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The role of interfaces and higher bands on the electronic structure of embedded semiconductor

quantum dots (QDs) was investigated. The term in the multiband k�p Hamiltonian that captures the

effect of interface band mixing was derived starting from the microscopic theory. It was shown,

analytically and numerically, that, with such a term included, the right symmetry of the QD system

can be captured. It leads to splitting of otherwise degenerate energy levels of the order of several

meV. The inclusion of additional higher bands beyond the ones from the standard eight-band model

also leads to the reduction of symmetry from an artificially high one to the true atomistic symmetry

of the system, however their quantitative effect is weaker. These results prove that the multiband

k�p Hamiltonians are fully capable of describing the correct symmetry of a QD. VC 2011 American
Institute of Physics. [doi:10.1063/1.3631048]

I. INTRODUCTION

Semiconductor quantum dots (QDs) are highly interest-

ing physical systems both as a platform for fundamental

studies of interaction of charges, spins and photons on

the nanoscopic scale,1–3 and due to various possible

applications.4–16 While certain physical effects in QDs can

be qualitatively understood solely based on discreteness of

energy levels or using simple particle-in-a-box models, for

most purposes an accurate treatment of the electronic struc-

ture of QDs is necessary. Typical self-assembled QDs have

millions of atoms and therefore the methods based on ab ini-
tio density functional theory, the workhorse of modern elec-

tronic structure calculations, are far beyond the reach of

present day computational capabilities.17 All the methods

developed so far are therefore to a lesser or larger extent

semiempirical.18–30 In the multiband envelope function

methods (including the k�p method) the system Hamiltonian

is represented through a matrix of operators that act upon a

vector of envelope functions of several bands. Such a repre-

sentation where all the relevant quantities are slowly varying

continuous functions may lead one to believe that the model

is a continuous one and that it cannot capture the full sym-

metry of the nanostructure.31

The multiband k�p Hamiltonians32–49 are capable of

reproducing the bulk band structure more accurately than the

standard 8-band Hamiltonian. Some of these, that include a

large number of bands (Z15 or 30 after incorporation of the

spin degree of freedom), are even capable of reproducing the

bulk band structure throughout the whole Brillouin zone.

Unfortunately, these Hamiltonians have been rarely applied

to nanostructures and have not been applied to QDs at all.

The effect of interface band mixing50–54 has also so far been

analyzed only for a single interface or a quantum well struc-

ture. There is even a lack of appropriate framework for a

description of the effect of interface induced band mixing in

quantum dot heterostructures. The goal of this work is to

explore the effects of higher bands and interfaces on the

electronic structure of QDs.

The most widely used form of the multiband Hamiltonians

for the description of III-V material nanostructures with zinc

blende crystal structure is the 8-band k�p Hamiltonian.55,56 This

Hamiltonian indeed yields a higher symmetry of the nanostruc-

ture than the true atomistic one. When one is not interested in

very fine details of the electronic structure, such a shortcoming

can be converted into a strength from the computational point of

view, as the existing symmetry (not necessarily the correct one)

can be exploited to block-diagonalize the Hamiltonian and

therefore reduce the computational time.57–60 There is however

a widespread belief61 that the mentioned deficiency is a general

feature of multiband k�p Hamiltonians and that these cannot be

used if one needs to capture the true symmetry of the nanostruc-

ture. If this were true, this would be indeed a serious issue. For

example, models with high symmetry lead to degeneracies of

eigenstates that would be otherwise split and as a consequence

lead to inaccuracies in the prediction of polarization dependence

of interaction with electromagnetic radiation or the distribution

of the excitonic state population and their dynamics.

We find no reason that the mentioned shortcomings of

the 8-band k�p Hamiltonian would manifest also in multi-

band k�p Hamiltonians in general. In this work, we therefore

analyze the k�p Hamiltonians beyond the standard 8-band

one, which either include the effect of higher energy bands

or include the effect of interface induced band mixing. For

the latter, we derive the analytical form of the appropriate

Hamiltonian for all interfaces present in the model QD struc-

ture and use it in the calculation to understand its role both
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qualitatively and quantitatively. We show both analytically

and numerically that beyond 8-band Hamiltonians are capa-

ble of capturing the correct atomistic symmetry of QDs and

quantify their effect on the electronic structure of QDs.

II. METHODS

As a model system, we consider a QD in the shape of a

square-based pyramid, with base to height ratio b=h¼ 2, which

is the most conventional shape assumed in previous theoretical

considerations.18,19,26,29,62 The coordinate system is chosen so

that vertices of the pyramid are at the points (b=2, �b=2, 0),

(b=2, b=2, 0), (�b=2, b=2, 0), (�b=2, �b=2, 0), and (0, 0, h).

The k�p Hamiltonians discussed in this paper have a

general form:

Hk�p ¼ Hk þ Hso þ H� þ Hpz þ Hif (1)

where Hk is the kinetic part, Hso is the part arising from spin-

orbit interaction, H� is the strain part, Hpz is the piezo-

electric part of the Hamiltonian that depends on strain, and

Hif describes the interface induced band-mixing contribution

to the Hamiltonian Hk�p. To identify the effect of the Hamil-

tonians beyond the standard 8-band one, we have analyzed

our model system using several different Hamiltonians that

include only certain terms from Eq. (1), each with a different

level of sophistication.

(a) The 8-band k�p Hamiltonian consisting of the kinetic

part only (without the spin-orbit interaction and strain).

(b) The 8-band k�p Hamiltonian consisting of the kinetic

part with the spin-orbit interaction taken into account

(but without strain).

(c) The 8-band k�p Hamiltonian consisting of the kinetic

part with the interface band-mixing effects taken into

account (but without spin-orbit interaction and strain).

(d) The standard 8-band k�p Hamiltonian consisting of the

kinetic part with the spin-orbit interaction and strain, as

well as the strain-induced piezoelectric potential. It was

assumed that piezoelectric polarization depends linearly

on strain, though there are some recent suggestions that

quadratic effects should be included as well.16,63,64

(e) The 8-band k�p Hamiltonian consisting of the kinetic

part with the spin-orbit interaction and strain, as well as

the strain-induced piezoelectric potential and the inter-

face Hamiltonian.

(f) The 14-band k�p Hamiltonian consisting of the kinetic

part only (without the spin-orbit interaction and strain).

(g) The 16-band k�p Hamiltonian consisting of the kinetic

part only (without the spin-orbit interaction and strain).

(h) The 14-band k�p Hamiltonian consisting of the kinetic

part with the spin-orbit-interaction and strain (as well as

the strain-induced piezoelectric potential).

(i) The 16-band k�p Hamiltonian consisting of the kinetic

part with the spin-orbit-interaction and strain (as well as

the strain-induced piezoelectric potential).

The explicit forms of the multiband Hamiltonians used

in this work and the corresponding material parameters are

given in Sec. I of the supplementary information.65

The kppw code,30,59 appropriately extended to treat the

multiband Hamiltonians and the effect of interfaces, was

used for all electronic structure calculations presented.

Whenever possible, the symmetry of the Hamiltonian was

exploited to reduce the computational effort, as described in

our previous work.57–59 It is in particular important to note

that our numerical implementation in a plane wave basis

does not reduce the symmetry of the problem; therefore, all

energy level splittings that we report originate from the

Hamiltonian itself and not from numerical artifacts. In all

calculations where strain is taken into account, it has been

modeled using the continuum mechanical model.26,66–70

III. INTERFACE TERM IN K�P HAMILTONIAN

In the derivation of the interface-induced band mixing

terms in the 8-band k�p Hamiltonian applied to our model

QD system, we follow the approach of Foreman outlined in

Ref. 54. The envelope function Hamiltonian at a point R in

space (in the absence of strain and spin-orbit interaction) is

equal to54

HmnðRÞ ¼
�h2k2

2m0

dmn þ
�h

m0

k � pmn þ ½umjHajun�R: (2)

In this equation, um and un are the periodic Bloch functions of

band m and n of a bulk reference crystal, Ha¼ p2=2m0þV(r)

is the microscopic Hamiltonian that we model using the local

empirical pseudopotentials, the square brackets denote the

averaging over a unit cell centered on R, k¼�i! and

pmn¼ [umjpjun], where p is the momentum operator.

The term [umjVjun]R in the Hamiltonian [Eq. (2)] is a

constant of a given material when R is far away from the

interface, when the averaging does not include the interface

region. Let the interface be perpendicular to the z-direction

and located in the z¼ 0 plane. The “length” of the interface

Lif is determined by the region of space that consists of all

R-vectors such that the average [umjVjun]R encompasses the

interface region. In the case of the [001] interface Lif¼ a=2

and in the case of other interfaces considered in this work

Lif ¼ a=ð2
ffiffiffi
2
p
Þ, where a is the lattice constant of the bulk.

Since the interface region is small and the envelope

functions are slowly varying, the details of the variations of

the [umjVjun]R are not of primary importance; it is only the

integral of this term over the interface region that determines

its role in the envelope function Hamiltonian. In the flat

interface model, the pseudopotentials are modeled to be

equal to those of material A at one side of interface and mov-

ing sharply to those of material B at the other side of an

interface. We then obtain

ðþLif=2

�Lif=2

½umjHajun�z0
dz0 ¼

ðþLif=2

�Lif=2

½umj
p2

2m0

þ Vjun�z0
dz0

� ½umj
p2

2m0

þ VA þ VB

2
jun�Lif

þ ½umj
p2

2m0

þ VAjun�
Lif

2
þ ½umj

p2

2m0

þ VBjun�
Lif

2
: (3)
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In the Eq. (3), the last two terms on the right hand side repre-

sent the bulk contribution to the Hamiltonian, while the first

two terms are the interface contribution. This implies that for

each interface, the envelope function Hamiltonian contains

an additional term of the form Xmndh(z), with Xmn given by

the expression:

Xmn ¼
ðþLif=2

�Lif=2

½umj
p2

2m0

þ Vjun�z0
dz0

� ½umj
p2

2m0

þ VA þ VB

2
jun�Lif : (4)

When one chooses the bulk reference crystal as a virtual

crystal being the “average” of crystals A and B, the last

expression reduces to

Xmn ¼
ðþLif=2

�Lif=2

½umj
p2

2m0

þ Vjun�z0
dz0 � EmdmnLif ; (5)

where Em is the energy of band m at the C point. The actual

interface matrices are given in Appendix A, while the crucial

steps needed to evaluate the elements of these matrices are

outlined in Sec. II of the supplementary information.65 The

total interface Hamiltonian is then given by the equation

Hif ¼ Xð½001�ÞdhðzÞ
þ Xð½101�Þdhðr � n1 � lÞ þ Xð½011�Þdhðr � n2 � lÞ
þ Xð½101�Þdhðr � n3 � lÞ þ Xð½011�Þdhðr � n4 � lÞ:

(6)

In the above equation, dh(z) function represents the delta func-

tion at a given interface, with an additional constraint that the

function is nonzero only at the face of the pyramid. The vectors

ni are the unit vectors perpendicular to the faces of the pyramid

and are given as n1 ¼ 1=
ffiffiffi
2
p
� ð1; 0; 1Þ, n2 ¼ 1=

ffiffiffi
2
p
� ð0; 1; 1Þ,

n3 ¼ 1=
ffiffiffi
2
p
� ð�1; 0; 1Þ, n4 ¼ 1=

ffiffiffi
2
p
� ð0;�1; 1Þ, and l ¼

b=ð2
ffiffiffi
2
p
Þ. The integrals needed to represent Hif in the plane

wave basis are given in Sec. IV in the supplementary

material.65

IV. RESULTS AND DISCUSSION

To understand the role of interfaces and=or higher

energy bands, we start by analyzing the conventional 8-band

k�p Hamiltonian. We consider first its version in the absence

of spin-orbit interaction. The symmetry group of such a

Hamiltonian applied to a pyramidal square-based QD is the

C4v group. To show analytically that this is really the case,

one needs to prove that the representations of the generators

of the group, D(g), commute with the Hamiltonian H, i.e.,

[D(g), H]¼ 0. The generators of the C4v group are the rota-

tion by p=2 about the z axis, Rp=2, and the reflection with

respect to the x¼ y plane rv. Equality of the operators D(g)H
and HD(g) can be established by showing that they yield the

same results when they act on any of the plane wave basis

vectors that span the Hilbert space of the system. Indeed, we

have shown that [D(Ru), H8k�p]¼ 0 for u¼ np=2 and [D(rv),

H8k�p]¼ 0 (see Sec. III of the supplementary material for a

detailed proof).65

Several prominent features of the energy level structure

[Table I(a)] and the wavefunctions [Fig. 1(a)] arise as a con-

sequence of high symmetry of the system. The pairs of

energy levels (e1, e2), (h0,h1) and (h4,h5) are degenerate. The

presence of degenerate energy levels is a consequence of the

fact that the C4v group has a two dimensional representation

E (the notation of Ref. 71). Therefore, the states that trans-

form according to that representation come in pairs and are

degenerate. The high symmetry of the system can be also

witnessed from the shape of the probability density isosurfa-

ces [Fig. 1(a)]: All of them exhibit perfect C4v symmetry.

Next, we include the spin-orbit interaction in the

8-band k�p Hamiltonian, case (b). The eigenstates now

transform according to a representation of the double C4v

group which is a direct product of the representation of the

single C4v group and the representation D1=2 according to

which the spin functions transform (Ref. 71, p. 142). If the

representation obtained from the direct product is reducible,

the inclusion of spin-orbit interaction leads to the removal

of degeneracy of energy levels. Indeed, the product

E�D1=2 is equal to E1
0 þE2

0 (the notation of Ref. 71). It

is well understood that the effect of spin-orbit interaction

on the states in the valence band is rather strong. Here we

would, however, like to emphasize a less known fact that

the spin-orbit interaction also causes the splitting of the e1

and e2 states [shown in Table I(b)]. The existence of this

splitting was established in Ref. 57 for pyramidal QDs and

later on analyzed again in Ref. 72 for lens-shaped QDs. It

TABLE I. Energies (in eV) of top six hole energy levels and bottom four electron levels, for a square-based pyramidal InAs=GaAs QD with base width

b¼ 100 Å, and base to height ratio b=h¼ 2 calculated using different models. The letters in the first row in the table specify the model used in the calculation.

State (a) (b) (c) (d) (e) (f) (g) (h) (i)

e3 1.08163 1.06674 1.08878 1.30684 1.30772 1.03852 1.04622 1.30421 1.30463

e2 0.99336 0.96795 1.00170 1.25044 1.25570 0.97301 0.97747 1.24429 1.24514

e1 0.99336 0.96724 1.00074 1.23439 1.23943 0.97298 0.97746 1.22810 1.22900

e0 0.84346 0.81808 0.85115 1.12013 1.12543 0.83509 0.83754 1.11712 1.11768

h0 �0.06722 �0.03427 �0.06475 �0.05230 �0.05052 �0.06512 �0.06495 �0.05086 �0.05066

h1 �0.06722 �0.03680 �0.06698 �0.06827 �0.06699 �0.06517 �0.06500 �0.06703 �0.06673

h2 �0.07389 �0.03765 �0.07248 �0.07840 �0.07843 �0.07263 �0.07231 �0.07743 �0.07717

h3 �0.07883 �0.04244 �0.07708 �0.09115 �0.09046 �0.07700 �0.07675 �0.08865 �0.08827

h4 �0.08518 �0.04582 �0.08119 �0.10517 �0.10565 �0.08124 �0.08117 �0.10282 �0.10241

h5 �0.08518 �0.04614 �0.08360 �0.10888 �0.10859 �0.08270 �0.08242 �0.10730 �0.10698
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is important to note here that this energy level splitting

effect is not a signature of symmetry reduction. Indeed, it

can be seen from Fig. 1(b) that the wavefunction moduli

still exhibit a perfect C4v symmetry.

We proceed to understand the role of interfaces on the

energy level structure and the symmetry of the system, case

(c). For that purpose we calculate the electronic structure of

a QD using the 8-band k�p Hamiltonian in the absence of

spin-orbit interaction and the presence of interface effects

[Fig. 1(c) and Table I(c)]. Our analytical derivations, demon-

strate that both the [001] interface and the joint effect of the

other interfaces independently lead to the reduction of sym-

metry from C4v to C2v since both commutators [D(Ru),

H[001]]¼ 0 and [D(Ru), Hif]¼ 0 only if u¼ np (see Sec. III

of Ref. 65). The C2v group has one dimensional irreducible

representations only and cannot exhibit the doubly degener-

ate eigenstates. As a consequence, interface effects lead to

splitting of the degenerate eigenstates by typically 1–3 meV,

as shown in Table I(c). The low symmetry of the system can

also be evidenced from the shape of the wavefunction isosur-

faces. All the isosurfaces reduce their symmetry from C4v

[Fig. 1(a)] to C2v [Fig. 1(c)]. The symmetry breaking is most

pronounced for wavefunctions that were originally degener-

ate, while it is weaker, but still present, for the other ones.

To quantify the role of the dot size on the magnitude of

interface induced effects, we compare the electronic

FIG. 1. (Color online) The wavefunctions

squared for top six hole states and bottom five

electron states for a square-based pyramidal

InAs=GaAs QD with base width b¼ 100 Å, and

base to height ratio b=h¼ 2 calculated using dif-

ferent models. The letters (a)–(c), (e)–(g) specify

the model used in the calculation. The isosurfa-

ces are plotted at 25% (transparent) and 75% of

the maximal charge density.
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structure of the Hamiltonians (a) and (c) for several different

QDs sizes. We use the splitting of the e1 and e2 states as a

quantitative measure of interface effects. The results are

summarized in Fig. 2. We find that the interface induced

splitting of the e1 and e2 states decreases as the dot dimen-

sions and the dot volume to surface ratio increase. The inter-

face effects become less important for dots with large

volume to surface ratio.

To identify the role of higher energy bands, we have

extended the Hamiltonian to include 14 bands, case (f). We

have found analytically that the 14 band k�p Hamiltonian

commutes with the operators of the C2v group representation,

i.e., [D(Ru), H14k�p]¼ 0 only for u¼ np (see Sec. III of Ref.

65). The terms that contain the P2 element which couples the

top of the valence band, C5v, [that originates from the p
bonding states (denoted as pb) of atoms in the bulk] with the

second conduction band, C5c, [that originates from the p anti-

bonding states (denoted as pa) of atoms in the bulk] are the

only terms that prevent the C4v symmetry. Therefore, the P2

element can be identified as the symmetry breaking term in

the 14-band k�p Hamiltonian. This term introduces the split-

tings, Table I(f), which are however less pronounced than

these of the interface terms; for example, the splitting of e1

and e2 is less than 0.1 meV. The effect of symmetry breaking

on the wavefunctions is generally similar [see Fig. 1(f)] as in

the case of interface-induced symmetry breaking. The inclu-

sion of the additional band that gives the 16-band k�p Hamil-

tonian does not lead to any significant qualitative nor

quantitative changes in the results, Table I(g).

It has been previously established57 that the piezoelec-

tric effect also reduces the symmetry from C4v to C2v. The

results shown in Tables I(d), I(e), I(h) and I(i) indicate that

splitting of e1 and e2 states induced by the piezoelectric

effect is stronger than the splittings induced by other effects.

One should also stress that in the absence of piezoelectric

effect, the strain would also give rise to symmetry reduction

if it were modeled using the Valence force field

model.26,66–68,70

There is an interest to understand the role of other QD

materials on the symmetry breaking and energy level split-

ting effects. We have therefore calculated the electronic

structure of a QD based on a different material, namely, vir-

tually strain free GaAs=Al0.35Ga0.65As QD. This type of

quantum dots cannot be realized via a conventional Stranki-

Krastanov growth technique which requires lattice-

mismatched materials. Nevertheless, there has been an

increasing interest in this quantum dot material system in

recent years due to the introduction of techniques for control-

lable realization73–75 of such quantum dots. The energy lev-

els of this dot are summarized in Table II. These results

suggest that the splitting of e1 and e2 levels due to spin-orbit

interaction and higher energy bands is of the similar order of

magnitude as for InAs=GaAs. On the other hand, interface

effects are much weaker in this material. This can be under-

stood from the fact that AlGaAs and GaAs are more similar

materials than InAs and GaAs.

V. CONCLUSION

In contrast to a popular belief that multiband envelope

function k�p Hamiltonians cannot capture the right symmetry

of QDs, we showed here the opposite. We put our conclu-

sions into numbers for the case of square-based pyramidal

QDs based on III-V materials with zinc blende crystal struc-

ture. We showed that the inclusion of interface band mixing

effects leads to the reduction of symmetry from an artificial

C4v, to the correct C2v. The main manifestation of interface

effects are the energy level splittings between (e1, e2), (h0,

h1), and (h4, h5) states of the order of 1–3 meV in

InAs=GaAs material system, which are much weaker in the

AlGaAs=GaAs system. The splittings decrease as the dot

size and consequently the volume to surface ratio increase.

The inclusion of the additional bands beyond the standard 8

bands also leads to symmetry reduction to C2v, with split-

tings which are however weaker than the ones due to interfa-

ces. We have found that that the lowest order multiband

Hamiltonian whose kinetic part has the correct C2v symmetry

is the 14-band k�p Hamitonian. This symmetry reduction

originates from the coupling between the top of the valence

FIG. 2. The dependence of interface-induced splitting of the e1 and e2 levels

on the size of an InAs=GaAs QD.

TABLE II. Energies (in eV) of top six hole energy levels and bottom four

electron levels, for a square-based pyramidal GaAs=AlGaAs QD with base

width b¼ 100 Å, and base to height ratio b=h¼ 2 calculated using different

models. The letters in the first row in the table specify the model used in the

calculation.

State (a) (b) (c) (d) (f)

e3 1.87820 1.87153 1.87826 1.87158 1.87773

e2 1.86355 1.85915 1.86428 1.85981 1.85947

e1 1.86355 1.85866 1.86426 1.85932 1.85936

e0 1.75534 1.75191 1.75641 1.75291 1.75234

h0 �0.07545 �0.08834 �0.07512 �0.08818 �0.07445

h1 �0.07545 �0.09647 �0.07551 �0.09632 �0.07461

h2 �0.08848 �0.11788 �0.08834 �0.11756 �0.08792

h3 �0.09860 �0.12268 �0.09519 �0.12255 �0.09346

h4 �0.10508 �0.13360 �0.09844 �0.13340 �0.09749

h5 �0.10508 �0.14167 �0.10486 �0.14149 �0.10347
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(C5v) and the second conduction (C5c) band. The observed

splittings are comparable to the ones that originate from

spin-orbit coupling (these do not reduce the symmetry) and

are much smaller than the ones from piezoelectric effect in

strained systems. One can further note that other effects than

the ones considered in this work can also affect the symme-

try of the system, such as the atomic-scale randomness76 in

QDs made of alloys, as well as the irregularity of the shape

of the dot. Unfortunately, the mentioned symmetry reduction

effects cannot be independently measured since in a given

QD, they all act jointly. Despite that, our work provides a

very important conceptual message: With appropriate treat-

ment of relevant effects, the multiband envelope function

Hamiltonians are fully capable of capturing the right symme-

try of QD structures.
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APPENDIX A: INTERFACE HAMILTONIAN MATRICES

To evaluate the Xmn terms, Eq. (5), we represent the

pseudopotentials using the plane waves, where the form fac-

tors from Ref. 77 for InAs=GaAs, and Ref. 52 for

GaAs=AlAs are used. In the basis

saj i; px;b

�� �
; py;b

�� �
; pz;b

�� �� �
; (A1)

we obtain the following expressions for the Xmn terms for

the interfaces of interest in this paper:

X 001½ �ð Þ ¼

0 0 0 �a
0 b 0

0 0

0

0
BB@

1
CCA; (A2)

X 101½ �ð Þ ¼

0 �c 0 �c
0 d 0

0 d
0

0
BB@

1
CCA; (A3)

X 011½ �ð Þ ¼

0 0 �c �c
0 d d

0 0

0

0
BB@

1
CCA; (A4)

X �101½ �ð Þ ¼

0 c 0 �c
0 d 0

0 �d
0

0
BB@

1
CCA; (A5)

X 0�11½ �ð Þ ¼

0 0 c �c
0 d �d

0 0

0

0
BB@

1
CCA: (A6)

The values of the parameters a, b, c, and d for the interfaces

considered in this work are given in Table III.
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I. THE HAMILTONIANS

A. 8 band Hamiltonian

The 8-band k·p Hamiltonian in the basis that consists of states that originate from p bonding

(denoted as pb) and s antibonding (denoted as sa) states of the atoms in the bulk:

{|sa ↑〉, |px,b ↑〉, |py,b ↑〉, |pz,b ↑〉, |sa ↓〉, |px,b ↓〉, |py,b ↓〉, |pz,b ↓〉} (1)

reads

H =







| ↑〉 | ↓〉

G 0

0 G





+







| ↑〉 | ↓〉

Gso Γ

−Γ∗ G∗
so





, (2)

where

G =





















|sa〉 |px,b〉 |py,b〉 |pz,b〉

Esa iP0kx iP0ky iP0kz

Epx,b W1 W2

Epy,b W3

Epz,b





















, (3)

Gso =





















|sa〉 |px,b〉 |py,b〉 |pz,b〉

0 0 0 0

−1
3
∆so(pb) − i

3
∆so(pb) 0

−1
3
∆so(pb) 0

−1
3
∆so(pb)





















(4)

and

Γ =





















|sa〉 |px,b〉 |py,b〉 |pz,b〉

0 0 0 0

0 0 0 1
3
∆so(pb)

0 0 0 − i
3
∆so(pb)

0 −1
3
∆so(pb)

i
3
∆so(pb) 0





















. (5)

The terms in the previous equations are given as:

2



Epx,b = −(P +Q)−
√
3
2
(R∗ +R)

Epy,b = −(P +Q) +
√
3
2
(R∗ +R)

Epz,b = −(P − 2Q)

Esa = E(Γ1c) +
(

h̄2

2m0

)

γck
2

Eg0 = E(Γ1c)− E(Γ5v)

W1 = −i
√
3
2
(R−R∗)

W2 = −
√

3
2
(S + S∗)

W3 = −i
√

3
2
(S − S∗)

P = Pk + Pǫ

Q = Qk +Qǫ

R = Rk +Rǫ

S = Sk + Sǫ

Pk =
(

h̄2

2m0

)

γ1(k
2
x + k2y + k2z)− E(Γ5v)

Qk =
(

h̄2

2m0

)

γ2(k
2
x + k2y − 2k2z)

Rk =
(

h̄2

2m0

)√
3[γ2(k

2
x − k2y)− 2iγ3kxky]

Sk =
(

h̄2

2m0

)√
6γ3(kx − iky)kz

Pǫ = −av(ǫxx + ǫyy + ǫzz)

Qǫ = − bax
2
(ǫxx + ǫyy − 2ǫzz)

Rǫ = −
√
3
2
bax(ǫxx − ǫyy) + idaxǫxy

Sǫ = −dax√
2
(ǫzx − iǫyz)

P0 = P (sa, px,b) = P (sa, py,b) = P (sa, pz,b)

EP0 = 2m0P
2
0 /h̄

2

γc =
1
m∗

− EP0

3

[

2
Eg0

+ 1
Eg0+∆so(pb)

]

γ1 = γL1 − EP0

3Eg0+∆so(pb)

γ2 = γL2 − EP0

6Eg0+2∆so(pb)

γ3 = γL3 − EP0

6Eg0+2∆so(pb)

B. 14 band Hamiltonian

The 14-band k·p Hamiltonian in the basis

{ |px,a ↑〉, |py,a ↑〉, |pz,a ↑〉, |sa ↑〉, |px,b ↑〉, |py,b ↑〉, |pz,b ↑〉,

3



|px,a ↓〉, |py,a ↓〉, |pz,a ↓〉, |sa ↓〉, |px,b ↓〉, |py,b ↓〉, |pz,b ↓〉}, (6)

where pa originate from antibonding atomic p states in the bulk, is defined by the following submatrices

in Eq. (2):

G =









































|px,a〉 |py,a〉 |pz,a〉 |sa〉 |px,b〉 |py,b〉 |pz,b〉

Epa 0 0 iP1kx 0 −iP2kz −iP2ky

Epa 0 iP1ky −iP2kz 0 −iP2kx

Epa iP1kz −iP2ky −iP2kx 0

Esa iP0kx iP0ky iP0kz

Epx,b W1 W2

Epy,b W3

Epz,b









































, (7)

Gso =









































|px,a〉 |py,a〉 |pz,a〉 |sa〉 |px,b〉 |py,b〉 |pz,b〉
2
3
∆so(pa) − i

3
∆so(pa) 0 0 0 i

3
∆cf 0

2
3
∆so(pa) 0 0 − i

3
∆cf 0 0

2
3
∆so(pa) 0 0 0 0

0 0 0 0

−1
3
∆so(pb) − i

3
∆so(pb) 0

−1
3
∆so(pb) 0

−1
3
∆so(pb)









































(8)

and

Γ =









































|px,a〉 |py,a〉 |pz,a〉 |sa〉 |px,b〉 |py,b〉 |pz,b〉

0 0 1
3
∆so(pa) 0 0 0 −1

3
∆cf

0 0 − i
3
∆so(pa) 0 0 0 i

3
∆cf

−1
3
∆so(pa)

i
3
∆so(pa) 0 0 1

3
∆cf − i

3
∆cf 0

0 0 0 0 0 0 0

0 0 −1
3
∆cf 0 0 0 1

3
∆so(pb)

0 0 i
3
∆cf 0 0 0 − i

3
∆so(pb)

1
3
∆cf − i

3
∆cf 0 0 −1

3
∆so(pb)

i
3
∆so(pb) 0









































. (9)
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In this case, Luttinger parameters are given as:

γc =
1
m∗

− EP0

3

[

2
Eg0

+ 1
Eg0+∆so(pb)

]

+ EP1

3

[

1
Eg1−Eg0

+ 2
Eg1−Eg0+∆so(pa)

]

,

γ1 = γL1 − 1
3

EP0

Eg0+∆so(pb)/3
− 2

3
EP2

Eg1+∆so(pb)/3+2∆so(pa)/3
,

γ2 = γL2 − 1
6

EP0

Eg0+∆so(pb)/3
+ 1

6
EP2

Eg1+∆so(pb)/3+2∆so(pa)/3
,

γ3 = γL3 − 1
6

EP0

Eg0+∆so(pb)/3
− 1

6
EP2

Eg1+∆so(pb)/3+2∆so(pa)/3
,

where

Epa = E(Γ5c)

Eg1 = E(Γ5c)− E(Γ5v)

P1 = P (px,a, sa) = P (py,a, sa) = P (pz,a, sa)

P2 = P (px,a, py,b) = P (px,a, pz,b) = P (py,a, pz,b)

EP1 = 2m0P
2
1 /h̄

2

EP2 = 2m0P
2
2 /h̄

2

C. 16 band Hamiltonian

The 16-band k·p Hamiltonian in the basis

{ |px,a ↑〉, |py,a ↑〉, |pz,a ↑〉, |sa ↑〉, |px,b ↑〉, |py,b ↑〉, |pz,b ↑〉, |sb ↑〉, (10)

|px,a ↓〉, |py,a ↓〉, |pz,a ↓〉, |sa ↓〉, |px,b ↓〉, |py,b ↓〉, |pz,b ↓〉, |sb ↓〉}, (11)

where sb originate from bonding atomic s states in the bulk is determined from the following

submatrix in Eq. (2):

G =

















































|px,a〉 |py,a〉 |pz,a〉 |sa〉 |px,b〉 |py,b〉 |pz,b〉 |sb〉

Epa 0 0 iP1kx 0 −iP2kz −iP2ky iP3kx

Epa 0 iP1ky −iP2kz 0 −iP2kx iP3ky

Epa iP1kz −iP2ky −iP2kx 0 iP3kz

Esa iP0kx iP0ky iP0kz 0

Epx,b W1 W2 iP4kx

Epy,b W3 iP4ky

Epz,b iP4kz

Esb

















































, (12)
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while Gso and Γ are the same as in the 14-band Hamiltonian, except that they have to be extended

with additional column and row associated with |sb〉, in which all elements are set to zero. In this

case, Luttinger parameters are given as:

γc =
1
m∗

− EP0

3

[

2
Eg0

+ 1
Eg0+∆so(pb)

]

+ EP1

3

[

1
Eg1−Eg0

+ 2
Eg1−Eg0+∆so(pa)

]

,

γ1 = γL1 − 1
3

EP0

Eg0+∆so(pb)/3
− 2

3
EP2

Eg1+∆so(pb)/3+2∆so(pa)/3
+ 1

3
EP4

Eg2−∆so(pb)/3
,

γ2 = γL2 − 1
6

EP0

Eg0+∆so(pb)/3
+ 1

6
EP2

Eg1+∆so(pb)/3+2∆so(pa)/3
+ 1

6
EP4

Eg2−∆so(pb)/3
,

γ3 = γL3 − 1
6

EP0

Eg0+∆so(pb)/3
− 1

6
EP2

Eg1+∆so(pb)/3+2∆so(pa)/3
+ 1

6
EP4

Eg2−∆so(pb)/3
,

and

Esb = E(Γ1v)

Eg2 = E(Γ5v)− E(Γ1v)

P3 = P (px,a, sb) = P (py,a, sb) = P (pz,a, sb)

P4 = P (px,b, sb) = P (py,b, sb) = P (pz,b, sb)

EP3 = 2m0P
2
3 /h̄

2

EP4 = 2m0P
2
4 /h̄

2

The parameters of binary compound semiconductors GaAs, InAs and AlAs are given in Table I.

II. EVALUATION OF THE [um|V |un]R TERM

To evaluate [um|V |un]R term, one can represent the Bloch functions and the pseudopotential in

the plane wave basis, Gi =
2π
a
ni, as um(r) =

∑

G0
CmG0

eiG0·r, un(r) =
∑

G1
CnG1

eiG1·r, and V (r) =
∑

G2
VG2

(r)eiG2·r. Consequently

[um|V |un]R =
∑

G0,G1,G2

C∗
mG0

CnG1
〈ei(G1+G2−G0)·rVG2

(r)〉R. (13)

One therefore needs to evaluate terms of the form 〈ei 2πa n·rf(r)〉R, where n = (nx, ny, nz) is the plane

wave number and f(r) function that changes abruptly across the interface. An arbitrary vector within

the unit cell centered at R = (x0, y0, z0) can be expressed in the form

r = R+ αa1 + βa2 + γa3, (14)

where r = (x, y, z), α, β, γ ∈ (−1/2, 1/2), and a1, a2, a3 are the lattice vectors. The choice of lattice

vectors is somewhat arbitrary, therefore we select them in such a way to ease the integration; the
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TABLE I. Relevant material parameters of binary compound semiconductors GaAs, InAs, and AlAs. a0 are

the lattice constants, α and β are the Varshni parameters that describe the temperature dependence of the

band gap (a temperature of 4K was assumed in all calculations), Egi are the band gaps, EPi are the energies

related to interband matrix elements of the velocity operator Pi as EPi = 2m0P
2
i /h̄

2, Ev,av is the average

valence band edge energy at the Γ point, m∗
c is the conduction band effective mass. ∆so(pa) is the spin-orbit

splitting in the second conduction band, ∆so(pb) is the spin-orbit splitting in the valence band and ∆cf the

crystal field splitting. cij are the elastic constants. ac, av, bax, dax are the deformation potentials, e14 is the

piezoelectric constant. γL1 , γ
L
2 , γ

L
3 are the Luttinger parameters in the 6-band model. ǫr is the static dielectric

constant.

GaAs InAs AlAs

a0 [Å] 5.6503 6.0553 5.661
α [meV/K] 0.5405 0.276 0.885
β [K] 204 93 530
Eg0 = E(Γ1c)− E(Γ5v) [eV] 1.518 0.405 3.099
Eg1 = E(Γ5c)− E(Γ5v) [eV] 4.488 4.38 4.54
Eg2 = E(Γ5v)− E(Γ1v) [eV] 12.50 12.64 11.95
EP0 [eV] 25.7 21.846 21.1
EP1 [eV] 0.19 0.03 0.16
EP2 [eV] 14.79 19.0 16.8
EP3 [eV] 2.3 0.6 0.1
EP4 [eV] 0.2 2.55 0.0 (n/a)
Ev,av [eV] -6.920 -6.747 -7.49
m∗

c 0.0667 0.02226 0.15
∆so(pa)[eV] 0.340 0.380 0.280
∆so(pb)[eV] 0.170 0.190 0.150
∆cf [eV] 0.085 0.085 0.085
c11 [GPa] 118.8 83.3 125.0
c12 [GPa] 53.8 45.3 53.4
c44 [GPa] 59.4 39.6 54.2
ac [eV] -8.013 -5.08 -5.64
av [eV] 0.220 1.00 2.47
bax [eV] -1.824 -1.800 -2.3
dax [eV] -5.062 -3.600 -3.4
e14 [C m−2] 0.160 0.045 0.225
γL1 , γ

L
2 , γ

L
3 7.10, 2.02, 2.91 19.67, 8.40, 9.30 3.76, 0.82, 1.42

ǫr 13.18 14.6 10.1

lattice vectors a1, a2 are chosen to lie in the plane of the interface in all cases, i.e., the interface is

always perpendicular to the z−direction of the rotated reference frame and located in the z = 0 plane

To maintain this notation, we introduce the rotation matrix:
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u′

v′





 =







cos θ − sin θ

sin θ cos θ













u

v





 . (15)

• [001] interface: for this interface a1 = (a/2, a/2, 0), a2 = (a/2,−a/2, 0), a3 = (0, a/2, a/2), u = x,

v = y, θ = 0, and z′ = z. After replacing those values in Eqs. (14) and (15): x = x0+(α+β)(a/2),

y = y0 + (α− β + γ)(a/2), z = z0 + γ(a/2), and after integration over α, β and γ one gets:

〈ei 2πa n·rf(r)〉R = ei
2π
a
n·RJ(nx + ny)J(nx − ny)[fAJ(ny + nz) + ∆fI(−2z0/a, ny + nz)]. (16)

• [101] interface: the lattice vectors are chosen as a1 = (0, a, 0), a2 = (−a/2, 0, a/2), a3 = (0, a/2, a/2),

and u = x, v = z, θ = π/4, and y′ = y. After replacing those values in Eqs. (14) and (15):

x = x0 − β(a/2), y = y0 + (2α+ γ)(a/2), z = z0 + (β + γ)(a/2), and after integration over α, β and

γ one gets:

〈ei 2πa n·rf(r)〉R = E

(

x′0 + z′0√
2

, y′0,
−x′0 + z′0√

2

)

J(2ny)J(nz−nx)[fAJ(ny+nz)+∆fI(−2
√
2z0/a, ny+nz)].

(17)

• [011] interface: the lattice vectors are chosen as a1 = (a, 0, 0), a2 = (0,−a/2, a/2), a3 = (a/2, a/2, 0),

and u = y, v = z, θ = π/4, and x′ = x. After replacing those values in Eqs. (14) and (15):

x = x0 + (2α+ γ)(a/2), y = y0 − (β − γ)(a/2), z = z0 + β(a/2), and after integration over α, β and

γ one gets:

〈ei 2πa n·rf(r)〉R = E

(

x′0,
y′0 + z′0√

2
,
−y′0 + z′0√

2

)

J(2nx)J(nz−ny)[fAJ(nx+ny)+∆fI(−2
√
2z0/a, nx+ny)].

(18)

• [101] interface: the lattice vectors are chosen as a1 = (0, a, 0), a2 = (a/2, 0, a/2), a3 = (0, a/2, a/2),

and u = x, v = z, θ = −π/4, and y′ = y. The expressions for 〈ei 2πa n·rf(r)〉R can be obtained from

Eq. (17), by replacing x0 → −x0 and nx → −nx.

• [011] interface: the lattice vectors are chosen as a1 = (a, 0, 0), a2 = (0, a/2, a/2), a3 = (a/2,−a/2, 0),
u = y, v = z, θ = −π/4, and x′ = x. The expressions for 〈ei 2πa n·rf(r)〉R can be obtained from

Eq. (18), by replacing y0 → −y0 and ny → −ny.

In the above equations ∆f = fB − fA, fA (fB) is the value of f(z) at each side of the interface, i.e.,

for z < 0 (z ≥ 0); I(τ, n) =
∫ 1/2
τ dteinπt, J(n) = I(−1/2, n), and E(d1, d2, d3) = ei

2π
a
(nxd1+nyd2+nzd3).
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III. PROOFS OF SYMMETRY OF THE HAMILTONIANS

Here, we would like to identify the symmetries that each of the Hamiltonians considered in this work

satisfy. To simplify the derivations, we will consider only the direct terms (no remote, Lowdin-type

terms). The conclusions remain unaffected by the inclusion of Lowdin terms.

Most of the Hamiltonians considered contain 4× 4 blocks, that in the basis

{u1, . . . , u4} = {|sa〉, |px,b〉, |py,b〉, |pz,b〉} (19)

read

H4 =

















Ec(r) ikxP0 ikyP0 ikzP0

Ev(r) 0 0

Ev(r) 0

Ev(r)

















(20)

where Ec(r) = Esa(r) and Ev(r) = Epb(r). We will show that this Hamiltonian applied to square-

based pyramidal QDs has C4v symmetry. To do this, it is sufficient to show that the Hamiltonian

commutes with the generators of the group - the rotation Rπ/2 and the reflection σv, where Rϕ is the

rotation about the z−axis by an angle ϕ and σv is the reflection with respect to the plane x = y.

To represent the actions of the rotation operators on the envelope function spinors, it is more con-

venient to work in the basis of eigenstates of the z-component of the orbital quasi-angular momentum

{u1, . . . , u4} = {|sa〉,
1√
2
(|px,b〉+ i|py,b〉) ,

1√
2
(|px,b〉 − i|py,b〉) , |pz,b〉}, (21)

where the same Hamiltonian reads

H4 =

















Ec(r) ik+P0 ik−P0 ikzP0

Ev(r) 0 0

Ev(r) 0

Ev(r)

















, (22)

where k± = 1√
2
(kx ± iky). The action of the representation of the rotation Rϕ, where ϕ = nπ/2 on
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the spinors is given as

D(Rϕ)

















ψ1(r)

ψ2(r)

ψ3(r)

ψ4(r)

















=

















ψ1(Rϕr)

e−iϕψ2(Rϕr)

eiϕψ3(Rϕr)

ψ4(Rϕr)

















. (23)

To prove that D(Rϕ) commutes with H4 it is sufficient to show that operators H4D(Rϕ) and

D(Rϕ)H4 give the same result when acting on the basis states (eik·r, 0, 0, 0)T , (0, eik·r, 0, 0)T , (0, 0, eik·r, 0)T ,

(0, 0, 0, eik·r)T that span the Hilbert space of spinors. By explicitly performing the calculation one

gets on the one hand

H4D(Rϕ)

















eik·r

0

0

0

















= H4

















ei(R
−1
ϕ k)·r

0

0

0

















=

















Ec(r)

−iP0(R
−1
ϕ k)−

−iP0(R
−1
ϕ k)+

−iP0(R
−1
ϕ k)z

















ei(R
−1
ϕ k)·r (24)

and on the other hand

D(Rϕ)H4

















eik·r

0

0

0

















= D(Rϕ)

















Ec(r)

−iP0k−

−iP0k+

−iP0kz

















eik·r =

















Ec(Rϕr)

e−iϕ(−i)P0k−

eiϕ(−i)P0k+

−iP0kz

















ei(R
−1
ϕ k)·r. (25)

Due to the symmetry of the dot shape it follows that Ec(r) = Ec(Rϕr). Furthermore, one can

straightforwardly show that (R−1
ϕ k)− = e−iϕk− and (R−1

ϕ k)+ = eiϕk+. From these identities, it

follows that

[D(Rϕ)H4 −H4D(Rϕ)]

















eik·r

0

0

0

















= 0. (26)

Using the same procedure, one can also show that D(Rϕ)H4 and H4D(Rϕ) give the same result

when acting on the other basis vectors (0, eik·r, 0, 0)T , (0, 0, eik·r, 0)T , (0, 0, 0, eik·r)T , which completes

the proof that D(Rϕ)H4 and H4D(Rϕ) commute.

Next, we proceed with the proof that H4 commutes with the operator D(σv). For this proof, it is
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convenient to work in the basis

{u1, . . . , u4} = {|sa〉,
1√
2
(|px,b〉+ |py,b〉) ,

1√
2
(|px,b〉 − |py,b〉) , |pz,b〉}, (27)

The Hamiltonian in this basis reads

H4 =

















Ec(r) i 1√
2
(kx + ky)P0 i 1√

2
(kx − ky)P0 ikzP0

Ev(r) 0 0

Ev(r) 0

Ev(r)

















. (28)

In this basis, the action of the operator D(σv) on the spinor is given as

D(σv)

















ψ1(x, y, z)

ψ2(x, y, z)

ψ3(x, y, z)

ψ4(x, y, z)

















=

















ψ1(y, x, z)

ψ2(y, x, z)

−ψ3(y, x, z)

ψ4(y, x, z)

















. (29)

It follows

H4D(σv)

















eik·r

0

0

0

















= H4

















ei(kxy+kyx+kzz)

0

0

0

















=

















Ec(r)

−iP0
1√
2
(kx + ky)

−iP0
1√
2
(ky − kx)

−iP0kz

















ei(kxy+kyx+kzz). (30)

On the other hand

D(σv)H4

















eik·r

0

0

0

















= D(σv)

















Ec(r)

−iP0
1√
2
(kx + ky)

−iP0
1√
2
(kx − ky)

−iP0kz

















eik·r =

















Ec(y, x, z)

−iP0
1√
2
(kx + ky)

−iP0
1√
2
(kx − ky) · (−1)

−iP0kz

















ei(kxy+kyx+kzz)

(31)

and consequently

[D(σv)H4 −H4D(σv)]

















eik·r

0

0

0

















= 0. (32)
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One can straightforwardly check this equality for other basis vectors (0, eik·r, 0, 0)T , (0, 0, eik·r, 0)T ,

(0, 0, 0, eik·r)T .

Next, we consider the direct terms of the 7-band Hamiltonian

H7 =









































|px,a〉 |py,a〉 |pz,a〉 |sa〉 |px,b〉 |py,b〉 |pz,b〉

Ec2(r) 0 0 iP1kx 0 −iP2kz −iP2ky

Ec2(r) 0 iP1ky −iP2kz 0 −iP2kx

Ec2(r) iP1kz −iP2ky −iP2kx 0

Ec(r) iP0kx iP0ky iP0kz

Ev(r) 0 0

Ev(r) 0

Ev(r)









































. (33)

where Ec2(r) = Epa(r). The 4 × 4 block that contains the elements P1 is of the same form as H4

and therefore commutes with the operators that represent the elements of the C4v group. The same

is the case for the 4× 4 block that contains the P0 elements. One needs therefore to understand the

symmetry properties of the remaining 6× 6 block that contains the P2 elements. This block reads:

H6 =



































|px,a〉 |py,a〉 |pz,a〉 |px,b〉 |py,b〉 |pz,b〉

0 0 0 0 −iP2kz −iP2ky

0 0 −iP2kz 0 −iP2kx

0 −iP2ky −iP2kx 0

0 0 0

0 0

0



































. (34)

The most convenient basis to represent the action of the rotation operators is the basis

{u1, . . . , u6} = { 1√
2
(|px,a〉+ i|py,a〉) , 1√

2
(|px,a〉 − i|py,a〉) , |pz,a〉,

1√
2
(|px,b〉+ i|py,b〉) , 1√

2
(|px,b〉 − i|py,b〉) , |pz,b〉}. (35)
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In this basis, the H6 block reads

H6 =































0 0 0 0 −P2kz −P2k+

0 0 P2kz 0 P2k−

0 P2k− −P2k+ 0

0 0 0

0 0

0































. (36)

The action of the rotation operator on the spinor is given as

D(Rϕ)































ψ1(r)

ψ2(r)

ψ3(r)

ψ4(r)

ψ5(r)

ψ6(r)































=































e−iϕψ1(Rϕr)

eiϕψ2(Rϕr)

ψ3(Rϕr)

e−iϕψ4(Rϕr)

eiϕψ5(Rϕr)

ψ6(Rϕr)































. (37)

One then gets on the one hand

H6D(Rϕ)































eik·r

0

0

0

0

0































= H6































e−iϕei(R
−1
ϕ k)·r

0

0

0

0

0































=































0

0

0

0

−e−iϕP2(R
−1
ϕ k)z

e−iϕ(−P2)(R
−1
ϕ k)−































ei(R
−1
ϕ k)·r (38)

and on the other hand

D(Rϕ)H6































eik·r

0

0

0

0

0































= D(Rϕ)































0

0

0

0

−P2kz

−P2k−































eik·r =































0

0

0

0

−eiϕP2kz

−P2k−































ei(R
−1
ϕ k)·r. (39)
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It then follows that

[D(Rϕ)H6 −H6D(Rϕ)]































eik·r

0

0

0

0

0































= 0 (40)

only if eiϕ = e−iϕ, which implies ϕ = nπ. One can further straightforwardly extend this results to

other basis vectors.

The most convenient basis to represent the action of the D(σv) operator is the basis

{u1, . . . , u6} = { 1√
2
(|px,a〉+ |py,a〉) , 1√

2
(|px,a〉 − |py,a〉) , |pz,a〉,

1√
2
(|px,b〉+ |py,b〉) , 1√

2
(|px,b〉 − |py,b〉) , |pz,b〉}. (41)

In this basis, the H6 block reads

H6 =































0 0 0 −iP2kz 0 −i√
2
P2(kx + ky)

0 0 0 iP2kz
1√
2
(−i)P2(ky − kx)

0 −i√
2
P2(kx + ky)

−i√
2
P2(ky − kx) 0

0 0 0

0 0

0































. (42)

In this basis, the action of the operator D(σv) on the spinor is given as

D(σv)































ψ1(x, y, z)

ψ2(x, y, z)

ψ3(x, y, z)

ψ4(x, y, z)

ψ5(x, y, z)

ψ6(x, y, z)































=































ψ1(y, x, z)

−ψ2(y, x, z)

ψ3(y, x, z)

ψ4(y, x, z)

−ψ5(y, x, z)

ψ6(y, x, z)































. (43)
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It follows

H6D(σv)































eik·r

0

0

0

0

0































= H6































ei(kxy+kyx+kzz)

0

0

0

0

0































=































0

0

0

iP2kz

0

1√
2
iP2(kx + ky)































ei(kxy+kyx+kzz). (44)

On the other hand

D(σv)H6































eik·r

0

0

0

0

0































= D(σv)































0

0

0

iP2kz

0

1√
2
iP2(kx + ky)































eik·r =































0

0

0

iP2kz

0

1√
2
iP2(kx + ky)































ei(kxy+kyx+kzz) (45)

and consequently

[D(σv)H6 −H6D(σv)]































eik·r

0

0

0

0

0































= 0. (46)

One can further show that this result is valid also for other basis vectors.

We further analyze the influence of the [001] interface term on the symmetry of the system. This

Hamiltonian in the basis (19) reads:

H[001] =

















0 0 0 −a
0 b 0

0 0

0

















δθ(z). (47)
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In the basis (21), the same Hamiltonian reads

H[001] =

















0 0 0 −a
0 −ib 0

0 0

0

















δθ(z). (48)

The action of the rotation operator on the spinor is given by (23). One then obtains:

H[001]D(Rϕ)

















0

eik·r

0

0

















= H[001]

















0

e−iϕei(R
−1
ϕ k)·r

0

0

















=

















0

0

ibe−iϕ

0

















ei(R
−1
ϕ k)·rδθ(z) (49)

and on the other hand

D(Rϕ)H[001]

















0

eik·r

0

0

















=

















0

0

ib

0

















eik·rδθ(z) =

















0

0

ibeiϕ

0

















ei(R
−1
ϕ k)·rδθ(z). (50)

This implies that D(Rϕ) and H[001] commute only if ϕ = nπ.

Next, we proceed with the proof that H[001] commutes with the operator D(σv). For this proof, it

is convenient to work in the basis (27). In this basis H[001] reads

H[001] =

















0 0 0 −a
b 0 0

−b 0

0

















δθ(z). (51)

In this basis, the action of the operator D(σv) on the spinor is given by (29). It follows

H[001]D(σv)

















0

0

eik·r

0

















= H[001]

















0

0

−ei(kxy+kyx+kzz)

0

















=

















0

0

b

0

















ei(kxy+kyx+kzz)δθ(z). (52)
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On the other hand

D(σv)H[001]

















0

0

eik·r

0

















= D(σv)

















0

0

−b
0

















δθ(z)eik·r =

















0

0

b

0

















ei(kxy+kyx+kzz)δθ(z). (53)

The contribution of the Hamiltonian from the [101], [011], [1̄01] and [01̄1] interfaces in the basis (19)

is equal to

Hif =

















0 −c 0 −c
0 d 0

0 d

0

















δθ(r · n1 − l) +

















0 0 −c −c
0 d d

0 0

0

















δθ(r · n2 − l) +

















0 c 0 −c
0 d 0

0 −d
0

















δθ(r · n3 − l) +

















0 0 c −c
0 d −d

0 0

0

















δθ(r · n4 − l). (54)

In the basis (21) this Hamiltonian reads

Hif =

















0 − 1√
2
c − 1√

2
c −c

0 −id − i√
2
d

0 i√
2
d

0

















δθ(r · n1 − l) +

















0 − i√
2
c i√

2
c −c

0 −id 1√
2
d

0 1√
2
d

0

















δθ(r · n2 − l) +

















0 1√
2
c 1√

2
c −c

0 −id i√
2
d

0 − i√
2
d

0

















δθ(r · n3 − l) +

















0 i√
2
c − i√

2
c −c

0 −id − 1√
2
d

0 − 1√
2
d

0

















δθ(r · n4 − l). (55)

The action of the rotation operator on the spinor is given by (23). One then obtains:

HifD(Rϕ)

















eik·r

0

0

0

















= Hif

















ei(R
−1
ϕ k)·r

0

0

0

















=
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=

































0

− c√
2

− c√
2

−c

















δθ(r · n1 − l) +

















0

i c√
2

−i c√
2

−c

















δθ(r · n2 − l)+

















0

c√
2

c√
2

−c

















δθ(r · n3 − l) +

















0

−i c√
2

i c√
2

−c

















δθ(r · n4 − l)

















ei(R
−1
ϕ k)·r. (56)

On the other hand,

D(Rϕ)Hif

















eik·r

0

0

0

















= D(Rϕ)

































0

− c√
2

− c√
2

−c

















δθ(r · n1 − l) +

















0

i c√
2

−i c√
2

−c

















δθ(r · n2 − l)+

















0

c√
2

c√
2

−c

















δθ(r · n3 − l) +

















0

−i c√
2

i c√
2

−c

















δθ(r · n4 − l)

















eik·r (57)

and consequently

D(Rϕ)Hif

















eik·r

0

0

0

















=

































0

−e−iϕ c√
2

−eiϕ c√
2

−c

















δθ
[

r ·
(

R−1
ϕ n1

)

− l
]

+

















0

ie−iϕ c√
2

−ieiϕ c√
2

−c

















δθ
[

r ·
(

R−1
ϕ n2

)

− l
]

+

















0

e−iϕ c√
2

eiϕ c√
2

−c

















δθ
[

r ·
(

R−1
ϕ n3

)

− l
]

+

















0

−ie−iϕ c√
2

ieiϕ c√
2

−c

















δθ
[

r ·
(

R−1
ϕ n4

)

− l
]

















ei(R
−1
ϕ k)·r.

(58)

By comparison of the last two equations, one shows that the operators commute when ϕ = nπ.

Finally, we would like to show that the Hamiltonian Hif commutes with the D(σv) operators as
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well. We represent the Hamiltonian in the basis (27) where it reads

Hif =

















0 − 1√
2
c − 1√

2
c −c

d 0 d√
2

−d − d√
2

0

















δθ(r · n1 − l) +

















0 − c√
2

c√
2

−c
d 0 1√

2
d

−d 1√
2
d

0

















δθ(r · n2 − l) +

















0 1√
2
c 1√

2
c −c

d 0 − d√
2

−d d√
2

0

















δθ(r · n3 − l) +

















0 1√
2
c − 1√

2
c −c

d 0 − d√
2

−d − d√
2

0

















δθ(r · n4 − l). (59)

The action of the D(σv) operator on the spinor is given by (29). It follows then

HifD(σv)

















eik·r

0

0

0

















= Hif

















ei(kxy+kyx+kzz)

0

0

0

















=

=

































0

− c√
2

− c√
2

−c

















δθ(r · n1 − l) +

















0

− c√
2

c√
2

−c

















δθ(r · n2 − l)+

















0

c√
2

c√
2

−c

















δθ(r · n3 − l) +

















0

c√
2

− c√
2

−c

















δθ(r · n4 − l)

















ei(kxy+kyx+kzz). (60)

On the other hand,

D(σv)Hif

















eik·r

0

0

0

















= D(σv)

































0

− c√
2

− c√
2

−c

















δθ(r · n1 − l) +

















0

− c√
2

c√
2

−c

















δθ(r · n2 − l)+

















0

c√
2

c√
2

−c

















δθ(r · n3 − l) +

















0

c√
2

− c√
2

−c

















δθ(r · n4 − l)

















eik·r (61)
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and consequently

D(σv)Hif

















eik·r

0

0

0

















=

































0

− c√
2

c√
2

−c

















δθ
[

r ·
(

σ−1
v n1

)

− l
]

+

















0

− c√
2

− c√
2

−c

















δθ
[

r ·
(

σ−1
v n2

)

− l
]

+

















0

c√
2

− c√
2

−c

















δθ
[

r ·
(

σ−1
v n3

)

− l
]

+

















0

c√
2

c√
2

−c

















δθ
[

r ·
(

σ−1
v n4

)

− l
]

















ei(kxy+kyx+kzz).

(62)

After noting that σ−1
v n1 = n2 and σ−1

v n3 = n4 and performing the same calculation for other basis

states, one concludes that Hif and D(σv) commute.

IV. INTEGRALS OF PLANE WAVES OVER THE SURFACES OF QD

To represent the interface Hamiltonian (Eq. 6 of the main paper) in the plane wave basis, it is

necessary to calculate the integrals:

ωL(k) =
∫

V
δθ(r · n− l) · eik·rdV. (63)

These reduce to the integrals over the faces of the pyramid:

ωL(k) =
∫

S
eik·rdS. (64)

We obtain:

ω[001] =
∫ b/2

x=−b/2
dx
∫ b/2

y=−b/2
dyeikxxeikyy = I0(kx,−b/2, b/2)I0(ky,−b/2, b/2). (65)

Next, we get:

ω[101] =
∫ b/2

x=0

∫ x

y=−x
(dxdy

√
2)eikxxeikyyeikz(b/2−x) (66)

ω[101] =
√
2eikzb/2

∫ b/2

x=0
dxei(kx−kz)x











eikyx−e−ikyx

iky
ky 6= 0

2x ky = 0
(67)
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ω[101] =
√
2eikzb/2











[I0(kx + ky − kz, 0, b/2)− I0(kx − ky − kz, 0, b/2)]
1
iky

ky 6= 0

2I1(kx − kz, 0, b/2) ky = 0.
(68)

The other integrals can be expressed in terms of ω[101] as

ω[011](kx, ky, kz) = ω[101](ky,−kx, kz), (69)

ω[1̄01](kx, ky, kz) = ω[101](−kx,−ky, kz), (70)

ω[01̄1](kx, ky, kz) = ω[101](−ky, kx, kz). (71)

In the above equations, the following notation was used:

In(k, a, b) =
∫ b

a
dxeikxxn. (72)

∗ nenad.vukmirovic@ipb.ac.rs

21


