pmatrix} = 0.
\]

(32)
One can straightforwardly check this equality for other basis vectors $(0, e^{ik \cdot r}, 0)^T$, $(0, 0, e^{ik \cdot r})^T$, $(0, 0, 0, e^{ik \cdot r})^T$.

Next, we consider the direct terms of the 7-band Hamiltonian

\[
H_7 = \begin{pmatrix}
|p_{x,a}\rangle & |p_{y,a}\rangle & |p_{z,a}\rangle & |s_a\rangle & |p_{x,b}\rangle & |p_{y,b}\rangle & |p_{z,b}\rangle \\
E_{c_2}(r) & 0 & 0 & iP_1 & 0 & -iP_2k_z & -iP_2k_y \\
E_{c_2}(r) & 0 & iP_1k_y & -iP_2k_z & 0 & -iP_2k_x \\
E_{c_2}(r) & iP_1k_z & -iP_2k_y & -iP_2k_x & 0 \\
E_{c}(r) & iP_0k_x & iP_0k_y & iP_0k_z & 0 \\
E_v(r) & 0 & 0 \\
E_v(r) & 0 \\
E_v(r) & 0
\end{pmatrix}.
\]

(33)

where $E_{c_2}(r) = E_{p_a}(r)$. The 4×4 block that contains the elements P_1 is of the same form as H_4 and therefore commutes with the operators that represent the elements of the C_{4v} group. The same is the case for the 4×4 block that contains the P_0 elements. One needs therefore to understand the symmetry properties of the remaining 6×6 block that contains the P_2 elements. This block reads:

\[
H_6 = \begin{pmatrix}
|p_{x,a}\rangle & |p_{y,a}\rangle & |p_{z,a}\rangle & |p_{x,b}\rangle & |p_{y,b}\rangle & |p_{z,b}\rangle \\
0 & 0 & 0 & -iP_2k_z & -iP_2k_y \\
0 & 0 & -iP_2k_z & 0 & -iP_2k_x \\
0 & -iP_2k_y & -iP_2k_x & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 \\
0 & 0
\end{pmatrix}.
\]

(34)

The most convenient basis to represent the action of the rotation operators is the basis

\[
\{u_1, \ldots, u_6\} = \left\{ \frac{1}{\sqrt{2}} (|p_{x,a}\rangle + i|p_{y,a}\rangle), \frac{1}{\sqrt{2}} (|p_{x,a}\rangle - i|p_{y,a}\rangle), |p_{z,a}\rangle, \right. \\
\left. \frac{1}{\sqrt{2}} (|p_{x,b}\rangle + i|p_{y,b}\rangle), \frac{1}{\sqrt{2}} (|p_{x,b}\rangle - i|p_{y,b}\rangle), |p_{z,b}\rangle \right\}.
\]

(35)
In this basis, the H_6 block reads

\[
H_6 = \begin{pmatrix}
0 & 0 & 0 & -P_2k_z & -P_2k_+ \\
0 & 0 & P_2k_z & 0 & P_2k_- \\
0 & P_2k_- & -P_2k_+ & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}.
\]

The action of the rotation operator on the spinor is given as

\[
D(R_\varphi) \begin{pmatrix}
\psi_1(r) \\
\psi_2(r) \\
\psi_3(r) \\
\psi_4(r) \\
\psi_5(r) \\
\psi_6(r)
\end{pmatrix} = \begin{pmatrix}
e^{-i\varphi}\psi_1(R_\varphi r) \\
e^{i\varphi}\psi_2(R_\varphi r) \\
e^{i\varphi}\psi_3(R_\varphi r) \\
e^{-i\varphi}\psi_4(R_\varphi r) \\
e^{i\varphi}\psi_5(R_\varphi r) \\
e^{i\varphi}\psi_6(R_\varphi r)
\end{pmatrix}.
\]

One then gets on the one hand

\[
H_6 D(R_\varphi) \begin{pmatrix}
e^{ikr} \\
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix} = H_6 \begin{pmatrix}
e^{-i\varphi}e^{i(R_\varphi^{-1}k)r} \\
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
e^{i(R_\varphi^{-1}k)r}
\end{pmatrix} e^{i(R_\varphi^{-1}k)r}
\]

and on the other hand

\[
D(R_\varphi) H_6 \begin{pmatrix}
e^{ikr} \\
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix} = D(R_\varphi) \begin{pmatrix}
e^{ikr} \\
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix} e^{i(kr)} = \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
e^{i(R_\varphi^{-1}k)r}
\end{pmatrix} e^{i(R_\varphi^{-1}k)r}.
\]

13
It then follows that

\[
\begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix}
\begin{pmatrix}
e^{ik\cdot r} \\
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix} = 0
\] (40)

only if \(e^{i\varphi} = e^{-i\varphi}\), which implies \(\varphi = n\pi\). One can further straightforwardly extend this result to other basis vectors.

The most convenient basis to represent the action of the \(D(\sigma_v)\) operator is the basis

\[
\{u_1, \ldots, u_6\} = \left\{ \frac{1}{\sqrt{2}} (|p_{x,a}\rangle + |p_{y,a}\rangle), \frac{1}{\sqrt{2}} (|p_{x,a}\rangle - |p_{y,a}\rangle), |p_{x,a}\rangle, \frac{1}{\sqrt{2}} (|p_{x,b}\rangle + |p_{y,b}\rangle), \frac{1}{\sqrt{2}} (|p_{x,b}\rangle - |p_{y,b}\rangle), |p_{z,b}\rangle \right\}.
\] (41)

In this basis, the \(H_6\) block reads

\[
H_6 = \begin{pmatrix}
0 & 0 & 0 & -iP_2k_z & 0 & \frac{-i}{\sqrt{2}}P_2(k_x + k_y) \\
0 & 0 & 0 & iP_2k_z & \frac{i}{\sqrt{2}}P_2(k_y - k_x) & \frac{-i}{\sqrt{2}}P_2(k_x + k_y) \\
0 & \frac{1}{\sqrt{2}}P_2(k_x + k_y) & \frac{1}{\sqrt{2}}P_2(k_y - k_x) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\] (42)

In this basis, the action of the operator \(D(\sigma_v)\) on the spinor is given as

\[
D(\sigma_v) \begin{pmatrix}
\psi_1(x, y, z) \\
\psi_2(x, y, z) \\
\psi_3(x, y, z) \\
\psi_4(x, y, z) \\
\psi_5(x, y, z) \\
\psi_6(x, y, z)
\end{pmatrix} = \begin{pmatrix}
\psi_1(y, x, z) \\
-\psi_2(y, x, z) \\
\psi_3(y, x, z) \\
\psi_4(y, x, z) \\
-\psi_5(y, x, z) \\
\psi_6(y, x, z)
\end{pmatrix}.
\] (43)
It follows

\[
H_6 D(\sigma_v) = H_6 \begin{pmatrix} e^{i\mathbf{k} \cdot \mathbf{r}} & e^{i(k_x y + k_y x + k_z z)} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ iP_2 k_x & 0 \\ \frac{1}{\sqrt{2}} iP_2 (k_x + k_y) \end{pmatrix} e^{i(k_x y + k_y x + k_z z)}.
\] (44)

On the other hand

\[
D(\sigma_v) H_6 = D(\sigma_v) \begin{pmatrix} e^{i\mathbf{k} \cdot \mathbf{r}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & iP_2 k_z & 0 \\ \frac{1}{\sqrt{2}} iP_2 (k_x + k_y) & 0 & 0 & \end{pmatrix} e^{i\mathbf{k} \cdot \mathbf{r}} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ iP_2 k_z & 0 & 0 & \frac{1}{\sqrt{2}} iP_2 (k_x + k_y) \end{pmatrix} e^{i(k_x y + k_y x + k_z z)}
\] (45)

and consequently

\[
[D(\sigma_v) H_6 - H_6 D(\sigma_v)] \begin{pmatrix} e^{i\mathbf{k} \cdot \mathbf{r}} \\ 0 \\ 0 \\ 0 \end{pmatrix} = 0.
\] (46)

One can further show that this result is valid also for other basis vectors.

We further analyze the influence of the [001] interface term on the symmetry of the system. This Hamiltonian in the basis (19) reads:

\[
H_{[001]} = \begin{pmatrix} 0 & 0 & 0 & -a \\ 0 & b & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \delta(\theta(z)).
\] (47)
In the basis (21), the same Hamiltonian reads

\[H_{[001]} = \begin{pmatrix} 0 & 0 & 0 & -a \\ 0 & -ib & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \delta \theta(z). \] (48)

The action of the rotation operator on the spinor is given by (23). One then obtains:

\[H_{[001]} D(R_\varphi) \begin{pmatrix} e^{i k \cdot r} \\ 0 \\ 0 \end{pmatrix} = H_{[001]} \begin{pmatrix} 0 \\ e^{-i \varphi e^{i(R^{-1}_\varphi \cdot k) \cdot r}} \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ ib e^{-i \varphi} \end{pmatrix} e^{i(R^{-1}_\varphi \cdot k) \cdot r} \delta \theta(z) \] (49)

and on the other hand

\[D(R_\varphi) H_{[001]} \begin{pmatrix} e^{i k \cdot r} \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ ib \end{pmatrix} e^{i k \cdot \delta \theta(z)} = \begin{pmatrix} 0 \\ 0 \\ ib e^{i \varphi} \end{pmatrix} e^{i(R^{-1}_\varphi \cdot k) \cdot r} \delta \theta(z). \] (50)

This implies that \(D(R_\varphi) \) and \(H_{[001]} \) commute only if \(\varphi = n \pi \).

Next, we proceed with the proof that \(H_{[001]} \) commutes with the operator \(D(\sigma_v) \). For this proof, it is convenient to work in the basis (27). In this basis \(H_{[001]} \) reads

\[H_{[001]} = \begin{pmatrix} 0 & 0 & 0 & -a \\ b & 0 & 0 & 0 \\ -b & 0 & 0 & 0 \end{pmatrix} \delta \theta(z). \] (51)

In this basis, the action of the operator \(D(\sigma_v) \) on the spinor is given by (29). It follows

\[H_{[001]} D(\sigma_v) \begin{pmatrix} e^{i k \cdot r} \\ 0 \\ 0 \end{pmatrix} = H_{[001]} \begin{pmatrix} 0 \\ e^{i(k_x y + k_y x + k_z z)} \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ b \end{pmatrix} e^{i(k_x y + k_y x + k_z z)} \delta \theta(z). \] (52)
On the other hand

\[
D(\sigma_v)H_{[001]} \begin{pmatrix} 0 \\ 0 \\ e^{i\mathbf{k} \cdot \mathbf{r}} \end{pmatrix} = D(\sigma_v) \begin{pmatrix} 0 \\ 0 \\ -b \end{pmatrix} \delta\theta(z) e^{i\mathbf{k} \cdot \mathbf{r}} = \begin{pmatrix} 0 \\ 0 \\ e^{i(k_{xy}y + k_{xz}z + bz)} \end{pmatrix} \delta\theta(z). \quad (53)
\]

The contribution of the Hamiltonian from the [101], [011], [010] and [001] interfaces in the basis (19) is equal to

\[
H_{if} = \begin{pmatrix} 0 & -c & 0 & -c \\ 0 & d & 0 & 0 \\ 0 & d & 0 & -c \\ 0 & -d & 0 & 0 \end{pmatrix} \delta\theta(\mathbf{r} \cdot \mathbf{n}_1 - l) + \begin{pmatrix} 0 & 0 & -c & -c \\ 0 & 0 & d & d \\ 0 & 0 & d & -d \\ 0 & 0 & 0 & 0 \end{pmatrix} \delta\theta(\mathbf{r} \cdot \mathbf{n}_2 - l) +
\]

\[
\begin{pmatrix} 0 & c & 0 & -c \\ 0 & 0 & c & -c \\ 0 & 0 & c & -c \\ 0 & 0 & 0 & 0 \end{pmatrix} \delta\theta(\mathbf{r} \cdot \mathbf{n}_3 - l) + \begin{pmatrix} 0 & 0 & -c & -c \\ 0 & 0 & d & d \\ 0 & 0 & d & -d \\ 0 & 0 & 0 & 0 \end{pmatrix} \delta\theta(\mathbf{r} \cdot \mathbf{n}_4 - l). \quad (54)
\]

In the basis (21) this Hamiltonian reads

\[
H_{if} = \begin{pmatrix} 0 & -\frac{1}{\sqrt{2}}c & -\frac{1}{\sqrt{2}}c & -c \\ 0 & -id & -\frac{i}{\sqrt{2}}d & 0 \\ 0 & \frac{i}{\sqrt{2}}d & -\frac{i}{\sqrt{2}}d & 0 \\ 0 & -id & \frac{i}{\sqrt{2}}d & 0 \end{pmatrix} \delta\theta(\mathbf{r} \cdot \mathbf{n}_1 - l) + \begin{pmatrix} 0 & -\frac{i}{\sqrt{2}}c & \frac{i}{\sqrt{2}}c & -c \\ 0 & 0 & \frac{i}{\sqrt{2}}d & 0 \\ 0 & \frac{i}{\sqrt{2}}d & \frac{i}{\sqrt{2}}d & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \delta\theta(\mathbf{r} \cdot \mathbf{n}_2 - l) +
\]

\[
\begin{pmatrix} 0 & \frac{1}{\sqrt{2}}c & -\frac{1}{\sqrt{2}}c & -c \\ 0 & -id & \frac{i}{\sqrt{2}}d & 0 \\ 0 & \frac{i}{\sqrt{2}}d & \frac{i}{\sqrt{2}}d & 0 \\ 0 & -id & -\frac{i}{\sqrt{2}}d & 0 \end{pmatrix} \delta\theta(\mathbf{r} \cdot \mathbf{n}_3 - l) + \begin{pmatrix} 0 & \frac{i}{\sqrt{2}}c & -\frac{i}{\sqrt{2}}c & -c \\ 0 & 0 & \frac{i}{\sqrt{2}}d & 0 \\ 0 & \frac{i}{\sqrt{2}}d & \frac{i}{\sqrt{2}}d & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \delta\theta(\mathbf{r} \cdot \mathbf{n}_4 - l). \quad (55)
\]

The action of the rotation operator on the spinor is given by (23). One then obtains:

\[
H_{if}D(R_{\varphi}) \begin{pmatrix} e^{i\mathbf{k} \cdot \mathbf{r}} \\ 0 \\ 0 \end{pmatrix} = H_{if} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} =
\]

17
On the other hand, and consequently

\[
D(R_\phi)H_{if} \begin{pmatrix} e^{ik\cdot r} \\ 0 \\ 0 \\ 0 \end{pmatrix} = D(R_\phi) \begin{pmatrix} 0 \\ -\frac{c}{\sqrt{2}} \\ -\frac{c}{\sqrt{2}} \\ -c \end{pmatrix} \delta \theta(\mathbf{r} \cdot \mathbf{n}_1 - l) + \begin{pmatrix} 0 \\ \frac{i c}{\sqrt{2}} \\ -\frac{i c}{\sqrt{2}} \\ -c \end{pmatrix} \delta \theta(\mathbf{r} \cdot \mathbf{n}_2 - l) + \begin{pmatrix} 0 \\ \frac{c}{\sqrt{2}} \\ \frac{c}{\sqrt{2}} \\ -c \end{pmatrix} \delta \theta(\mathbf{r} \cdot \mathbf{n}_3 - l) + \begin{pmatrix} 0 \\ \frac{i c}{\sqrt{2}} \\ \frac{i c}{\sqrt{2}} \\ -c \end{pmatrix} \delta \theta(\mathbf{r} \cdot \mathbf{n}_4 - l) \end{pmatrix} e^{i(R_\phi^{-1}\mathbf{k}) \cdot \mathbf{r}}. \tag{56}
\]

and consequently

\[
D(R_\phi)H_{if} \begin{pmatrix} e^{ik\cdot r} \\ 0 \\ 0 \\ 0 \end{pmatrix} = D(R_\phi) \begin{pmatrix} 0 \\ -e^{-i\phi} \frac{e}{\sqrt{2}} \\ -e^{i\phi} \frac{e}{\sqrt{2}} \\ -c \end{pmatrix} \delta \theta \left[\mathbf{r} \cdot \left(R_\phi^{-1}\mathbf{n}_1 \right) - l \right] + \begin{pmatrix} 0 \\ ie^{-i\phi} \frac{e}{\sqrt{2}} \\ -ie^{i\phi} \frac{e}{\sqrt{2}} \\ -c \end{pmatrix} \delta \theta \left[\mathbf{r} \cdot \left(R_\phi^{-1}\mathbf{n}_2 \right) - l \right] + \begin{pmatrix} 0 \\ e^{-i\phi} \frac{e}{\sqrt{2}} \\ e^{i\phi} \frac{e}{\sqrt{2}} \\ -c \end{pmatrix} \delta \theta \left[\mathbf{r} \cdot \left(R_\phi^{-1}\mathbf{n}_3 \right) - l \right] + \begin{pmatrix} 0 \\ ie^{-i\phi} \frac{e}{\sqrt{2}} \\ ie^{i\phi} \frac{e}{\sqrt{2}} \\ -c \end{pmatrix} \delta \theta \left[\mathbf{r} \cdot \left(R_\phi^{-1}\mathbf{n}_4 \right) - l \right] \end{pmatrix} e^{i(R_\phi^{-1}\mathbf{k}) \cdot \mathbf{r}}. \tag{57}
\]

By comparison of the last two equations, one shows that the operators commute when \(\phi = n\pi \).

Finally, we would like to show that the Hamiltonian \(H_{if} \) commutes with the \(D(\sigma_v) \) operators as
well. We represent the Hamiltonian in the basis (27) where it reads

\[
H_{\text{id}} = \begin{pmatrix}
0 & -\frac{1}{\sqrt{2}}c & -\frac{1}{\sqrt{2}}c & -c \\
d & 0 & \frac{d}{\sqrt{2}} & 0 \\
-d & \frac{d}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \delta \theta(r \cdot n_1 - l) + \begin{pmatrix}
0 & -\frac{c}{\sqrt{2}} & \frac{c}{\sqrt{2}} & -c \\
d & 0 & \frac{1}{\sqrt{2}d} & 0 \\
-d & \frac{1}{\sqrt{2}d} & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \delta \theta(r \cdot n_2 - l) +
\begin{pmatrix}
0 & \frac{1}{\sqrt{2}}c & \frac{1}{\sqrt{2}}c & -c \\
d & 0 & -\frac{d}{\sqrt{2}} & 0 \\
-d & \frac{d}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \delta \theta(r \cdot n_3 - l) + \begin{pmatrix}
0 & \frac{1}{\sqrt{2}}c & -\frac{1}{\sqrt{2}}c & -c \\
d & 0 & -\frac{d}{\sqrt{2}} & 0 \\
-d & -\frac{d}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \delta \theta(r \cdot n_4 - l).
\]

(59)

The action of the \(D(\sigma_v) \) operator on the spinor is given by (29). It follows then

\[
H_{\text{id}} D(\sigma_v) \begin{pmatrix} e^{ikr} \\
0 \\
0 \\
0 \end{pmatrix} = H_{\text{id}} \begin{pmatrix} 0 \\
0 \\
0 \\
0 \end{pmatrix} =
\begin{pmatrix}
0 & -\frac{c}{\sqrt{2}} & \frac{c}{\sqrt{2}} & -c \\
-d & \frac{d}{\sqrt{2}} & 0 & 0 \\
-d & \frac{d}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \delta \theta(r \cdot n_1 - l) + \begin{pmatrix}
0 & -\frac{c}{\sqrt{2}} & \frac{c}{\sqrt{2}} & -c \\
-d & \frac{d}{\sqrt{2}} & 0 & 0 \\
-d & \frac{d}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \delta \theta(r \cdot n_2 - l) +
\begin{pmatrix}
0 & \frac{c}{\sqrt{2}} & \frac{c}{\sqrt{2}} & -c \\
-d & \frac{d}{\sqrt{2}} & 0 & 0 \\
-d & \frac{d}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \delta \theta(r \cdot n_3 - l) + \begin{pmatrix}
0 & c & -\frac{c}{\sqrt{2}} & -c \\
-d & \frac{d}{\sqrt{2}} & 0 & 0 \\
-d & \frac{d}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \delta \theta(r \cdot n_4 - l) \begin{pmatrix} e^{i(k_{xy}y + k_{xz}x + k_{yz}z)} \\
0 \\
0 \\
0 \end{pmatrix}.
\]

(60)

On the other hand,

\[
D(\sigma_v) H_{\text{id}} \begin{pmatrix} e^{ikr} \\
0 \\
0 \\
0 \end{pmatrix} = D(\sigma_v) \begin{pmatrix}
0 & \frac{c}{\sqrt{2}} & \frac{c}{\sqrt{2}} & -c \\
-d & \frac{d}{\sqrt{2}} & 0 & 0 \\
-d & \frac{d}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \delta \theta(r \cdot n_1 - l) + \begin{pmatrix}
0 & \frac{c}{\sqrt{2}} & \frac{c}{\sqrt{2}} & -c \\
-d & \frac{d}{\sqrt{2}} & 0 & 0 \\
-d & \frac{d}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \delta \theta(r \cdot n_2 - l) +
\begin{pmatrix}
0 & \frac{c}{\sqrt{2}} & \frac{c}{\sqrt{2}} & -c \\
-d & \frac{d}{\sqrt{2}} & 0 & 0 \\
-d & \frac{d}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \delta \theta(r \cdot n_3 - l) + \begin{pmatrix}
0 & \frac{c}{\sqrt{2}} & \frac{c}{\sqrt{2}} & -c \\
-d & -\frac{d}{\sqrt{2}} & 0 & 0 \\
-d & -\frac{d}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \delta \theta(r \cdot n_4 - l) \begin{pmatrix} e^{ikr} \\
0 \\
0 \\
0 \end{pmatrix}.
\]

(61)
and consequently
\[
D(\sigma_v)H_{if} \left(e^{ikr} \right) = \begin{pmatrix}
0 \\
-\frac{c}{\sqrt{2}} \\
\frac{c}{\sqrt{2}} \\
-\frac{c}{\sqrt{2}}
\end{pmatrix} \delta \theta \left[r \cdot (\sigma_v^{-1}n_1) - l \right] + \begin{pmatrix}
0 \\
-\frac{c}{\sqrt{2}} \\
\frac{c}{\sqrt{2}} \\
-\frac{c}{\sqrt{2}}
\end{pmatrix} \delta \theta \left[r \cdot (\sigma_v^{-1}n_2) - l \right] + \\
\begin{pmatrix}
\frac{c}{\sqrt{2}} \\
\frac{c}{\sqrt{2}} \\
-\frac{c}{\sqrt{2}} \\
-\frac{c}{\sqrt{2}}
\end{pmatrix} \delta \theta \left[r \cdot (\sigma_v^{-1}n_3) - l \right] + \begin{pmatrix}
\frac{c}{\sqrt{2}} \\
\frac{c}{\sqrt{2}} \\
-\frac{c}{\sqrt{2}} \\
-\frac{c}{\sqrt{2}}
\end{pmatrix} \delta \theta \left[r \cdot (\sigma_v^{-1}n_4) - l \right]
\end{pmatrix} e^{(k_x y + k_y x + k_z z)}.
\]

After noting that \(\sigma_v^{-1}n_1 = n_2\) and \(\sigma_v^{-1}n_3 = n_4\) and performing the same calculation for other basis states, one concludes that \(H_{if}\) and \(D(\sigma_v)\) commute.

IV. INTEGRALS OF PLANE WAVES OVER THE SURFACES OF QD

To represent the interface Hamiltonian (Eq. 6 of the main paper) in the plane wave basis, it is necessary to calculate the integrals:

\[
\omega_L(k) = \int_V \delta \theta (r \cdot n - l) \cdot e^{ikr} dV.
\]

These reduce to the integrals over the faces of the pyramid:

\[
\omega_L(k) = \int_S e^{ikr} dS.
\]

We obtain:

\[
\omega_{[001]} = \int_{x=-b/2}^{b/2} dx \int_{y=-b/2}^{b/2} dy e^{ik_x x} e^{ik_y y} = I_0(k_x, -b/2, b/2) I_0(k_y, -b/2, b/2).
\]

Next, we get:

\[
\omega_{[101]} = \int_{x=0}^{b/2} dx \int_{y=-x}^{x} (dx dy \sqrt{2}) e^{ik_x x} e^{ik_y y} e^{ik_z (b/2 - x)}
\]

\[
\omega_{[101]} = \sqrt{2} e^{ik_z b/2} \int_{x=0}^{b/2} dx e^{i(k_x - k_z)x} \left\{ \frac{e^{ik_y x} - e^{-ik_y x}}{ik_y} \right\} \quad k_y \neq 0
\]

\[
\omega_{[101]} = \sqrt{2} e^{ik_z b/2} \int_{x=0}^{b/2} dx e^{i(k_x - k_z)x} \left\{ \frac{e^{ik_y x} - e^{-ik_y x}}{2x} \right\} \quad k_y = 0
\]
\[\omega_{[101]} = \sqrt{2} e^{ikz b/2} \left\{ \begin{array}{ll} [I_0(k_x + k_y - k_z, 0, b/2) - I_0(k_x - k_y - k_z, 0, b/2)] \frac{1}{ik_y} & k_y \neq 0 \\ 2I_1(k_x - k_z, 0, b/2) & k_y = 0. \end{array} \right. \] (68)

The other integrals can be expressed in terms of \(\omega_{[101]} \) as

\[\omega_{[011]}(k_x, k_y, k_z) = \omega_{[101]}(k_y, -k_x, k_z), \] (69)

\[\omega_{[101]}(k_x, k_y, k_z) = \omega_{[011]}(-k_x, -k_y, k_z), \] (70)

\[\omega_{[011]}(k_x, k_y, k_z) = \omega_{[101]}(-k_y, k_x, k_z). \] (71)

In the above equations, the following notation was used:

\[I_n(k, a, b) = \int_a^b dx e^{ikx} x^n. \] (72)

* nenad.vukmirovic@ipb.ac.rs