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The band structure of Ge1−x−ySixSny ternary alloys, which are easier to grow than binary Ge1-xSnx alloys,
and clearly offer a wider tunability of their direct band-gap and other properties, was calculated and investi-
gated by using the empirical pseudo-potential plane wave method with modified Falicov pseudo-potential
formfunction. The virtual crystal approximation (VCA) and 2×2×2 super-cell (mixed atoms) method were
adopted to model the alloy. In order to calculate all of these properties, the empirical pseudo-potential
code was developed. The lattice constant of the alloy varies between 0.543 to 0.649 nm. The regions in
the parameter space that corresponds to a direct or indirect band gap semiconductor are identified. The
Ge1−x−ySixSny ternary alloy shows the direct band gap for appropriate composition of Si, Ge and Sn.
The direct energy gap is in the range 0–1.4 eV (from the VCA calculation), and 0–0.8 eV (from the
super-cell calculation), depending on the alloy composition. Therefore, this alloy is a promising material
for optoelectronic applications in both visible and infrared range, such as interband lasers or, solar cells.
Furthermore, strain-free heterostructures based on such alloys are designed and, using the effective-mass
Hamiltonian model, the electronic structure of GeSiSn quantum wells with arbitrary composition is inves-
tigated, in order to understand their properties and the potential of their use in devices.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

SiGeSn alloys have attracted research attention as promising ma-
terials for optoelectronic applications [1–3], such as interband lasers,
detectors, and solar cells, because they may be direct bandgap semi-
conductors, and fully compatible with Si-based technology. They
have the potential for independent variation of the band structure
and lattice constant and can be used in both lattice-matched and
strained layer structures. Offering the possibility of emission and ab-
sorption in the visible, near- andmid-IR range, they have the prospect
of applications for solar cell, photodetectors, electro-absorption and
electro-optic modulators, etc.
2. Computational details

For band structure calculation of Ge1−x−ySixSny alloys when x
and y were varied from 0 to 0.4, we used the empirical pseudo-
potential plane wave method, which can predict the band structure
and optical properties of semiconductors with good accuracy. The cal-
culations for alloys were made both within the virtual crystal
.
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approximation and by the super-cell (mixed atom) method, using
the available experimental data for comparison. The modified Falicov
pseudo-potential formfunction was adopted [4], as given by Eq. (1),
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–b2
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where the parameters b1, b2, b3, b4, b5 and b6 for silicon, germanium and
gray tin are given in Table 1, and q is the wave vector (in atomic units).

3. Results

The lattice constant of Ge1−x−ySixSny alloy was calculated by
using the Vegard's law [5,6] with the bowing correction, by using
quadratic interpolation of lattice constants of silicon, germanium
and gray tin, as given by Eq. (2),

aGeSiSn ¼ aGe þ ΔSiGe xð Þ þ θSiGe xð Þ 1−xð Þ þ ΔSnGe yð Þ
þ θSnGe yð Þ 1−yð Þ; ð2Þ

where aGe, aSi, and aSn are the lattice constants of germanium, silicon
and gray tin, respectively, and ΔSiGe (ΔSnGe) denote aSi–aGe (aSn–aGe),
respectively. The bowing parameter for lattice constant of Ge1−xSix,
θSiGe, is −0.026 and that of Ge1−ySny, θGeSn, is 0.166. The alloy lattice
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Table 1
The parameters of the modified Falicov pseudo-potential for silicon, germanium and
gray tin.

Parameter b1 b2 b3 b4 b5 b6

Si 0.3969 2.2286 0.6120 −1.9620 5.0 0.3
Ge 0.4229 2.4682 0.6060 −2.6260 5.0 0.3
α-Sn 0.4199 2.1600 0.6407 −2.9820 5.0 0.3
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constant dependence on the composition x and y is shown in Fig. 1.
Due to the lack of any data on quadratic terms for the empirical
pseudo-potential formfunction of the alloy for the VCA based calcula-
tions, this was calculated in the samemanner, but only with linear in-
terpolation,

VGeSiSn ¼ VGe 1−x−yð Þ þ VSi xð Þ þ VSn yð Þ; ð3Þ

where VGe, VSi, and VSn are the empirical pseudo-potentials of germa-
nium, silicon and gray tin, respectively. The VCA is known to give an
almost linear dependence of the direct gap of GeSn on the Sn mole
fraction, while there exists a significant bowing [7]. Moreover, the
exact arrangement of Ge, Si and Sn atoms (any ordering or clustering)
will significantly affect the band gap properties. Therefore, in order to
check the accuracy of the VCA for the random alloy, the super-cell
(mixed atom) method was also employed, with 2×2×2 crystalline
cubic cells (64 atoms) in the super-cell. The Ge1−x−ySixSny alloy is
obtained by randomly distributing X=64x Si atoms, Y=64y Sn
atoms, and 64-X-Y Ge atoms over the 64 lattice sites of the super-
cell. The band structure of the random alloy is obtained by averaging
the results over a significant numbers of possible configurations. We
should also note that random alloys may be considered by the elegant
technique of special quasirandom structures [8], with atomic configu-
ration within the limited-size super-cell constructed so to maximally
mimic the randomness of the alloy, and a single super-cell calcula-
tion, rather than averaging over a number of them, suffices. However,
only a small number of composition combinations in ternary alloys
leads to relatively small special quasirandom super-cells [9], and in
order to cover a more dense mesh of alloy compositions we have
here used multiple random configurations and averaging. According
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Fig. 1. The lattice constant of relaxed Ge1− x−ySixSny alloy calculated by Vegard's law
with the bowing parameters taken into account.

Fig. 2. The lowest (either direct or indirect) band gap of relaxed Ge1− x−ySixSny alloys
calculated by (a) the VCA and (b) the super-cell (mixed atom) method.
to Fig. 2 which shows the band gap of the Ge1−x−ySixSny alloy at Γ
point obtained by the two methods, only the super-cell method
gives the bowing parameter in good agreement with experiment
[3], where as the VCA always under estimates it.

This theoretical model was used to calculate the electronic struc-
ture of Ge1−x−ySixSny alloys. We find the region in the parameter
space that corresponds to a direct band gap semiconductor, achieved
by the material composition alone (no strain is involved here), as
shown in Fig. 2. Using the data for the lattice constant (Fig. 1) and
for the direct band gap (Fig. 2(b)), the strain-free direct band gap
nanostructures, such as quantum wells, can be designed and fabricat-
ed by choosing two alloys with different values of the band gaps (i.e.
with different composition) from the direct band gap region, but with
the same lattice constants.

In particular, a strain-free Ge(1−x−y)SixSny/Ge(1−w)Snw/Ge(1−x−y)

SixSny/Ge(1−w)Snw/Ge(1−x−y)SixSny double quantum well was
designed, and its electronic structure and optical properties calculated
using the effective-mass Hamiltonian model. In order to have a strain-
free direct band gap nanostructure with appropriate barrier height, the
Ge0.75Sn0.25 alloywas chosen as thewellmaterial andGe0.437Si0.25Sn0.313
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Fig. 3. The strain-free double quantum well structure Ge0.437Si0.25Sn0.313/Ge0.75Sn0.25/
Ge0.437Si0.25Sn0.313/Ge0.75Sn0.25/Ge0.437Si0.25Sn0.313 with layer widths 10/6/2/6/10 nm,
and its quantized states wavefunctions (for electrons and holes).
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for the barrier layers. The carrier effective masses in both layers were
extracted from the electronic band structure of the two alloys, using
the parabolic approximation,

�h2=m� ¼ ∂2ε=∂k2
� �

where m⁎ is the effective mass, ε the energy and k the wave vector. The
final ingredient required for the calculations of heterostructures is the
valence band offset at the interface. In the absence of any more detailed
experimental data, we have used an expression in accordance to Jaros
[10], i.e. for Sn grown on SixGeySn(1−x−y) ΔVvb=1.17 x+0.69y [in
eV]. The band energies on the absolute energy scale are not intrinsically
contained in the pseudo-potential form factors, and therefore cannot be
obtained within the empirical pseudo potential method.

An example of energy levels andwave functions (electrons and holes)
in a strain-free double quantum well structure Ge0.437Si0.25Sn0.313/
Ge0.75Sn0.25/Ge0.437Si0.25Sn0.313/Ge0.75Sn0.25/Ge0.437Si0.25Sn0.313 with layer
widths 10/6/2/6/10 nm (i.e. based entirely on direct band gap GeSiSn
materials) are shown in Fig. 3.

4. Discussion

The results indicate that only the super-cell method enables a rea-
sonably accurate calculation of SiGeSn band structure, while the VCA
should not be used (unless appropriate bowing corrections are de-
vised for the formfunctions). However, we should note that a couple
of approximations were still made in the super-cell calculation: the
atomic position relaxation, due to different radii of Si, Ge, and Sn
atoms, was not taken into account. Furthermore, the EPM neglects
the charge transfer between different atoms due to their unequal
electro-negativities, and ion core-valence electron interacting
strengths. However, the ionicity and polarity in ordered SiSn and
GeSn alloys are larger than in SiGe [11], but much smaller than in
SiC, and that we expect that the error coming from these effects will
not be large. Although these approximations will have some influence
the electronic band structure of Ge1−x−ySixSny and heterostructures
based on it, we believe that the guidelines for achieving the direct
band gap, provided by the super-cell calculations presented here,
will remain in place.

5. Conclusion

In search for group IV based direct band gap materials, the elec-
tronic structure of relaxed Ge1−x−ySixSny alloys, with x and y vary-
ing in the range 0 to 0.4, was calculated by the empirical pseudo-
potential plane wave method. It shows the possibility of achieving a
direct band gap semiconductor, by using appropriate compositions
of silicon, germanium and tin. The results indicate that the values of
the direct band gap are in the range of 0–0.8 eV, depending on the
alloy composition. Therefore, this alloy can be useful for a number
of electronic and optoelectronic applications, such as interband and
intraband (quantum cascade) lasers, solar cells, photodetectors,
electro-absorption and electro-optic modulators [12–15].
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