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We present a method for the calculation of the electronic structure of systems that contain tens of
thousands of atoms. The method is based on the division of the system into mutually overlapping
fragments and the representation of the single-particle Hamiltonian in the basis of eigenstates of
these fragments. In practice, for the range of the system size that we studied (up to tens of thousands
of atoms), the dominant part of the calculation scales linearly with the size of the system when
all the states within a fixed energy interval are required. The method is highly suitable for making
good use of parallel computing architectures. We illustrate the method by applying it to diagonalize
the single-particle Hamiltonian obtained using the density functional theory based charge patching
method in the case of amorphous alkane and polythiophene polymers. © 2011 American Institute of
Physics. [doi:10.1063/1.3560956]

I. INTRODUCTION

In the last few decades, density functional theory (DFT)
(Ref. 1) became a method of choice for the calculation of the
electronic structure of physical systems with a relatively large
number (hundreds to about a thousand) of atoms. Within DFT,
one has to self-consistently solve the Kohn–Sham equations2

for the wave functions ψi and energies εi(
− ¯

2

2m0
∇2 + Vion + VH + Vxc

)
ψi = εiψi , (1)

where Vion is the potential of the core ions, VH is the elec-
trostatic (Hartree) potential of the electronic charge density
distribution ρ(r), and Vxc is the exchange correlation potential
which, under the local density approximation (LDA), depends
only on the charge density at a given point in space.

There is a strong interest to develop methods where the
cost of solving the system of equations (1) would depend lin-
early on the number of atoms in the system. Such methods
are based either on the representation of DFT equations in lo-
calized orbital basis sets3, 4 or on the division of the system
into small fragments.5, 6 These methods are still computation-
ally demanding due to the necessity of evaluating all the wave
functions of occupied states in each iteration until the self-
consistency is reached.

A different class of (empirical) methods has been
developed in the semiconductor physics community, where
the main philosophy is to directly construct the Kohn–Sham
Hamiltonian [the left hand side of Eq. (1)]. In the em-
pirical and semiempirical pseudopotential method (EPM
and SEPM), the total potential is considered as a sum of
pseudopotentials of individual atoms, that are obtained either
by fitting to the bandstructure of a bulk semiconductor7, 8

or extracted from ab initio calculations of the bulk.9 Such

a)Electronic mail: nenad.vukmirovic@ipb.ac.rs.

pseudopotentials are then used to construct the Hamiltonian
of the nanostructure of interest.9, 10 A more recent approach is
the charge patching method (CPM),11, 12 where the electronic
charge density is constructed from charge density contri-
butions of individual atoms—so called motifs. The motifs
are extracted from calculations on small prototype systems,
where the atoms have a similar bonding environment as in the
system of interest. For a range of inorganic and organic semi-
conducting systems,11–17 the charge density and the potential
obtained from the CPM closely match the ones that would
be obtained from a full self-consistent DFT calculation. The
construction of the Hamiltonian in the methods mentioned
above (EPM, SEPM, and CPM) is quick and its cost scales
linearly with the size of the system.

Once the Kohn–Sham Hamiltonian is constructed, one
has to solve its eigenvalue problem. For semiconducting sys-
tems, the spectral region of interest is the one in the vicinity
of the band gap. Therefore, one needs to solve for these
electronic states only. This can be achieved using the folded
spectrum method.18 The folded spectrum method (imple-
mented in plane wave representation of the wave functions)
scales linearly with the size of the system when a fixed num-
ber of states are required. However, in many calculations, one
is interested in a fixed energy window of the order of several
kBT below or above the band gap, since this is the spectral
region that determines the electronic transport properties of
the system. The number of states in such an energy window
also increases linearly with the size of the system, and
consequently the overall computational cost within the folded
spectrum method increases quadratically with the system size.

In this paper, we present a different strategy for the di-
agonalization of the Hamiltonian. It is based on the idea of
representing the Hamiltonian in a localized and physically
well motivated basis. The whole system is divided into many
small fragments, that are not necessarily disjoint, and the
eigenstates of the fragments are chosen as the basis for the
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FIG. 1. The scheme describing the implementation of the OFM on parallel computers.

representation of the Hamiltonian. In some sense, this ap-
proach combines the ideas from the literature on using the
localized basis sets and the division of the system into frag-
ments. We will refer to this method as overlapping fragments
method (OFM).

We have developed this methodology with a particular
focus toward its application to understanding the electronic
states in semiconducting polymer materials. These materials
are, to a large extent, disordered and there is a strong need for
large supercell calculations that would provide reliable infor-
mation about the degree of localization of electronic states,
the density of states, and eventually the electronic transport
properties.16, 19, 20 For such systems, the atomic structure can
be reliably generated from classical molecular dynamics
(MD),17, 21–28 but the challenge remains to calculate the
electronic structure. The current method excellently comple-
ments our recently developed CPM for the construction of
the Hamiltonian of organic semiconducting materials.

We present the details of the implementation of the
methodology in Sec. II. In Sec. III, we illustrate the method
to diagonalize the Hamiltonian obtained from the CPM in
the case of alkanes and describe the main points that one
should address when performing such a calculation. Finally,
in Sec. IV, the method is illustrated by an application to
one of the most widely studied organic polymers—poly
(3-hexylthiophene) (P3HT).

II. METHOD AND IMPLEMENTATION

In this section, we describe the details of the OFM and its
implementation on parallel computers. The input to our com-
putation is the atomic structure of the system and its potential
obtained from the CPM, while the output gives the transfer in-
tegrals Hi j,mn = 〈φ( j)

i |H |φ(n)
m 〉 and the wave function overlaps

Si j,mn = 〈φ( j)
i |φ(n)

m 〉 between the pairs of states φ
( j)
i and φ(n)

m ,
which are the i th wave function of the fragment j and the mth

wave function of the fragment n. Each fragment consists of
a molecule (its choice will be discussed later) embedded in a
cuboid box. The potential is stored on all the nT central pro-
cessing units (CPUs) available for computation, as schemati-
cally illustrated in Fig. 1.

The computation consists of two main parts (Fig. 1):
the calculation of basis wave functions and the calculation
of Hi j,mn and Si j,mn . We allocate nL CPUs to each of the
fragments, where nL is typically some small number (for
example, nL = 8 or 16). The calculation of the basis wave
functions stemming from a given fragment is performed as
follows. The charge density of the fragment is obtained using
the charge patching method by adding the charge density
motifs of each of the atoms in the fragment. The Hartree
potential of the fragment is then evaluated from the solution
of the Poisson equation with periodic boundary conditions,
and the exchange correlation potential is obtained from the
LDA formula. In such a way, one obtains the Hamiltonian of
the fragment, which is then diagonalized using the ESCAN

code,29 which implements the preconditioned conjugated
gradient minimization algorithm with the plane wave basis
set. The basis wave functions φ

( j)
i stemming from each frag-

ment j are therefore obtained. At this stage, we also calculate
H |φ( j)

i 〉 (where H is the Kohn–Sham Hamiltonian of the
whole system, not just the fragment), which will be later
required for the evaluation of Hi j,mn . To achieve this, one first
has to send the required real space grid values of the potential
to the nL CPUs allocated for fragment j . The H |φ( j)

i 〉 op-
eration is then performed using one of the main subroutines
from the ESCAN code. One should note that the speed of the
calculation of basis wavefunctions can be further improved
by using some localized basis set instead of plane waves.

Let nF be the number of fragments in the system and
k = �nT/nL�. We divide the fragments into nSF = �nF/k� se-
ries, as illustrated in Fig. 1. The calculations on the fragments
from the same series are performed in parallel, where each
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fragment uses its nL allocated CPUs (see Fig. 1). Such calcu-
lations are repeated for all nSF series of fragments.

The code for performing the above tasks was written by
making good use of the existing codes for performing the
charge patching calculations, solving the Poisson equation
and the ESCAN code. These were integrated into a single code
to avoid reading and writing to the disk of the input and out-
put files, such as charge densities and potentials, which can
be quite large. For the storage of the calculated basis wave
functions φ

( j)
i , their reciprocal space representation is used.

Each fragment will have only a few basis functions, as dis-
cussed below, and therefore the required memory for their
storage is not very big. Each of the existing codes has been al-
ready parallelized using the message passing interface (MPI).
Further parallelization with respect to fragments, described
above, was achieved by using the mpi_split command and
changing the mpi_comm_world communicator in the ex-
isting codes to a local communicator (among the nL CPUs)
defined by the mpi_split command.

The main part of the calculation consists of the calcu-
lation of the transfer integrals Hi j,mn and the wave function
overlaps Si j,mn between the pairs of states φ

( j)
i and φ(n)

m . Since
the wave function φ

( j)
i is well localized to the fragment j ,

one naturally introduces an approximation to consider only
the transfer integrals and wave function overlaps for the states
φ

( j)
i and φ(n)

m , such that the fragments j and n are not too dis-
tant in space. The exact criterion for this will be formulated
later in the paper. Let nP be the number of pairs of fragments
{ j, n} for which Hi j,mn and Si j,mn need to be evaluated. For
each pair, we allocate nL CPUs where the calculation is per-
formed. The pairs are divided into nSP = �nP/k� series, in a
similar manner as fragments (Fig. 1). To perform the calcu-
lation of Hi j,mn and Si j,mn for the pair { j, n} on its allocated
nL CPUs, one needs to receive the wave functions φ

( j)
i , Hφ

( j)
i ,

φ(n)
m , and Hφ(n)

m , which are stored on different groups of
nL CPUs, the ones associated with fragments j and n. With
the wave functions available on the allocated group of CPUs,
the overlap element Si j,mn is straightforwardly calculated
from the overlap of φ

( j)
i and φ(n)

m , while Hi j,mn is calculated
as the overlap of either φ

( j)
i and Hφ(n)

m or Hφ
( j)
i and φ(n)

m . In
a similar manner as for fragments, the calculations for pairs
from the same series are performed in parallel (Fig. 1), and
then sequentially repeated for all nSP series of pairs.

With Si j,mn and Hi j,mn elements at hand, the final step is
to find the electronic states by solving the generalized eigen-
value problem

∑
mn

(Hi j,mn − E Si j,mn)Cmn = 0. (2)

As will be shown, a limited number of basis wave functions
is sufficient for rather accurate results. Therefore, the dimen-
sion of the matrices Si j,mn and Hi j,mn is not very large. Con-
sequently, in our current implementation of the methodology,
this part is performed as a postprocessing step by using the
standard LAPACK (Ref. 30) single processor routines. For very
large systems or basis sets, we use SCALAPACK.31 One can,
in principle, also exploit the fact that the matrices Hi j,mn and

Si j,mn are sparse and use PARPACK (Ref. 32) which is well
suited in that case.

We note that a method exploiting to some extent similar
ideas, has been recently proposed by McMahon and Troisi,24

in the context of the calculation of the electronic structure of
semiconducting polymers. Their method is also based on the
partitioning of the system into fragments and calculating the
transfer integrals and basis wave function overlaps. In their
method, the transfer integrals are however evaluated from the
calculation of the system of two fragments in vacuum, which
is inevitably an approximation. In our case, on the other hand,
the transfer integrals are evaluated from the Kohn–Sham
Hamiltonian of the whole system. Such transfer integrals
therefore fully include all the other environmental factors
surrounding the two fragments. In the case of disordered
polymers, we therefore do include the variations of both
on-site energies and hopping integrals due to the random
electrostatic potential.

III. EXAMPLE OF THE CALCULATION:
DISORDERED ALKANES

In this section, we would like to illustrate the method-
ology by applying it to the alkane polymer system. As a
test system, we choose 20 alkane chains, each one being
20 monomers long (1240 atoms altogether). We generate the
atomic structure of the disordered chain from classical MD
using a simulated annealing procedure. The CFF91 force
field,33, 34 as implemented in the LAMMPS code35, 36 is used
in the simulation.

A. Choice of fragments

The main task necessary to successfully apply the de-
scribed methodology is to find the best way for the division
of the system into fragments. A seemingly natural way is to
cut the polymer into monomers, and to passivate the broken
bond in each monomer by the hydrogen atom. In the case
of alkanes, this would lead to the division of each n-units
long alkane chain into n CH4 molecules. There is however
a concern whether the basis set formed from the eigenstates
of monomer fragments would be sufficient to reliably de-
scribe the wave function of the whole system, in particular,
in the region of the broken bond. A way around this prob-
lem is to choose a basis set formed from overlapping dimer
fragments, illustrated in Fig. 2(a). In such a way n−units
long alkane chain is divided into (n − 1) C2H6 molecules.
The main advantage of this way of the division of the sys-
tem into fragments is that each bond in the system is fully
encompassed by at least one fragment. We expect further
improvement in the results when the system is divided into
trimer fragments (C3H8 molecules). On the other hand, one
should keep in mind that the choice of the fragments that are
too large is not advantageous from the computational point
of view, as the wave functions of all fragments need to be
evaluated.

To test the accuracy of the methodology, we have also
solved the eigenvalue problem of the whole Hamiltonian in
the plane wave basis set with kinetic energy cutoff of 60 Ry,
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(b)

(a)

FIG. 2. (a) A disordered chain of C20H42 and its division into overlapping
dimer fragments. Several first fragments are shown only. (b) An amorphous
system consisting of 20 C20H42 chains. Hydrogen atoms have been removed
for clarity.

using the ESCAN code. In Fig. 3, we compare the eigenener-
gies of all occupied states obtained with the plane wave ba-
sis set EPW and the eigenenergies obtained with the basis of
fragment wave functions EFR. We include in the basis set all
occupied states of the fragment, which constitutes four, seven,
and ten states for the cases of the monomer, dimer, and trimer
fragment, respectively. As one might have expected, the re-
sults from using the basis of monomer fragments are not so
accurate. In the lowest part of the spectrum, they are shifted by
more than 200 meV from the results obtained in plane wave
basis, while in the part of the spectrum near the top of the va-
lence band the errors are of the order of 1 eV. The basis of
dimer fragments is already quite satisfactory with eigenvalue
errors in the 10 meV range in the lowest part of the spec-
trum, and in the 30 meV range near the top of the valence
band. The basis of trimer fragments gives excellent results
with errors less than 1 meV in the lowest part of the spec-
trum and errors less than 10 meV near the top of the valence
band.

Based on the results presented so far, we can conclude
that the eigenfunctions of trimer fragments are an excellent
basis for the representation of the Hamiltonian of the system.
Since all the occupied states are calculated accurately, one can
also imagine of using this approach for a full self-consistent
DFT calculation without the use of the CPM. However, for the
present purpose, there is a strong interest to reduce the basis
set as much as possible, since the reduction of the number
of wave functions per fragment by a factor of K , reduces the
time for their calculation by a factor of K , reduces the number
of wave function overlaps and overlap integrals that need to be
calculated by a factor of K 2, and reduces the computational
time for the final diagonalization step by a factor of K 3.
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FIG. 3. The comparison of eigenenergies of an amorphous alkane system
calculated in the basis of fragment wave functions EFR and plane waves EPW.
The basis set consisting of all occupied states of the fragments was used in
the calculation. All occupied states are shown in the figure. The Fermi level
is at around 5 eV.

B. Choice of the number of basis states per fragment

The selection of fragment eigenstates which will be in-
cluded in the basis set is based on physical intuition. For the
lowest part of the spectrum, one expects that taking just the
few lowest states of the trimer (whose eigenstates are shown
in Fig. 4) should give quite accurate results. One can see from
Fig. 5 that even a single wave function per trimer gives quite
satisfactory results, with a systematic error of the order of
30 meV only. This is not so surprising since the lowest state
of the trimer is separated from the next one by about 3 eV
(see Fig. 4), and therefore it is the only state that strongly
contributes to the wave functions in the lowest part of the
spectrum. With the inclusion of more states, the results con-
verge toward the results obtained in plane wave basis. This is
fully expected from the variational principle that states that
the energy of any state formed from the finite basis set must
be larger than the exact one and converges toward the exact
one as the space spanned by the basis set is further increased.
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FIG. 4. The eigenenergies of the monomer (methane), dimer (ethane), and
trimer (propane). All occupied states and one unoccupied state are shown.
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FIG. 5. The comparison of eigenenergies at the bottom of the valence band
of an amorphous alkane system calculated in the basis of trimer fragment
wave functions EFR and plane waves EPW. The number of the basis wave
functions taken from each trimer is specified in the legend.

When one is interested in the part of the spectrum near
the top of the valence band, one expects, based on physical
intuition, that these states are formed from the highest oc-
cupied states of the fragment. However, in this case there is
no exact principle that requires the states to converge (either
from the top or bottom) toward the exact values as more high-
est occupied states of the fragment are added to the basis set.
Indeed, we see from Fig. 6 that the results obtained with one
and five basis states per fragment are on the opposite side of
the line with exact results. Furthermore, the results obtained
with two, three, or four highest occupied states per fragment,
appear to have large basis set superposition errors and yield
a completely different spectrum, where it is not even possi-
ble to correlate the eigenstates with the exact ones (these re-
sults are therefore not shown). The origin of such behavior
comes from the energy level structure of the trimer fragment
(Fig. 4). There are quite a few states near the highest occu-
pied state and until all of them are included in the basis set,
it is not possible to get a good description of the energy level
structure.

From these results, we may speculate about the general
rule for the choice of basis states when one is interested in
the states at the top of the valence band. One should make a
cutoff based on energies of fragment states at the place where
there is a substantial gap in their energies. However, it is dif-
ficult to predict in advance how many HOMOs are necessary.
While in the case of alkanes, at least five HOMOs are required
to get reasonably accurate results (Fig. 6), in the case of thio-
phenes, a single HOMO yields quite good results, as shown in
Sec. IV. Of course, the inclusion of all occupied states cer-
tainly leads to a good basis set. We find that it is often useful
and practical to test the basis set convergence on some small
systems (e.g., a single chain) where direct DFT calculation for
the whole system is possible, before using the current method
to calculate large systems.

It is also of substantial interest to determine which of
the calculated states will be occupied and which not, and
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FIG. 6. The comparison of eigenenergies of an amorphous alkane system
calculated in the basis of trimer fragment wave functions EFR and plane
waves EPW. The number of the highest occupied basis wave functions taken
from each trimer is specified in the legend.

consequently identify the Fermi level of the system. In the
case when all occupied states of the fragments are used as a
basis set, it is trivial to occupy the states of the whole sys-
tem based on the number of electrons in the system. In the
case when only a few HOMOs of the fragments are taken into
account, there is no such obvious procedure. Nevertheless,
in practice, we find it easy to recognize the HOMO–LUMO
gap using the following procedure. We calculate ei = 〈i |H |i〉,
where H is the Hamiltonian of the whole system and |i〉 is
the HOMO of the fragment. We then find the first gap in
the density of states above ei . That gap corresponds to the
HOMO–LUMO gap. All states below that gap are then occu-
pied, while the states above are empty.

C. Choice of the distance cutoff

An important factor that determines the accuracy of the
calculation on the one hand and its speed on the other hand
is the choice of pairs of fragments that are taken into ac-
count. We define the distance between fragments j and n as
the minimal distance between an atom in fragment j and an
atom in fragment n. A pair of fragments { j, n} is included
in the calculation if the distance between them is smaller than
some cutoff dcut. All the results presented so far have been ob-
tained with dcut (overcautiously) set to 7 Å. It is of interest to
find the optimal value of dcut which gives accurate eigenstates
while minimizing the number of fragment pairs in the calcula-
tion. The dependence of the energies in the lowest part of the
spectrum on dcut is presented in Fig. 7, which shows that dcut

= 5 Å gives fully converged eigenstates.

D. Dependence of computational time on system size

The computational time for the dominant part of the
calculation in the described methodology scales linearly with
the size of the system in the size range considered in this
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FIG. 7. The dependence of the eigenenergies of an amorphous alkane system
in the lowest part of the valence spectrum on the cutoff distance dcut between
the fragments. The basis set with one wave function per fragment is used.

paper, if the states in the fixed energy window are required,
for the following reasons. The number of fragments is pro-
portional to the size of the system, while the number of basis
wave functions per fragment remains the same. Therefore,
the time necessary to calculate all the basis wave functions
is proportional to the number of fragments and consequently
scales linearly with the size of the system. Furthermore, the
number of fragment pairs with distance less than a certain
predefined dcut is also proportional to the number of atoms.
For example, in the case of alkanes for dcut = 5 Å, the number
of pairs is approximately ten times larger than the number of
atoms. As a consequence, the CPU time for these two parts
of the calculation scales linearly with the size of the system,
as shown in Figs. 8 and 9. The final diagonalization step, on
the other hand, formally scales as N 3 with the size of the
system. However, in the system size range that we consider,
this step takes a much smaller amount of time than the first
two steps, as demonstrated in Fig. 9 (right panel). As a result,
in this range of system dimensions, the total computational
effort scales linearly with the system size, as can be seen in
Figs. 8 and 9.

IV. APPLICATION TO A CONJUGATED
POLYMER SYSTEM

The main motivation behind the development of this
methodology was the lack of appropriate methods for the
efficient calculation of the electronic structure of disordered
conjugated polymers, where large supercells are required to
provide insight into the physical properties of the system.
Therefore, in this section, we test the applicability of the
method to the calculation of hole states in P3HT, a widely
studied polymer for applications in organic electronics.

We compare the eigenenergies obtained using OFM with
the ones obtained by diagonalizing the CPM Hamiltonian
using the plane wave basis set with kinetic energy cutoff of
60 Ry (which is done using the ESCAN code). For this test,
we consider the system of 5 P3HT chains, each one being
20 thiophene rings long (which makes 2510 atoms alto-
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Number of fragments
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U 
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)

FIG. 8. The dependence of the CPU time (defined as the wall clock time
times the number of CPUs) on the size of the amorphous alkane system. The
line is a fit to the O(N ) dependence. The calculations have been performed
using one basis wave function per fragment. The number of CPUs in these
calculations is typically of the order of 5000.

gether). The atomic structure of the system was generated
from classical MD, using a simulated annealing procedure,
as in our previous work.17 We make a comparison for ten
different random realizations of the system, differing by ini-
tial conditions in the MD simulation. We choose the basis of
overlapping trimer fragments. In the fragments the side hexyl
chains have been replaced by propyl chains. This replacement
is motivated by the well known fact that wave functions in the
region near the band edge that determine the electronic prop-
erties are localized on the main chain and not the alkyl side
chains. Such a division into fragments would certainly not be
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DiagonalizationCalculation of basis wavefunctions
and Hamiltonian matrix

FIG. 9. The dependence of the CPU time (defined as the wall clock time
times the number of CPUs) on the size of the amorphous alkane system.
The basis of ten wavefunctions per fragment is used in these calculations.
The left panel shows the dependence of the time required for the calculation
of the basis wavefunctions and Hamiltonian matrix elements [the line is a
fit to the O(N ) dependence]. The right panel shows the time required for
the solution of the generalized eigenvalue problem [the line is a fit to the
O(N 3) dependence]. The number of CPUs used for the calculation in the left
panel was typically of the order of 5000, while in the right panel it ranged
from 100 for the smallest system to 1600 for the largest system. This yields
a wall clock time of the order of several hours for the construction of the
Hamiltonian matrix and less than 10 min for its diagonalization.
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FIG. 10. The comparison of eigenenergies of the amorphous P3HT system
obtained using the diagonalization of the Hamiltonian by the OFM EFR and
in the plane wave basis EPW. The straight line is given as a guide to the eye.

sufficient to describe the part of the electronic spectrum where
the electronic states stemming from alkyl chains contribute to
the density of states. That region is however far from the band
gap region and is not of any physical interest. We further note
that such a replacement by no means implies that the presence
of hexyl side chains is ignored, in terms of their effects on
the atomic structure of the system and the electrostatic po-
tential in the full system Hamiltonian H as constructed using
the CPM.

We performed the test for different sizes of the basis
set, consisting of n top HOMOs of each fragment (where
n ∈ {1, 2, 3, 4}). The results gathered from all ten random re-
alizations are presented in Fig. 10. The results obtained with
n = 1 are already quite accurate. The eigenenergy error for
the states closest to the top of the valence band is of the order
of 30 meV and increases to 120 meV as one goes 0.7 eV fur-
ther away. The results are the most accurate for n = 3 when
the eigenenergy error is in the 10–50 meV range. One should
note that there is no exact principle that requires the eigenen-
ergies to converge toward the “exact" ones as the basis set
is increased, and therefore there is no guarantee that a larger
basis set would improve the results. Indeed, we find that for
n = 4 the results become worse than for n = 3 (which can be
evidenced by a larger dispersion of points and the presence
of points both below and above the line). Finally, as one goes
beyond n = 4, certain states enter the band gap region and it
becomes impossible even to establish a correspondence be-
tween the eigenstates from the plane wave calculation with
eigenstates from the OFM calculation.

We would like to point out that our methodology strongly
reduces the size of the basis set needed to represent the
Hamiltonian of the system and for that reason makes the diag-
onalization part of the calculation the least demanding one. In
the case of 2510 atom P3HT system, the basis of top three

HOMOs per fragment consists of 270 elements and yields
eigenenergies with errors in the 10–50 meV range. On the
other hand, if the same system was considered using some
typical basis of Gaussian orbitals, such as 6-31G∗, the size
of the basis set would be 19720. In the case of alkanes, the
gain is somewhat smaller. In our method with five HOMOs
per fragment, that yields eigenenergy errors below 50 meV,
we use 1800 basis wavefunctions to represent the 1240 atom
alkane system. On the other hand, the 6-31G∗ basis set for the
same system consists of 7680 wavefunctions.

V. CONCLUSION AND OUTLOOK

We have introduced the OFM for the calculation of
eigenstates of the single-particle Hamiltonian. The method is
based on the partitioning of the system into mutually overlap-
ping fragments, the representation of the Hamiltonian in the
basis of eigenstates of these fragments and the diagonaliza-
tion of the obtained generalized eigenvalue problem. We have
illustrated the method by applying it to find the eigenstates
of the Hamiltonian of organic polymers obtained from the
CPM. The method is expected to be more general—it would
be very interesting to test the method in other systems, such
as, for example, inorganic nanostructures, inorganic alloys,
or any other organic structures—either ordered or disordered.
The method is expected to be especially useful for under-
standing the properties of electronic states in the near-band
gap tail of the density of states of statically or dynamically
disordered systems, where large statistics is necessary to
get reliable information. In this kind of systems the method
would provide detailed information about the density of
states in the tail, the wave function localization properties,
and consequently the electronic transport in the system.
Furthermore, the method directly yields a parametrization
of the Hamiltonian in a localized basis set and as such can
be used as a starting point to build simple, but insightful
tight-binding models of disordered systems. Finally, the
method is naturally parallelizable and can make excellent
use of parallel computing architectures, which have become
the dominant paradigm in modern computing.
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