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Nonadiabatic molecular dynamics simulation for carrier transport in a
pentathiophene butyric acid monolayer

Junfeng Ren,1,2 Nenad Vukmirović,3 and Lin-Wang Wang1,*
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We present a large-scale nonadiabatic molecular dynamics simulation to study carrier transport in an organic
monolayer. This simulation calculates a 4802-atom system for 825 fs in about 3 h using 51 744 computer
cores, while deploying a plane-wave pseudopotential density-functional theory Hamiltonian. A new approach is
developed that makes such large-scale calculation possible. Our simulation on the pentathiophene butyric acid
monolayer reveals the mechanism for the carrier transport in the system: the hole wave functions are localized by
thermal fluctuation-induced disorder, while the hole transport is via charge transfer during state energy crossing.
The simulation also shows that the system is never in a thermodynamic equilibrium in terms of adiabatic-state
populations according to Boltzmann distribution.
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I. INTRODUCTION

Carrier transport in an organic system is a complex phe-
nomenon that can involve different underlying mechanisms.1,2

These include: delocalized bulk band transport,3,4 disorder-
induced localized state hopping,5 atomic relaxation-induced
polaron state hopping,6,7 polaron band structure transport,8

thermofluctuation-induced dynamic-disorder transport,9,10

and tunneling transport.11,12 These mechanisms give rise to
rich phenomena in terms of temperature, carrier density,
and electric-field dependences of the carrier mobility.2,13,14

Traditionally, different models are used to describe various
carrier-transport phenomena in a variety of systems. However,
it is not always known a priori which mechanism is involved
for a given system. It is also possible that several mechanisms
are all at work at the same time or that they dominate at
different temperature regimes for the same system. Thus, it
will be useful to treat all these mechanisms under a unified
framework. One such approach is nonadiabatic molecular
dynamics (MD) simulation.15–17

Nonadiabatic MD has a long history in quantum
chemistry;18,19 it is as old as Born-Oppenheimer MD (BO-
MD).20,21 There are many ways to carry out nonadiabatic
MD. In its most rigorous form, both the electron and nuclear
degrees of freedom are described quantum mechanically by
a combined wave function, and the evolution of this wave
function is determined by its time-dependent Schrödinger
equation. However, this approach is only possible for very
small molecular systems. A common approximation for a
large system is to decompose the wave function into its
electronic part and nuclear part. The nuclear wave function
can be approximated by frozen Gaussian wave functions as
in a harmonic oscillator.22 A further approximation is to treat
the nuclear movement classically using Newton’s second law,
while treating the electronic movement quantum mechanically
following the time-dependent Schrödinger equation. This
is often called the “classical path” method23 or “mixed
quantum-classical” (MQC) method.24 This approximation is
particularly useful to study the carrier transport where the focus
is on the electronic movement, which is described quantum
mechanically. This is the approach adopted in the current work.

Although our work is focused on electronic movement, a
major concern in traditional MQC methodology development
is to deal with the branching of nuclear dynamics caused
by its couplings to different electronic states. Reversely, this
branching in nuclear trajectory also causes different electronic
adiabatic states to dephase from each other (losing their abili-
ties to couple with each other coherently). Such a phenomenon
is natural in a full quantum-mechanical treatment, including
both the electronic and nuclear degrees of freedom. But in
the MQC approach, they must be added empirically. Different
approximations have been used to deal with this problem. The
simplest method is to ignore such branching. This is Ehrenfest
dynamics, a mean-field treatment for electronic feedback to the
nuclear movement. In Ehrenfest dynamics, the electron wave
function follows the time-dependent Schrödinger equation,
and the resulting total energy and nuclear force are used
to move the nuclei.25 One straightforward way to introduce
branching and decoherence is to introduce wave-function col-
lapse in a stochastic fashion.24 During wave-function collapse,
the wave function instantaneously changes into one of the
adiabatic states on which it has some amplitude.24 However, a
more popular method is the potential energy surface hopping
method introduced by Tully.26 In Tully’s fewest-switches
surface hopping (FSSH) algorithm, the nuclei move on one adi-
abatic energy surface (corresponding to one-electron adiabatic
wave function) until a stochastic sudden hopping event knocks
the system from the current adiabatic energy surface to another
adiabatic energy surface. Meanwhile, an auxiliary electron
wave function is calculated following the time-dependent
Schrödinger equation and is decomposed into a linear com-
bination of many adiabatic electron states. The transition rate
of this auxiliary wave function from one adiabatic state to
another is used to guide the probability of surface hopping.26

The FSSH algorithm does introduce branching in the nuclear
dynamics but does not fully solve the dephasing problem of
the electronic states.27,28 How to deal with the dephasing and
branching under the MQC framework is an intensely studied
topic at the present. However, in this work, our focus is on how
to numerically carry out the existing schemes for large systems,
instead of researching the schemes themselves. We will use
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Ehrenfest dynamics and FSSH as our examples. Nevertheless,
modifications will be introduced, so they can be used to study
the carrier-transport problems in hand.

Nonadiabatic MD has been used extensively to study
different phenomena in quantum chemistry. It was first used
to study molecule collision and scattering.29 It has also been
used to analyze the conical intersections of potential energy
surfaces,30 to simulate molecular photodissociation,31 to study
the photoisomerization of retinal,32 and to determine the
effects of charge transfer to the ionic movements in a catalytic
process.33 While some quantum chemistry calculations involve
relatively small molecules, nonadiabatic MD has also been
used to study extended systems, e.g., coherent or semicoherent
processes,11 charge transfer in a solvent,34 or dynamic behavior
in multielectron systems.35 Recently, nonadiabatic MD was
used to study nanostructure materials, e.g., carrier cooling
from high excited states36 and charge transfer between organic
and inorganic systems.37,38 We also saw a recent surge in use
of this method to study carrier mobility in extended organic
systems.39–43 Studying such problems requires the use of
relatively large systems (e.g., a few thousand atoms), and a
long simulation time (e.g., a few picoseconds). Unfortunately,
nonadiabatic MD simulation can be extremely expensive. Due
to the small mass of the electron, the time step one can use to
evolve the time-dependent Schrödinger equation is typically
1 as (10−3 fs). This is 1000 times shorter than the traditional
BO-MD step for the nuclear movement. As a result, current
nonadiabatic MD simulations are either for relatively small
systems (e.g., less than 200 atoms),36–38 or for tight-binding39

and other simplified Hamiltonians.32,44,45 The large system size
also brings in other challenges. For example, there could be
many energy-surface anticrossings (avoided crossings) within
a given time period or energy window, and small anticrossing
gaps (due to small coupling between spatially faraway states).
Such rapid anticrossing and complicated energy-surface struc-
tures require much smaller time steps compared with small
molecular systems. Thus, the challenges facing nonadiabatic
MD for large-systems can be quite different from the ones for
small molecular systems (e.g., for chemical reactions).

In this paper, we will focus on using an approach, named
as the nonadiabatic MD based on the charge-patching method
(NAMD-CPM), to study carrier transport for large systems.
The focus is on the electronic movement, not the nuclear
movement. We will ignore the electron to nuclear “back
reaction.” When such back reaction is ignored, the NAMD-
CPM can no longer be used to describe the polaron-based
transport. But as we will discuss later, such a polaron effect is
small in our system. We will focus on the special challenges
for the large system simulations, e.g., the attosecond time step
(due to dense state anticrossings and possible weak couplings
between states). The purposes and the main contributions
of this paper are twofold: (1) to introduce a linear time
dependence of the Hamiltonian, which allows the increase
of the time step from attosecond to femtosecond. Combining
this approximation with other fast electronic structure calcu-
lation techniques, a 4802-atom system can be simulated for
about 1 ps under a plane-wave pseudopotential Hamiltonian;
(2) the simulation result of a monolayer of a five-thiophene-
ring oligomer pentathiophene butyric acid (5TBA) reveals an
interesting mechanism for the carrier transport in this system:

a thermal fluctuation-induced wave-function localization, and
a charge transfer during state energy anticrossing.

II. THE FORMALISM: TIME INTEGRATION AND THE
RELATED APPROXIMATIONS

There are many different ways to carry out a nonadia-
batic MD; it will be useful to lay out the approaches and
approximations we will use in the current work. (1) We will
use an MQC method (also called the classical path method)
to perform nuclear dynamics. (2) We will further decouple
the nuclear dynamics from the electron quantum-mechanical
dynamics (e.g., ignore the back reaction from the electronic
system to the nuclear classical system), and we will use a
classical force field to carry out the nuclear dynamics. The
justification of this approach for the studied system will be
given later. (3) Due to the lack of back reaction as described
in (2), both Tully’s method and Ehrenfest dynamics have
been modified, with the details given later. Nevertheless, the
surface hopping in Tully’s algorithm can still provide a way to
describe the populations of the system on different electronic
adiabatic states. Alternatively, the electron movement can
be described directly by the wave functions in Ehrenfest
dynamics. However, we will introduce a modified Ehrenfest
(ME) dynamics to correct a detailed balance problem in the
original algorithm. (4) Our electronic system will be described
by density-functional theory (DFT)46 using a plane-wave basis
under the nonlocal pseudopotential formalism. Thus, in a
sense our electron dynamics is like the time-dependent DFT
(TDDFT) simulation.47 However, while in common TDDFT
simulations all the electrons can be excited (e.g., under an
external electric field), here we will only consider a situation
in which one extra carrier is excited. More specifically, in our
case, a one hole state will be excited and be distributed among
many valence-band (VB) states [e.g., the hole is not just at
the highest-energy VB maximum (VBM) state], and the rest
of the electronic system (which is the N -electron closed-shell
system) remains in its ground state (Born-Oppenheimer state)
at any given time. Thus, our electron wave function in the
time-dependent Schrödinger equation will be the Kohn-Sham
single-particle orbital, rather than the many-body all electron
wave function. Nevertheless, each single-particle adiabatic
state (orbital) will correspond to one adiabatic energy surface
of the whole system (when the excited carrier occupies this
orbital). In the current study, we will deal with the excited hole.
We will use local-density approximation (LDA)46 as our DFT
functional. Although LDA can have large errors in describing
material band gaps, the hole transport only depends on the
relative energies between different valence orbitals, which can
be described accurately by LDA.

We will describe here the basic formalism for our NAMD-
CPM simulation. Although most of these formalisms can be
found elsewhere,26 it is beneficial to list them out here to
facilitate later discussions. If we use {R(t)} to denote nuclear
positions, which changes as a function of time t , then the
single-electron Hamiltonian H , which depends on R(t), is
also a function of time. As a result, we have a time-dependent
Schrödinger equation for the single excited hole orbital ψ as

i
∂ψ

∂t
= H (t)ψ. (1)
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Meanwhile, the MD movement of {R(t)} is described by the
classical Newton’s equation:

Mj

d2Rj (t)

dt2
= Fj . (2)

Here, Mj is the mass of atom j , Rj (t) is its position, and Fj

is the force acting on atom j . The force can be calculated
ab initio from DFT total energy based on H (t). In that case,
the forces depend on the single-hole wave functions ψ ; thus,
Eqs. (1) and (2) are fully coupled. As mentioned above, in
the current work we will use a classical force-field model
to describe the nuclear movements of the organic systems.
As a result, Fj only depends on the atomic configuration
{R(t)}; thus, while Eq. (1) depends on Eq. (2), Eq. (2) no
longer depends on Eq. (1), and it is integrated by itself (no
back reaction, and we call this detachment approximation).
The justification of this detachment approximation for the
problems under consideration is given in Appendix A.

To solve Eq. (1), one can just apply H directly to wave
function ψ at every time step. But that can be quite time
consuming. Furthermore, as we will show later, it is necessary
to introduce energy surface hopping or other state transition
concepts. This requires us to analyze the wave function in terms
of the adiabatic states (orbitals) {ϕi(t)}, which are eigenstates
of H (t) at any given time t :

H (t)ϕi(t) = εi(t)ϕi(t). (3)

Here, for hole orbitals, the index i will begin from one starting
from the VBM state. Thus i = 1 means the VBM state, and
i = 2 means the VBM-1 state, and so on. A common practice
to integrate Eq. (1) is to expand the wave function ψ(t) using
the adiabatic states:26

ψ(t) =
∑

i

Ci(t)ϕi(t). (4)

Then, the solution of Eq. (1) becomes the solution of
coefficients {Ci(t)}. One can plug Eq. (4) back to Eq. (1),
then we have

Ċi(t) = −iεi(t)Ci(t) −
∑

k

Ck(t)Vik(t), (5)

and here Vik is a coupling between adiabatic states “i” and “k,”
which can be calculated as26

Vik(t) = [〈ϕi(t)|ϕk(t + δt)〉 − δi,k]/δt (6)

for small δt. The LDA Hamiltonian H (t) in Eqs. (1) and (3)
depends on atomic positions {R(t)}, the N -electron system
ground-state charge density ρ0(t), and the single-hole wave
functions ψ(t). Here, N is the number of electrons for the
closed-shell system (without the hole). Thus, for the simulated
system where one hole exists, the total number of electrons
is N−1, and the total electron charge density equals ρ(t) =
ρ0(t) − |ψ(t)|2. Here comes an interesting question: whether
one should use the N -electron closed-shell charge density
ρ0(t), or the N−1 electron open-shell charge density ρ(t) to
derive the LDA Hamiltonian H (t) in the Kohn-Sham equation
of Eq. (1). If strict LDA formalism is applied, then ρ(t) should
be used. However, it is found that it is more accurate to use
ρ0(t) instead of ρ(t) to derive H (t). Doing so will avoid
the erroneous self-interaction problem in LDA and make the
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FIG. 1. (Color online) Comparison of the eigenenergies between
SCF DFT, the CPM, and the CPM solved with OFM. Note the FSM
is an exact method that involves no approximation for solving the
electron eigenstates for a given H .

LDA Kohn-Sham equation more close to the many-body GW
equation. A more detail discussion of this point is provided in
Appendix B. Thus, in this work, we will use ρ0(t).

To obtain the BO ground-state charge density ρ0(t), one
could occupy all the valence adiabatic states {ϕi(t)} from
Eq. (3) and solve the Hamiltonian H self-consistently as in a
traditional BO-MD. Here, we will use the CPM48,49 to obtain
ρ0(t) for a given atomic configuration {R(t)}. The CPM48,49 is
a well-tested method to provide ground-state electron charge
density without going through a self-consistent calculation. It
generates atomic charge-density motifs from small-system cal-
culations and then patches these motifs together to obtain the
charge density of a large system. After ρ0(t) is obtained, it will
be used with the LDA formalism to acquire the single particle
Hamiltonian H (t). The eigenenergy error of a CPM is typically
20–30 meV compared with the direct LDA calculation.49

Figure 1 shows the comparison between the CPM and the
direct self-consistent field (SCF) LDA eigenenergies for one
snapshot {R(t)} of a 2 × 2 5TBA monolayer supercell (each
unit cell has two 5TBA oligomers; thus, there are 392 atoms in
the supercell) with room-temperature random thermal atomic
displacements. Table I compares the CPM with SCF LDA
for the first few hole eigenenergies of the 2 × 2 system for
several different snapshots. From both Fig. 1 and Table I, we
see that the CPM eigenenergies are close to the SCF LDA
eigenenergies. This establishes the CPM as a good method to
describe the ground states of our system.

Using CPM, at any given time t , with {R(t)} provided by
the classical force-field MD simulation, we can construct the

TABLE I. The eigenenergies comparison between the SCF DFT
and the CPM calculations for different atomic configurations of a
2 × 2 herringbone structure supercell.

Method VBM (eV) VBM-1 (eV) VBM-2 (eV)

T = 0 K SCF DFT 0.095 −0.066 −0.148
Relaxed CPM 0.092 −0.068 −0.150

T = 300 K SCF DFT 0.153 0.008 −0.056
Snapshot 1 CPM 0.174 0.023 −0.008

T = 300 K SCF DFT 0.143 0.008 −0.046
Snapshot 2 CPM 0.158 0.034 −0.047
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FIG. 2. The matrix elements of H (t) under the basis set of {ϕi(t1)}.
Here the number in the Dirac bracket is the index “i” of the adiabatic
state basis function. Here i = 1 means the VBM state, i = 2 means
the VBM-1 state, and so on. This is true for all the figures. The +200,
+113, +80, +190 in (a) are the amount of shifts in milli-electron
volts in order to bring these curves together for viewing. This is for
the 7 × 7 supercell system.

Hamiltonian H (t) easily. Now the task is to integrate Eq. (5).
To do that, a small time step of dt = 10−3 fs is needed. This
requires the evaluation of εi and Vik at every 10−3-fs interval.
Calculating them directly by solving the Schrödinger Eq. (3)
for every 10−3 fs is prohibitively expensive. Here, we will
introduce a linear-time-dependence approximation for H (t).
According to this approximation, within a time interval [t1,
t2] (here �t = t2 − t1 is of the order of femtoseconds), the
Hamiltonian H (t) will have the following linear dependence
on time t :

H (t) = H (t1) + (t − t1)(H (t2) − H (t1))/(t2 − t1). (7)

To test this approximation, we have represented H (t) on the
basis of the adiabatic eigenstates at t1: {ϕi(t1)}. Some of the
typical matrix elements, 〈ϕi(t1)|H (t)|ϕj (t1)〉, are shown in
Fig. 2. As we can see, these matrix elements are approximately
linear within a 0.5-fs time interval �t . Now we first solve
Eq. (3) for every �t (0.5 fs). From that, we have {εi(t1),ϕi(t1)}
and {εi(t2),ϕi(t2)}. In our cases, we have solved 50 top VB
states (i = 1,50) near the band edge for the 7 × 7 supercell
system. These M = 50 states span an eigenenergy window
of about 0.35 eV, which is large enough since the average
energy of ψ(t) is only about 0.05 eV below the VBM energy,
as will be shown later, and the coefficient C50(t) in Eq. (5)
is already extremely small (on the order of 10−11 to 10−15).
Furthermore, when changing M from 50 to 40, we see no
significant differences in our simulated results.

Now we will use {ϕi(t1)}i=1,M as the basis set to
diagonalize H (t). To do that, we need the matrix ele-
ments 〈ϕi(t1)|H (t)|ϕj (t1)〉 for t within [t1,t2]. Obviously,

we have 〈ϕi(t1)|H (t1)|ϕj (t1)〉 = εi(t1)δi,j . Therefore, all we
need is the matrix element 〈ϕi(t1)|H (t2)|ϕj (t1)〉 in or-
der to use Eq. (7) to obtain 〈ϕi(t1)|H (t)|ϕj (t1)〉. How-
ever, we know 〈ϕi(t2)|H (t2)|ϕj (t2)〉 = εi(t2)δi,j . Let us now
assume {ϕi(t1)} can be expanded by {ϕi(t2)} as ϕi(t1) =∑

j=1,M 〈ϕj (t2)|ϕi(t1)〉ϕj (t2), then 〈ϕi(t1)|H (t2)|ϕj (t1)〉 can be
obtained from 〈ϕi(t2)|H (t2)|ϕj (t2)〉 = εi(t2)δi,j by a simple
unitary transformation. In reality, the transformation ϕi(t1) =∑

j=1,M 〈ϕj (t2)|ϕi(t1)〉ϕj (t2) is not unitary due to the lack of
completeness of the basis set. We have carried out a Gram-
Schmidt orthonormalization to make the matrix 〈ϕj (t2)|ϕi(t1)〉
unitary. Since most of this Gram-Schmidt modifications
happen to the high eigenstates i (when i is close to M), and
since the coefficients Ci(t) of Eq. (4) of these high eigenstates
i are very small, the overall error of this procedure on ψ(t) is
very small.

We can now summarize our procedure to integrate Eq. (5)
as the following: At every time interval �t (=0.5 fs), say t1
and t2 = t1 + �t , we solve Eq. (3) to obtain the corresponding
{εi(t1),ϕi(t1)} and {εi(t2),ϕi(t2)}. Then, we use a smaller time
step dt (=10−3 fs) to integrate Eq. (5) from t1 to t2. In reality, dt

can also be adjusted dynamically in order to integrate Eq. (5)
accurately judged by some criterion, e.g., the conservation of
the wave-function norm. Nevertheless, in all these procedures,
dt is of the order of 10−3 fs. During this integration, at
every dt step, we diagonalize an M × M (M ∼ 50) matrix
〈ϕi(t1)|H (t)|ϕj (t1)〉 obtained using the linear-time-dependent
approximation of Eq. (7) and the procedure described above.
This will give us {εi(t),ϕi(t)} at every dt interval, which can
be used to evaluate Vik(t) from Eq. (6) and to integrate Eq. (5).

It is interesting to note that a similar linear approximation on
H could be used for real-time integration of TDDFT.47 There,
time-dependent wave functions for all the occupied states must
be calculated. One might be able to choose different set of
{ϕi(t1)} for different electron orbitals; thus, M can remain
small. Note also that the use of multiple and adjustable time
steps to integrate the wave function in Eq. (5) has been done
before,50 although a constant Vik had been used within the large
time interval �t . In our paper, Vik(t) is evaluated at every dt

as described above, which makes a critical difference [since
Vik(t) can change sharply within the timescale of 10−3 ft; as we
will see later in Fig. 9, where the sharp peak in the transition
rate Ri is related directly to the sharp peak in |Vik(t)2|]. Our
use of linear time dependence of H (t), instead of linear time
dependences of ϕi(t), εi(t), or Vik(t), is in spirit similar to the
idea of diabatic states,29 because the M × M matrix elements
of H (t) within �t are based on a fixed basis function set
{ϕi(t1)} (hence the resulting matrix elements change slowly
with time, although the matrix eigenvectors and eigenenergies
ϕi(t), εi(t) can change rapidly near the anticrossing points).
To further appreciate this point, one can look at a simple 2 × 2
time-dependent Hamiltonian: H [1,1] = αt, H [2,2] = −αt,
H [1,2] =H [2,1] =V . If V is very small (a small anticrossing),
then the eigenvectors and eigenenergies will change highly
nonlinearly with time t , but the Hamiltonian matrix elements
are clearly linear with t .

Based on the linear approximation of H (t) in Eq. (7), we
can use a time interval �t of 0.5 fs to solve the Eq. (3), which is
the most expensive step in the whole calculation. Thus, the new
computational cost is similar to that of a conventional BO-MD.
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This is the main contribution of the current work in terms
of methodology developments. Furthermore, we have used
the CPM to construct H (t), thereby avoiding the need to do
SCF DFT calculations. We can solve Eq. (3) using the folded
spectrum method (FSM)51 based on the plane-wave basis set.
However, we found it faster to use the overlapping fragment
method (OFM)52 to diagonalize Eq. (3), especially when we
need to solve M = 50 eigenstates. The OFM method has been
used to solve the eigenstates of organic polymers and yielded
good results compared with direct FSM calculations.52 In our
OFM calculation, each five-ring 5TBA oligomer has been cut
into three mutually overlapping fragments, each containing
three thiophene rings with the cutoff bond passivated with
additional H atoms. The eigenstates of each fragment are
solved separately (with its charge density calculated by the
CPM) using a small box with a plane-wave basis set. The VBM
state of each fragment is used as the basis set to diagonalize the
original full-system Hamiltonian H (t). The detailed procedure
of the OFM is described in Ref. 52. In Fig. 1, we show
the OFM results for the 2 × 2 supercell system. We can
see that, although there is a 150-meV shift to the εi curve, the
overall shape of this curve agrees quite well with the original
CPM + FSM result and the SCF DFT result. The constant
overall shift will not affect the carrier dynamics that depends
on the relative positions of the adiabatic states. Large errors
only occur when the eigenenergy is 1.5 eV below the VBM,
far from the energy range in which the ψ resides. We have
also tested the 7 × 7 supercell system used for our final study.
The OFM- and FSM-solved eigenstates look similar in their
spatial localizations, and the eigenenergy changes between
different atomic configurations are also similar for these two
methods. For example, we have taken two snapshots in the MD
trajectory, and the VBM eigenenergy difference between these
two snapshots is − 0.12 eV using FSM and − 0.14 eV using
OFM. This shows that OFM can quantitatively describe the
eigenstates of the system and can be used for our NAMD-CPM
simulations.

III. THE PHYSICAL SYSTEMS AND
SIMULATION PROCEDURES

We have used the formalism described in Sec. II to calculate
a 7 × 7 supercell of a 5TBA monolayer thin film. The system
has 4802 atoms with 294 fragments in the OFM calculation.
The structures of the thin film at room temperature and
a single 5TBA oligomer are shown in Fig. 3. This is a
system similar to a previous tetradecyl 5TBA (TD5TBA)
monolayer53 system studied by atomic force microscopy.
The 5TBA monolayer has also been made experimentally,
and its p-type carrier lateral mobility will be measured
using microelectrodes.54 Both the TD5TBA and 5TBA mono-
layers exhibit a herringbone packing pattern when viewed
from the top as shown in Fig. 3. The 5TBA oligomer differs
from the TD5TBA by not having the alkane chain on the top
of the molecule. As a result, the 5TBA oligomers tend to stand
up vertically within the monolayer, instead of leaning toward
one side as in the TD5TBA case.53

The system shown in Fig. 3 is simulated using consistent
force field 91 (CFF91)55 force fields. The force field calculated
5TBA lattice constants in the x and y directions (Fig. 3)

(a) (b)

FIG. 3. (Color online) Top view of the herringbone pattern (a)
of the 5TBA oligomer and (b) the side view of the 5TBA molecule.
A 7 × 7 supercell with 4802 atoms is used in our study. In (b), the
yellow indicates the S atom, green the C atom, white the H atom, and
red the O atom. The classical force field is used in an MD simulation to
provide the thermal fluctuation of the molecules at room temperature.
The horizontal direction is defined as the x direction, while the vertical
direction is defined as the y direction. The dimensions for these two
directions for the 7 × 7 supercell are 53.20 and 39.90 Å, respectively.

are 7.6 and 5.7 Å, respectively, which agree well with the
experiments.54 The calculated standing-up molecule orienta-
tion in a herringbone pattern also agrees with the experimental
observation.54 Furthermore, a few bond-length parameters in
the CFF91 are slightly modified, so the force field-relaxed
single 5TBA molecule geometry agrees well with the LDA-
relaxed geometry. A Verlet algorithm56 is used to carry out
MD using the code LAMMPS.57 The MD simulation is done
for several picoseconds where the average temperature equals
300 K. The last 1-ps trajectory is used in our NAMD-CPM
calculation.

Using the R(t) obtained from the classical MD, we then
performed the NAMD-CPM calculation according to Eqs. (3)–
(7) and the procedure described in Sec. II. The details of the
parallel computation of {εi(t),ϕi(t)} at every �t are described
in the Appendix C. Figure 4 shows the first few adiabatic
eigenstate energies varying with time, and the isosurface
plots of the corresponding eigenstates. In Fig. 4, we can see
many state energy anticrossings, especially for the low-energy
valence states. Sometimes one can trace one eigenstate, finding
that its location does not change much although its energy can
vary over 0.1 eV (e.g., the second VB state at t = 0, the pink
state, which can be considered as the same state as the third
VB state at t = 12 fs, the golden state).

After all the {ϕi(t),εi(t)} are obtained, the ψ(t) is integrated
(following the procedure in Sec. II), starting with the adiabatic
VBM state at t = 0. This integration part does not take much
time.

The above steps finish the main task of integration of
ψ(t) following Eq. (1). In the following, we will discuss
the simulation results based on the Ehrenfest dynamics (with
its modification) and the FSSH dynamics; both are based
on the solution of ψ(t) but with different explanations and
modifications in order to connect the results to carrier transport.

In the Ehrenfest dynamics, |ψ(t)|2 describes directly the
electron movement. The average energy of ψ(t) is shown in
Fig. 5(b) as the pink line. As we can see from Fig. 5(b),
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FIG. 4. (Color online) The adiabatic state eigenenergies (center) and the eigenstate isosurface plots (two sides). Each colored curve in the
center panel represents one εi for one “i.” The isosurface contains 98% of the charge density in |ϕi(t)|2.

although at t = 0, the ψ(0) equals ϕ1(0), the ψ(t) quickly
evolves into some kind of quasisteady state in a very short time
(around 15 fs). Unfortunately, this quasisteady state is rather
unphysical. It is about 0.2 eV below the VBM and seems to
be in the middle of the 50 ϕi(t) states chosen to be included
in Eq. (4). This artifact is a consequence of the Ehrenfest
dynamics58 [Eqs. (1) and (2)]. In Ehrenfest dynamics, if the
back reaction of the electron dynamics to nuclear dynamics
is ignored, an infinite temperature distribution in the electron
degree of freedom will result.59 This is exactly what happened
in our case. Furthermore, even if the full Ehrenfest dynamics
with back reaction was used, a similar problem would exist
as discussed in Refs. 39 and 59, and the effective temperature
within the electronic degree of freedom, although not infinite,
could be extremely high.59 To further confirm this numerically,
we have taken a simple one-dimensional model Hamiltonian
from Ref. 44, which includes the coupling between the electron
and nuclear dynamics. We have performed an Ehrenfest
dynamics of this system that includes the back reaction. The
result shows similar behavior as in Fig. 5(b).

Fundamentally, the above problem is a consequence of the
classical treatment of nuclear movement using Newton’s law
as discussed in Ref. 60. In a quantum-mechanical treatment
of the nuclear movement, even at zero temperature (no atomic
movement in the classical treatment), there is a zero-phonon
mode, which can still induce transition from i to k as long as
εi < εk for the hole-state transition, but the transition from k to
i cannot happen. This difference maintains the detailed balance
between i and k and prevents the electronic system from
overheating. All these are missing in the Ehrenfest dynamics.

Here, we provide an empirical approach to correct this
detailed balance problem, especially under our detachment
approximation. To introduce the effect of the quantum-
mechanical zero-phonon mode, we will add a prefactor in

the time-dependent Schrödinger Eq. (5), and we have

Ċi(t) = −iεi(t)Ci(t) −
∑

k

Ck(t)Vik(t)f (εi − εk,t) (8)

Here, if Ri,k ≡ Re[Ck(t)C∗
i (t)Vik(t)] > 0 (the weight transi-

tion is from i to k), then f (x,t) = 1, if x < 0, and f (x,t) =
exp(−x/kT ), if x > 0. Similarly, if Ri,k < 0 (the weight
transition is from k to i), then f (x,t) = exp(x/kT ), if x < 0,
and f (x,t) = 1, if x > 0. We will call the algorithm of Eq. (8)
the ME algorithm. The result of this ME algorithm is shown in
Figs. 5(a) and 5(b) as red lines. We can see that this time, the
average energy of ψ(t) is much closer to the VBM energy, and
there is no overheating in the electronic degree of freedom.
Some of the possible consequences of Eq. (8) are discussed in
Appendix D.

Besides the Ehrenfest dynamics, another widely used MQC
dynamics is Tully’s FSSH algorithm. While the original
motivation of FSSH is to study chemical reactions and nuclear
trajectory branching, here we use it to study the electron
movement and carrier transport. In our case, the stochastic
occupation of the energy surfaces in FSSH is not used to
describe different nuclear trajectories, instead it is used to
describe the electron movements. Within the detachment
approximation (without the back reaction), there is no different
nuclear trajectories (no branching) for different simulation
runs (there is only one single nuclear trajectory). However, one
can still have different occupations of the adiabatic states by
the hole carrier (to simulate the hole transport) during different
simulation runs. More specifically, if one runs many FSSH
simulations, one can use a Pi(t) to denote the hole’s probability
of staying on the adiabatic state ϕi(t) (the adiabatic energy
surface) at time t . Pi(t) does not equal |Ci(t)|2 of Eq. (4).
Instead, {Pi(t)} is determined by a master equation with the
transitions between different is guided by the dynamics of
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FIG. 5. (Color online) The adiabatic eigenenergies and the
averaged ψ(t) energy. (a) The enlarged view for only 100 fs.
The thin lines are adiabatic eigenenergies, and the thick red line is the
averaged ψ(t) of the ME method using Eq. (8). (b) The full simulation
plotting out only ε1(t) and ε50(t) (here i in εi is the index of the hole
orbitals, starting from the top of VB state). The red line is the same
as the thick red line in (a), while the pink line is original Ehrenfest
dynamics without the Boltzmann factor in Eq. (8), and the green line
is the average energy calculated using Boltzmann distribution from
all the adiabatic eigenenergies {εi(t)}.

ψ(t) following the FSSH algorithm. Thus, ψ(t) is used as an
auxiliary variable, not as the real wave function to describe
the electronic state. This technique was first used by Prezhdo
et al.36 to study carrier cooling in a quantum dot. One issue
is how to maintain a detailed balance in FSSH under the
detachment approximation without the back reaction. For that,
we have followed the procedure used in Ref. 36. The details
of our procedure are described in Appendix E.

Figure 6 shows the comparison between the ME and
Tully’s algorithm results. The plot shows that although the
ME algorithm and Tully’s algorithm give different average
energies, they are close to each other and behave qualitatively
in the same way.

At this point, it is useful to define a Boltzmann average
energy. This is an average energy at time t according to the
Boltzmann distribution among the adiabatic states ϕi : εave =∑

i εi exp(εi/kT )/
∑

i exp(εi/kT ). This energy is shown in
Figs. 5(b) and 6. We can see that the Boltzmann average energy
is higher than the two NAMD-CPM results and is much closer
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FIG. 6. (Color online) The comparison between the ME algo-
rithm result and the Tully’s algorithm result.

to the VBM. This is an important conclusion because in many
phenomenological treatments, the Boltzmann distribution
among adiabatic states is always assumed. Here, the reason that
the NAMD-CPM results (either the ME algorithm or Tully’s
algorithm) fail to reach the Boltzmann distribution is the rapid
eigenenergy fluctuations of the adiabatic states. The electronic
system is not quick enough in responding to this fluctuation;
thus, it is always lagging behind in a nonequilibrium state.

To further illustrate the difference between the ME and
Tully’s algorithms, in Fig. 7, we show the population Pi(t) on
the adiabatic state i in Tully’s algorithm, and the |Ci(t)|2 of

FIG. 7. (Color online) |Ci(t)|2 in the ME algorithm (a), and
Pi(t) in Tully’s algorithm (b). A sudden change in these quantities
usually means a state crossing (as a result, the identity of the states
exchanges).
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Eq. (4) in the ME algorithm. We see that the Pi(t) and |Ci(t)|2
can change suddenly, but that is due to the state anticrossing,
where the indexes of the two anticrossing states exchanged. At
the beginning, when |Ci(t)|2 and Pi(t) started from the same
occupation (e.g., VBM), the first few states in ME and Tully’s
algorithm look similar. But when their amplitudes become
small, their behaviors are quite different. This means the Pi(t)
in Tully’s algorithm and |Ci(t)|2 in the ME algorithm can be
very different when both of them are very small. Note, both
Pi(t) in Tully’s algorithm and |Ci(t)|2 in the ME algorithm are
mainly distributed among four to seven states near the top of
the VB.

IV. SIMULATION RESULTS AND CARRIER TRANSPORT
MECHANISMS

The main scientific goal of the current study, besides the
algorithm development, is to reveal the underlying mecha-
nism of the carrier transport in the monolayer thin film of
5TBA. An organic molecule crystal can be classified into
different categories according to its relative strengths between
intermolecular coupling, molecule reorganization energy, and
thermal fluctuation. Our case belongs to a relatively large
thermal fluctuation and intermolecular coupling. Prior to the
calculation, different mechanisms can be hypothesized for
carrier transport: (1) band structure transport by extended bulk
Bloch states;3 (2) polaron hopping, where polaron localization
is induced by atomic relaxation caused by the hole state;6

(3) localized state drifting, where the localization is induced
by molecule thermal fluctuation, and the same fluctuation can
cause localized states to change their positions with time. Thus,
carrier mobility is produced by the state drifting (while the
hole is residing on the same state without any state transition);
(4) localized state transitions by absorption/emission of a
single phonon as described by a simple Fermi golden rule;5

(5) localized state energy anticrossing, where they cross each
other in energy and the carrier residing on one state can jump
to another state.

There are many band structure calculations for periodic
organic structures.61–63 The underlying assumption is that band
structure and effective mass can be relevant to carrier transport
through a bulk transport picture. Our calculation shows that
at room temperature, the adiabatic states are localized among
10–20 5TBA oligomers, as shown in Fig. 4. Thus, the wave
function is not extended, and hypothesis (1) is invalid.

Another common picture is that the wave function will
localize in a single unit (e.g., a molecule, or the oligomer, in
our case) of the structure and form a polaron.64 Then, it will hop
from one unit to another. In such a polaron picture, localization
is induced by atomic relaxation due to strong electron-phonon
coupling (not by thermal fluctuation); thus, it will happen at
zero temperature. To investigate the possible formation of
a polaron, we have performed DFT/LDA calculations with
a 2 × 2 supercell (which contains eight 5TBA oligomers)
with one hole at zero temperature. In our calculation, we
intentionally introduced an initial distortion to the atomic
positions and an initial hole wave-function localization. But
after SCF iterations and atomic relaxation, the hole wave
function becomes extended uniformly in the 2 × 2 supercell,
and there is no localization. This means that, according to LDA,

at zero temperature there is no polaron, or at least no polaron
with wave-function localization smaller than eight 5TBA
oligomers (or smaller than the thermal fluctuation-induced
localization as shown in Fig. 4). We do caution that, due to the
self-interaction error,65 LDA has a tendency to delocalize the
wave function, making the formation of polaron more difficult.
Future investigation using more accurate methods might be
necessary, although a preliminary study with an algorithm that
removes the self-interaction energy within LDA has also failed
to find localized polaron state.66 This conclusion is consistent
with our recent study for naphthalene67 and the work by
Troisi68 for pentacene and rubrene organic crystals. Under
this circumstance, in order to further estimate the importance
of the polaronic effects, we have checked the reorganization
energy that can be estimated reliably by LDA calculations.69

Our LDA calculated single 5TBA molecule reorganization
energy (defined as the energy drop due to atomic relaxation
after a hole is placed in the original neutral system) is 99 meV,
which is similar to the single molecule neutral to the charge
state atomic relaxation energies of pentacene (55 meV)70 and
rubrene (79 meV).69 Both neutral and charged (with one-hole)
5TBA molecules have a planar relaxed geometry. Thus, the
torsion angle rotation does not contribute significantly to this
reorganization energy. From the 2 × 2 supercell system DFT
calculation, we have a corresponding LDA reorganization
energy of 20 meV for that system due to a larger hole
localization volume. Since the thermal fluctuation-induced
wave function localizations shown in Fig. 4 are similar to
the 2 × 2 supercell size, we expect that the atomic relaxation
energies of these localized states should be also around 20 meV.
This energy is much smaller than the ∼100- to 200-meV
energy fluctuations of VBM shown in Figs. 5 and 6, which
is induced by thermal fluctuation. Thus, the polaronic effect is
much smaller than the thermal fluctuation effect.

A third way to estimate the magnitude of the polaronic
effect is to calculate the atomic force changes when the
system is occupied with one hole. To do this, we have taken
a snapshot of the 2 × 2 supercell during a room-temperature
MD. The LDA atomic forces of the N -electron neutral system
and the N−1 electron system are calculated. The atomic
force difference between these two systems is about 1.6%
of the average atomic forces (thermal fluctuation forces) in the
system. This means the polaronic effect is small in its impact
on nuclear trajectory.

The above investigation of the polaronic effect can be
summarized as the following: (a) There is no polaron
formation at zero temperature, and any polaronic effect is
smaller than the thermal fluctuation (dynamic disorder) effect;
(b) Since the polaronic effect is not included in our detachment
approximation (no electron to nuclear back reaction), the item
(a) also justifies the use of the detachment approximation
in our simulation. Item (a) means the hypothesis (2) does
not hold, and the main reason for localization is the thermal
fluctuation (dynamic disorder), not the reorganization-induced
self-trapping polaron.71

We now discuss the points (3), (4), and (5). Figure 8 shows
the diffusion distance square as a function of time t . Note that
this is done for ψ(t = 0) = ϕVBM(t = 0). However, recalcu-
lating this diffusion distance starting from a steady state (e.g.,
after 10 fs) does not significantly change the result. The 7 × 7
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FIG. 8. (Color online) The diffusion distance square as a function
of the simulated time t .

supercell is still relatively small. To calculate the diffusion
distance, we have repeated the system a few times in its x and
y directions and treat the image states of an adiabatic state
ϕi(t) as different states (e.g., with a different coefficient Ci[t]
in Eqs. (4) and (7) and different Pi[t] in Tully’s algorithm).
This allows us to have a larger diffusion distance than the box
size of the 7 × 7 supercell. Nevertheless, this technique has its
limitations, and as a result, the diffusion distance is saturated
eventually both for the ME algorithm and Tully’s algorithm.
Thus, we should only judge carrier mobility from the time
region before the saturation. We have also simulated a 10 × 10
supercell system with a shorter time span (60 fs) following the
exact same procedure. The 10 × 10 supercell simulation yields
a similar result compared with the 7 × 7 supercell result for
the diffusion distance square as a function of time.

From Fig. 8, we see that initially the ME and Tully’s
algorithms have similar results. However, after some time
(50 fs), Tully’s algorithm yields a bigger diffusion distance.
It is interesting to speculate whether the slowdown in the ME
algorithm is related to the weak localization phenomenon in
a disordered system, where coherently constructive backscat-
tering can slow carrier diffusion.72 Further study is needed
in the future to resolve this point. From the slope of the line
in Fig. 8 (taken from the Tully’s algorithm result), if we use
a two-dimensional (2D) diffusion formula of d2 = 4Dt and
μ = eD/kT , we obtain a hole mobility μ as 44 cm2/Vs.
This is a bit large, considering that most organic crystals have
mobilities between 1 and 10 cm2/Vs. Although we are still
waiting for experimental measurement of the mobility for our
system,54 recently a thin film of 2,7-diocty[1]benzothieno[3,2-
b][1]benzothiophene was synthesized with a similar structure
as in Fig. 3. The maximum mobility reported73 is 31 cm2/Vs,
which is close to our result.

To determine whether the diffusion is caused by state
position drifting, we have plotted the center-of-mass position
of the first adiabatic state (VBM) in Fig. 9 as a function of time.
We see that when there is no state anticrossing, the position
of the state does not change, despite that the energy of the
state can change by as much as 0.1 eV during the same period.
The same is confirmed by looking at the states in Fig. 4 (e.g.,
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FIG. 9. (Color online) The center of mass position of the VBM
state. Also shown are the eigenenergies of the first two adiabatic states,
and the total transition rate R1(t) (defined as Ri ≡ ∑

k |Ri,k|/|Ci |2)
from the VBM state. A peak in the transition rate R1(t) indicates a
state crossing between the VBM and VBM-1 states. Also, at such
crossing, the VBM state position suddenly changes, which is due
to the change of identity between the VBM and VBM-1 state (the
highest adiabatic state is called VBM), rather than a genuine shift of
the state position.

the second state at t = 0, and the third state at t = 12 fs in
Fig. 4). In Fig. 9, when the VBM and VBM-1 states cross,
the identities of the states switch, which can cause a sudden
change of the VBM position in the plot. Nevertheless, from the
flat plateau in the state position between the state crossings,
we can conclude that the state position drifting proposed in
hypothesis (3) should be small.

Next, we have investigated the state transition by absorbing
or emitting a single phonon. Such a transition is used to explain
carrier mobility in a disordered polymer system.5 But here, the
adiabatic state localizations are caused by thermal fluctuations,
not by the disorder tangling/arrangement of polymer chains.
Thus, the state here can change more rapidly than in the
disordered polymer system. In Tully’s algorithm (similar
procedure can be used for the ME algorithm), we can turn
off any energy surface hopping between states i and k when
|εi − εk| > 5 meV. Since most phonon modes have a phonon
energy larger than 5 meV, this will effectively turn off all
the single-phonon absorption/emission effects. The resulting
diffusion distance square is very similar to the original one
as shown in Fig. 10. This means the effect of single-phonon
absorption/emission transition as described in hypothesis (4)
is rather small and can be ignored. We can thus conclude that
all transitions happen when two states anticross each other in
their energies. When that happens, a fast transition of the wave
function weight from one state to another state takes place.
That causes the position of the carrier to suddenly jump, and
this jump [as described in the hypothesis (5)] is the real cause
for carrier mobility in our system.

There are interesting differences and similarities between
the state anticrossing observed in our simulation and the
state anticrossing in the Marcus theory.74 In both cases, the
state anticrossing plays an important role, and the transition
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FIG. 10. (Color online) The diffusion distance squares with and
without the |εi − εj | > 5-meV transitions.

happens during the state anticrossing. In the Marcus theory,
the localization is either formed by a geometric confinement
(e.g., within a molecule or inside a quantum dot) or is due to
reorganization (e.g., in a polaron). The reorganization energy
can also be used as a measure for the energy barrier that needs
to be overcome to have the state anticrossing. On the other
hand, in our current problem, the localization of the state
and the state energy fluctuation are both caused by dynamic
disorder induced by thermal fluctuation (not by reorganization
energy). That we have such state anticrossing, while ignoring
the hole-induced atomic relaxation, indicates fundamental
differences between these two pictures. We thus expect very
different temperature dependences on the mobility (because in
our case, state localization, not just state energy fluctuation,
also depends on the temperature).

It is also interesting to note the relationship between our
picture and the dynamic disorder picture proposed by Troisi
and Orlandi.44 In their simulations, a model Hamiltonian is
used, which includes the fluctuation of the intermolecular
coupling. They have used pure Ehrenfest dynamics to monitor
the diffusion of the electron wave function. In both their picture
and ours, carrier mobility is driven by this thermal fluctuation
(dynamic disorder). However, our simulation included the sur-
face hopping in Tully’s algorithm or the additional Boltzmann
factor in the ME. Thus our procedures depend on the analysis
of the wave function ψ(t) in terms of adiabatic states {ϕi(t)}.
As a result, we introduced the concept of state anticrossing and
point out that this is the main underlying mechanism of the dif-
fusion. Such analysis is absent from a pure Ehrenfest dynamics
description. We have also used a parameter-free ab initio
realistic DFT Hamiltonian, which includes both intra- and
intermolecular fluctuations. The intramolecular fluctuation
is important because it can contribute significantly to the
localized state energy fluctuation, which causes the state
anticrossing. In a way, this is also like the Marcus theory
where the internal phonon degree of freedom causes the
energy fluctuation to overcome the potential barrier. However,
it will be interesting in the future to study the contributions of
different phonon modes, especially the quantum-mechanical
effects on these phonon modes that are not included in our
classical MD simulations.

Finally, it should be noted that the carrier-diffusion mech-
anism we found can perhaps be described under a general
Haken-Strobl-Reineker (HSR) framework.75,76 In the HSR
model, a time-dependent random fluctuation term is introduced
in the electron Hamiltonian to describe either on-site energy
fluctuations or off-site interaction fluctuations. However, the
analytical solution of such models is often found without using
the picture of state localizations and the transition from one
localized state to another.77,78

V. CONCLUSION

We have presented several techniques to carry out a
large-scale simulation for NAMD-CPM. These techniques
and supercomputer facilities allow us to do NAMD-CPM
for a 1 ps evolution of a 4802-atom system in a few hours.
More specifically, (1) a linear time-dependent Hamiltonian
within an interval �t is introduced, which increases the
simulation time step (of the computationally most expensive
part) from dt = 10−3 fs to �t = 0.5 fs, thus reducing the
overall computational cost by hundreds of times; (2) the ME
dynamics procedure is proposed, which restores the detailed
balance within the framework of Ehrenfest dynamics. It can be
used as an alternative approach to Tully’s algorithm to study
carrier transport. (3) The nuclear movement and electronic
movement are detached, and a classical force field is used for
the nuclear movement. Detailed analysis is presented to justify
this detachment treatment for the system studied. (4) The CPM
is used to construct the Hamiltonian, while the OFM is used to
diagonalize the Hamiltonian matrix. (5) The whole approach
can be carried out using massively parallel computers and can
be scaled to 50 000 cores. As a result, the whole calculation
takes only a few hours.

We have used this approach to study the carrier transport of a
5TBA monolayer thin film. Such thin film has been synthesized
experimentally. Our main task is to reveal the underlying
mechanism of hole transport in such a system. This system
demonstrates a herringbone 2D crystal structure and thus can
be used as one prototype for other 2D organic molecular crys-
tals. Through our calculation, we found that carrier transport is
mostly induced by state anticrossing between localized states.
The localizations of the states are caused by the dynamic dis-
order induced by thermal fluctuation, rather than by polaronic
atomic relaxation. Thus, the state anticrossing mechanism is
very different from the ones described by the Marcus theory.
The state localization size is about 10–20 5TBA oligomers.
In our simulation, we also found that the occupations of
the adiabatic states are often in a nonequilibrium situation.
The average energy calculated by the Boltzmann distribution
among the adiabatic states is much closer to the VBM energy
than the NAMD-CPM-simulated results.
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APPENDIX A: NEGLECTING THE ELECTRON TO
NUCLEI BACK REACTION

In many cases, the very reason to do nonadiabatic MD is
to study the back reaction (e.g., in collision and catalysis).
To study carrier dynamics, we focus more on the behavior of
the electronic system, not the nuclear system. The detachment
approximation (neglecting the back reaction) has been used
to study carrier cooling in a quantum dot,36 line shapes
in spectroscopy,79 and exciton dynamics.80 For a carrier
dynamics study, the main approximation of the detachment
approach is the neglecting of the polaronic effect that can
change the carrier dynamics. In this effect, the occupation
of a localized hole state induces atomic relaxations (reor-
ganization), which further localizes the hole wave function.
In Sec. IV of the main text, we show that the polaronic
effect in our system is rather small, and the wave-function
localization is induced mostly by dynamic disorder, rather than
polaronic reorganization effect. The reorganization energy in
the current system is less than 20 meV, while the dynamic
disorder-induced adiabatic eigenenergy fluctuation is in the
range of 100 to 200 meV. Recently, Wang et al.81 also studied
the consequences of ignoring the back reaction to carrier
mobility using a model Hamiltonian with Ehrenfest dynamics.
They found that back reaction can reduce carrier mobility (as
it induces wave-function localization). But if the diffusion is
fast enough (e.g., carrier mobility is larger than 0.14 cm2/Vs
in a 2D system), the back reaction can be safely ignored.
As we show later, our calculated carrier mobility is about
44 cm2/Vs for our effective 2D system. This confirms that it
is safe to ignore the back reaction in our problem. Another
way to test the amplitude of the back reaction is to calculate
directly the change of atomic force due to the occupation of
a localized hole state. As discussed in Sec. IV, when one of
the thermal fluctuation-induced localized states (see Fig. 4) is
occupied by a hole, the change of atomic forces is only about
1.6% of the thermodynamically induced atomic forces. This
means the back reaction will not significantly alter the nuclear
trajectory. All these points support the use of the detachment
approximation for our system. In this detachment treatment,
the nuclear subsystem conserves its own total energy; thus, it
has a microcanonical dynamics, while the electronic subsys-
tem is in a canonical dynamics with a fixed temperature.

APPENDIX B: THE USE OF A CLOSED-SHELL SYSTEM
FOR SCHRÖDINGER EQUATION

One important issue is what charge density to be used to
construct H (t) of Eq. (1), whether it should be the charge

density ρ0(r) of the N -electron closed-shell system or the
charge density ρ(r) = ρ0(r) −ψ2(r) of the actual N−1
electron system we are simulating. If the Kohn-Sham equation
of the LDA Hamiltonian is to be used directly, then the ρ(r) of
the N−1 electron system should be used. However, this will
introduce an erroneous Coulomb self-interaction of the single-
particle state ψ .65 As it turns out, it will be more accurate to
use ρ0(r) instead of ρ(r) to construct the H (t) in Eq. (1). To
understand this, we can investigate the N th eigenenergy εN of
H (t) and see which Hamiltonian will give more accurate result.
We will denote the Hamiltonian of the N -electron system and
N−1 electron system as H (N ) and H (N−1), respectively.
First, for an exact theory, the N th eigenenergy εN of H (N )
[εN (N )] and H (N−1) [εN (N−1)] should be the same. The
reason is the following: First, εN (N ) = ∂E(n)/∂n|n−>N− and
εN (N − 1) = ∂E(n)/∂n|n−>N−1+ (e.g., Janak’s theorem for
LDA calculation,82 Koopman’s theorem for Hartree-Fock
calculation,83 or the corresponding theorem for random-phase
approximation and GW calculation84), here E(n) is the total
energy of the system with n electron (which could be frac-
tional). Furthermore, under an exact theory, E(n) should be a
straight line between the interval [N−1,N ],85,86 which implies
εN (N ) = εN (N − 1). This is true under Koopman’s theorem83

for Hartree-Fock with frozen orbitals. Note that in Hartree-
Fock, there is no self-interaction error. This has been shown
to be approximately true for GW87 Hamiltonian.88 One can
imagine using GW Hamiltonian to solve Eq. (1) and then using
either HGW(N ) or HGW(N−1) would be fine. Which LDA
Hamiltonian, HLDA(N ) or HLDA(N−1) is closer to HGW(N ) or
HGW(N−1)? It has been shown that, for a closed-shell system
(N -electron system), the nonlocal self-energy term 
(r,r ′) in
HGW(N ) is short ranged,89 which can be approximated by the
local exchange-correlation potential in HLDA(N ).90 While for
the open-shell system (N−1 electron system), the self-energy
term 
(r ,r ′) in HGW(N−1) is long ranged, which cannot be
approximated by the local exchange-correlation potential in
HLDA(N−1). As a result, it will be better to use HLDA(N ) to
simulate the system. Recently, we have also used HLDA(N )
(instead of HLDA(N−1)) to calculate the shallow impurity
levels with very accurate results.91 Thus, in conclusion, we
should use ρ0(r) instead of ρ(r) to construct H (t) in Eq. (1).

APPENDIX C: DETAILS OF THE PARALLEL
COMPUTATIONS

The adiabatic eigenstates and eigenenergies {ϕi(t),εi(t)}
are calculated for 825 fs. The calculation is executed on
the Jaguarpf machine at the NCCS at Oak Ridge National
Laboratory. The main task is to calculate {ϕi(t),εi(t)} from
Eq. (3) with an interval of 0.5 fs (thus, there are 1651
snapshots for the 825-fs simulation). In our case, we have the
benefit that all the {R(t)} are known before the calculation
of {ϕi(t),εi(t)} for this 825 fs. Thus, the calculations of
Eq. (3) for different snapshots can be carried out in parallel.
Typically, we calculate 22 snapshots simultaneously using 22
processor groups (snapshot group). We use 2352 computer
cores for each snapshot group. Thus, in total, we have used
51 744 computer cores. In the OFM calculation, the 2352
cores in each snapshot group are further divided into 294
subgroups, each subgroup with eight cores. In this way, one
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computer core subgroup (with eight cores) will calculate one
fragment in OFM. Each snapshot group will typically have
25 snapshots (due to memory limitation) consecutively in
time. In this way, one snapshot’s calculation can start with
the fragment wave functions of the previous snapshot, thus
saving time for iteration convergence. One such calculation
takes about 1 h of wall clock time, and we can obtain 22 × 25 =
550 snapshots (275 fs). Thus, the total calculation takes about
3 h. A plane-wave kinetic energy cutoff of 50 Ry is used in
the calculation, norm-conserving nonlocal pseudopotentials92

are deployed, and the x, y, and z real-space grid points of the
7 × 7 supercell are 336, 252, and 224, respectively.

APPENDIX D: DISCUSSION OF THE ME DYNAMICS

The consequence of Eq. (8) is discussed further here.
One might worry that the possible sudden change of f (x,t)
with time might interrupt the coherence of the wave-function
evolution. The coherence wave-function evolution (e.g., the
coherent accumulation of the wave-function weight from one
adiabatic state to another adiabatic state) is important, for
example, to describe a single-phonon absorption/emission
event. More careful analysis, however, shows that such worries
are unwarranted. For example, in a state energy anticrossing
case, where the weight transition from one state to another
can be large and rapid, the |εi − εk| usually is very small,
thus the effects of the factor f (x,t) are small. In the case
of a single-phonon absorption (or emission), the sign of
Re[Ck(t)C∗

i (t)Vik(t)] does not change in the whole transition
period (during which the coherent weight accumulation hap-
pens), thus the f (x,t) does not change either during this period.
Note that, in our approach, the time-dependent Schrödinger
equation has been altered. But this is not the first scheme in
which the Schrödinger equation has been changed in order to
mimic the effect of dephasing or quantum-mechanical nuclear
treatments. More abrupt interruptions happen in the wave-
function collapsing scheme, where the ψ can instantaneously
become one of ϕi .24 Note that the total weight of wave function
ψ(t) is conserved throughout the time integration using Eq. (8).
We are executing the ME dynamics under the detachment
approximation. Thus, the nuclear subsystem conserves its
own total energy in a microcanonical dynamics, while the
electronic system is in a canonical dynamics with a fixed
temperature T .

APPENDIX E: THE FSSH ALGORITHM UNDER THE
DETACHMENT APPROXIMATION

One issue appears when deploying the FSSH algorithm
under the detachment approximation, which is how to deal
with the detailed balance during the hopping event. In FSSH,
although ψ(t) is calculated following Eq. (1), it is treated
as an auxiliary variable, and the actual electronic system
is represented by residing on one adiabatic state ϕi(t) (i.e.,
on one adiabatic energy surface) at any given time t and
its trajectory keeps hopping (switching) among different is.
Thus, the electronic property of the system at time t should be
calculated based on ϕi(t) (although the index i could suddenly
change with time after the hopping), not on ψ(t). The surface
hopping from i to k is sudden (instantaneous), but the ψ(t)

will not change after the hopping; only the nuclear movement
will be rescaled. The ψ(t) is used to help determine how the
system hops from one adiabatic state i to another state k.
Note that this is a very different picture than the Ehrenfest
dynamic, where the real electronic system is described by
ψ(t) and the electronic properties should be calculated based
on ψ(t).

In Tully’s algorithm, when a state hopping from i to k is
proposed, a related coupling degree of freedom in the nuclear
system is calculated, and then the kinetic energy on this degree
of freedom is checked. For a hole hopping, as in our case, if
εi < εk , the hopping will always be allowed, and the velocity on
the coupling degree of freedom will be rescaled, so its kinetic
energy will be increased by εk − εi after the hopping. If εi >

εk , and the related kinetic energy is smaller than εi − εk , the
hopping will be forbidden (it will not happen). If the kinetic
energy is larger than εi − εk , the hopping will happen, but the
velocity will be rescaled so its kinetic energy will be reduced
by εi − εk. This procedure ensures that the total energy is
conserved during the transition, and it treats the transition
from i to k differently from the transition from k to i. This
different treatment restores the detailed balance.92

In our detachment treatment, the nuclear movement will
not be affected by the hopping events in the electronic system.
Thus, no rescaling of the nuclear kinetic energy will be
performed, and no change of nuclear trajectory will happen.
We have only one nuclear trajectory independently described
by the classical force field. Nevertheless, if we have many
stochastic runs, even though they will all have the same
nuclear trajectory, we can still imagine the system having
different electronic “trajectories” by residing on different
adiabatic states following the FSSH algorithm. Over many
runs, the probability of residing on adiabatic state ϕi at time
t can be described by a weight (probability) function Pi(t).
Then the FSSH algorithm can be used to determine how the
Pi(t) changes with time [the master equation of Pi(t)]. The
kinetic energy in the nuclear movement could still be used
to determine whether an electronic hopping will be allowed
(although rescaling after the hopping will not be performed).
However, here we will introduce a further simplification.
Instead of checking on the kinetic energy of the coupling
degree of freedom explicitly on our nuclear trajectory for each
proposed hopping, we will use a statistical approximation to
represent this effect. In a statistical sense, the kinetic energy
on the coupling degree of freedom follows the Boltzmann
distribution. Thus, if we follow the FSSH procedure, and
assuming a Boltzmann distribution to the relevant coupling
nuclear kinetic energy, statistically it is equivalent to say that
when εi < εk , the transition is always allowed, and when εi >

εk , the transition will happen with a probability of exp ( − (εi −
εk)/kT ) (due to kinetic-energy forbiddance). Then, in the
master equation governing the evolution of Pi(t), we have the
following transition rates from Pi(t) to Pk(t) as described by
FSSH formula: R′

i,k(t) = fac × Re[Ck(t)C∗
i (t)Vik(t)]/|Ci(t)|2

with an additional prefactor fac = 1 for εi < εk and fac =
exp ( − (εi − εk)/kT ) for εi > εk .

Here, we can also estimate the effect of the rescaling in the
kinetic energy during a hopping event in the original FSSH
algorithm, which is ignored in our detachment approximation.
Such rescaling can be important for small molecular systems
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where the additional kinetic energy goes to one or two degree
of freedoms and when the transition energy is large. In our
problem, the localized wave function occupies a space of
roughly 400 atoms. Thus, the transition degree of freedom
might well consist of a few hundred atoms. After the kinetic-
energy scaling, each atom might have roughly ∼|εi − εk|/100
additional kinetic energy (we use 100 atoms in a conservative
estimation). In our case, the |εi − εk| is very small. Actually,
as discussed in Sec. IV, and Fig. 10, |εi − εk| is likely to be less

than 5 meV. Then, in average, in the transition area, each atom
will gain 0.05 meV, which is much smaller than its thermal
kinetic energy of 3∗kT = 75 meV. If we take the 100 atom as a
whole, the gaining (or losing) of the 5 meV for this assembly
is also much smaller than the stochastic fluctuation of its total
kinetic energy, which equals: kT

√
3 × 100 = 433 meV. Thus,

the possible local heating (or cooling) effect on the nuclear
subsystem due to the hopping event is extremely small and
hence can be ignored.
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JUNFENG REN, NENAD VUKMIROVIĆ, AND LIN-WANG WANG PHYSICAL REVIEW B 87, 205117 (2013)

61N. Suzuki, T. Kawamoto, and M. Shirai, Mol. Cryst. Liq. Cryst.
272, 161 (1995).

62D. Jacquemin, B. Champagne, and J.-M. Andre, J. Chem. Phys.
108, 1023 (1998).

63J. E. Northrup, Phys. Rev. B 76, 245202 (2007).
64T. Holstein, Ann. Phys. 8, 325 (1959).
65M. Lundberg and P. E. M. Siegbahn, J. Chem. Phys. 122, 224103

(2005).
66H. Geng and L. W. Wang (unpublished).
67N. Vukmirovic, C. Bruder, and V. M. Stojanovic, Phys. Rev. Lett.

109, 126407 (2012).
68A. Troisi, Chem. Soc. Rev. 40, 2347 (2011).
69S. Duhm, Q. Xin, S. Hosoumi, H. Fukagawa, K. Sato, N. Ueno, and

S. Kera, Adv. Mater. 24, 901 (2012).
70H. Yamane, S. Nagamatsu, H. Fukagawa, S. Kera, R. Friedlein,

K. K. Okudaira, and N. Ueno, Phys. Rev. B 72, 153412 (2005).
71M. Hultell and S. Stafstrom, Phys. Rev. B 75, 104304 (2007).
72B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993).
73H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas,

R. Chiba, R. Kumai, and T. Hasegawa, Nature (London) 475, 364
(2011).

74R. A. Marcus, Rev. Mod. Phys. 65, 599 (1993).
75H. Haken and P. Reineker, Z. Phys. 249, 253 (1972).

76H. Haken and G. Strobl, Z. Phys. 262, 135 (1973).
77I. Rips, Phys. Rev. E 47, 67 (1993).
78V. Kraus and P. Reineker, Phys. Rev. A 43, 4182 (1991).
79R. Kubo, Adv. Chem. Phys. 15, 101 (1969).
80V. M. Kenkre and P. Reineker, Exciton Dynamics in Molecular

Crystals and Aggregates (Springer-Verlag, Berlin, 1982).
81L. Wang, D. Beljonne, L. Chen, and Q. Shi, J. Chem. Phys. 134,

244116 (2011).
82J. F. Janak, Phys. Rev. B 18, 7165 (1978).
83T. Koopmans, Physica (Amsterdam) 1, 104 (1934).
84L. W. Wang, Phys. Rev. B 82, 115111 (2010).
85J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Jr., Phys. Rev.

Lett. 49, 1691 (1982).
86A. J. Cohen, P. Mori-Sanchez, and W. Yang, Science 8, 792 (2008).
87L. Hedin, Phys. Rev. 139, A796 (1965).
88F. Bruneval, Phys. Rev. Lett. 103, 176403 (2009).
89B. Lee, L. W. Wang, C. D. Sparatu, and S. G. Louie, Phys. Rev. B

76, 245114 (2007).
90L. W. Wang, J. Phys. Chem. B 109, 23330 (2005).
91G. Zhang, A. Canning, N. Gronbech-Jensen, S. Derenzo, and L. W.

Wang, Phys. Rev. Lett. 110, 166404 (2013).
92D. R. Hamann, M. Schluter, and C. Chiang, Phys. Rev. Lett. 43,

1494 (1979).

205117-14

http://dx.doi.org/10.1080/10587259508055284
http://dx.doi.org/10.1080/10587259508055284
http://dx.doi.org/10.1063/1.475497
http://dx.doi.org/10.1063/1.475497
http://dx.doi.org/10.1103/PhysRevB.76.245202
http://dx.doi.org/10.1016/0003-4916(59)90002-8
http://dx.doi.org/10.1063/1.1926277
http://dx.doi.org/10.1063/1.1926277
http://dx.doi.org/10.1103/PhysRevLett.109.126407
http://dx.doi.org/10.1103/PhysRevLett.109.126407
http://dx.doi.org/10.1039/c0cs00198h
http://dx.doi.org/10.1002/adma.201103262
http://dx.doi.org/10.1103/PhysRevB.72.153412
http://dx.doi.org/10.1103/PhysRevB.75.104304
http://dx.doi.org/10.1088/0034-4885/56/12/001
http://dx.doi.org/10.1038/nature10313
http://dx.doi.org/10.1038/nature10313
http://dx.doi.org/10.1103/RevModPhys.65.599
http://dx.doi.org/10.1007/BF01400230
http://dx.doi.org/10.1007/BF01399723
http://dx.doi.org/10.1103/PhysRevE.47.67
http://dx.doi.org/10.1103/PhysRevA.43.4182
http://dx.doi.org/10.1002/9780470143605.ch6
http://dx.doi.org/10.1063/1.3604561
http://dx.doi.org/10.1063/1.3604561
http://dx.doi.org/10.1103/PhysRevB.18.7165
http://dx.doi.org/10.1016/S0031-8914(34)90011-2
http://dx.doi.org/10.1103/PhysRevB.82.115111
http://dx.doi.org/10.1103/PhysRevLett.49.1691
http://dx.doi.org/10.1103/PhysRevLett.49.1691
http://dx.doi.org/10.1126/science.1158722
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRevLett.103.176403
http://dx.doi.org/10.1103/PhysRevB.76.245114
http://dx.doi.org/10.1103/PhysRevB.76.245114
http://dx.doi.org/10.1021/jp054349q
http://dx.doi.org/10.1103/PhysRevLett.110.166404
http://dx.doi.org/10.1103/PhysRevLett.43.1494
http://dx.doi.org/10.1103/PhysRevLett.43.1494



