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Calculations of electron mobility in II-VI semiconductors
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Electron mobility in the conduction band of II-VI semiconductors ZnSe, CdTe, ZnTe, and CdSe was stud-
ied. Temperature dependence of mobility was calculated using the methodology based on density functional
theory calculations of the electronic states, phonon modes, and electron-phonon coupling constants, along with
Fourier-Wannier procedure for interpolation to a dense grid in momentum space. The mobilities obtained from
calculations within generalized gradient approximation of density functional theory overestimate the experimen-
tal mobility several times. The calculation that used improved electronic band structure and high-frequency
dielectric constants obtained using a hybrid functional lead to a very good agreement with experimental
mobilities for most of the materials studied. It was also found that the Fröhlich model provides a reasonably
good estimate of mobilities around room temperature where longitudinal optical phonons provide the dominant
scattering mechanism, as expected for these direct gap materials where all relevant electronic states are in the
vicinity of the � point. The results indicate as well that the long-ranged part of electron-phonon interaction fully
determines the electron mobility in the materials studied. For this reason, the approach where only this part of
electron-phonon interaction is calculated using the relevant analytical formulas allows for accurate calculation
of mobility without the use of the interpolation procedure for electron-phonon coupling constants.
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I. INTRODUCTION

Mobility of charge carriers (electrons or holes) in a semi-
conductor material is a physical quantity that strongly affects
the performance of electronic and optoelectronic devices
based on that material. While it is relatively straightforward
to perform the measurement of its value, it is still challenging
to theoretically predict it starting from the crystal structure of
the material.

The mobility of charge carriers in ultrapure samples is
limited by the interaction of charge carriers with phonons. In
realistic samples at room temperature it is typically also the
carrier-phonon interaction that limits the mobility, whereas at
low temperatures and high impurity concentration the scatter-
ing of carriers on impurities may play the dominant role. For
these reasons, it is necessary to study the electronic structure,
the phonon dispersions and the interaction between electrons
and phonons to obtain the mobility of charge carriers in the
material.

Density functional theory (DFT) [1–3] and density func-
tional perturbation theory (DFPT) [4,5] give a theoretical
framework for calculation of electronic states, phonon modes,
and electron-phonon coupling constants. However, several
challenges had to be overcome to come to a practical scheme
that can be used to evaluate phonon-limited electron mobility
of a semiconducting material. The electron-phonon coupling
constants can vary rapidly as a function of phonon or electron
momentum and for this reason a dense momentum grid in the
first Brillouin zone is required to accurately represent them
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and to reliably calculate the physical quantities that depend
on them. On the other hand, reliable electronic structure and
phonon dispersions can be obtained from the calculations on
a relatively coarse grid (typically on the order of 8 × 8 × 8)
of electron and phonon momenta.

The development of the method for interpolation of
electron-phonon coupling constants obtained on a coarse grid
to a dense grid [6] was a crucial step toward enabling calcula-
tions of phonon-limited mobility. The method is based on the
transformation between the reciprocal space representation
and the local representation. While the relevant quantities in
the reciprocal space representation are the coupling parame-
ters between the Bloch electronic states with quasimomentum
k and phonon modes with quasimomentum q, in the local
representation one uses the coupling parameters between lo-
calized electronic orbitals (where typically Wannier functions
are used as localized orbitals) due to displacements of indi-
vidual atoms. The electron-phonon coupling constants on a
coarse grid in reciprocal space representation are therefore
first transformed to a local representation. Using these param-
eters in the local representation one can then calculate the
electron-phonon coupling constants in the reciprocal space
representation for arbitrary wave vectors of electrons K and
phonons Q, not only those from the original coarse grid.
First studies of carrier mobility in semiconductors using this
approach [7–9] or somewhat different approach [10] were
focused on silicon, the most well-known semiconducting ma-
terial.

The method in this form, however, implicitly contains the
assumption that the electron-lattice coupling parameters in
the local representation are short ranged, i.e., that the po-
tential change caused by the displacement of an atom in a
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certain direction is short ranged. This is not the case in polar
semiconductors where each atom carries an effective charge
(so-called Born effective charge), which creates a long-ranged
potential when the atom is displaced from its equilibrium
position. This issue was overcome using the approach devel-
oped in Refs. [11] and [12]. The main idea of the approach
is to remove the long-ranged part of electron-lattice coupling
parameters caused by the potential of Born effective charges,
perform the interpolation starting from short-ranged parame-
ters, and return the long-ranged part at the end. This approach
was used in the calculations of mobility for the most represen-
tative polar semiconductor GaAs [8,13,14]. Other materials
that have been studied afterwards include GaN [15,16], dia-
mond [17], halide perovskites [18], SnSe [19], SiC [20] (for
a review of these works see Ref. [21]). There have been also
other works where ab initio calculations were used to some
extent to study the mobility in semiconductors [22–26].

Studies of mobilities in other semiconducting materials are
necessary to further verify or improve the whole approach.
In this work, we focus on II-VI semiconductors with the
formula AB, where A is Zn or Cd, while B is Se or Te.
These are well-established semiconductor materials with a
wide range of applications including solar cells, x-ray, and
γ -ray detectors, infrared optical materials, etc. [27]. We per-
form calculations of temperature dependence of the mobility
of electrons in these materials. We include in the procedure the
corrections to known shortcomings of local approximations to
density functional theory, such as inaccurate band dispersion
and overscreening. It turns out that these corrections are nec-
essary to obtain the mobilities that are in good agreement with
experimental results from the literature. Finally, we analyze
different contributions to the mobility and identify simpler
models that can be used to obtain reasonably accurate values
of the mobility at a smaller computational cost.

The paper is organized as follows. In Sec. II we give an
overview of the methodology that we used to calculate the
electron mobility in the material. The results of our calcula-
tions are given in Sec. III with electronic structure presented
in Sec. III A and the results for phonons, electron-phonon
coupling constants, Born-effective charges, and dielectric
constants given in Sec. III B. The comparison of calculated
mobilities with experimental results from the literature is per-
formed in Sec. III C and the results for mobility using different
models are given in Sec. III D. Final remarks are presented in
Sec. IV.

II. METHODOLOGY

The methodology that we used to obtained the electron mo-
bility in the material consists of the calculation of electronic
structure and construction of Wannier functions, interpolation
of electron-lattice coupling constants from a course to a dense
momentum grid, calculation of phonons and finally the calcu-
lation of electron mobility.

Density functional theory is used to obtain the wave func-
tions of electronic states and corresponding energies. The
wave functions obtained are then used to construct the lo-
calized Wannier functions [28], i.e., the unitary matrices that
describe the transformation from the delocalized Bloch wave
functions to localized Wannier functions. With these matrices

at hand one obtains the single-particle Hamiltonian in the
Wannier basis, which can then be diagonalized to obtain the
wave functions and energies at arbitrary point in the Brillouin
zone, not only the ones from the original grid of electronic
wave vectors. The steps just described constitute the proce-
dure for Wannier interpolation of electronic band structure.
Mathematical details of this procedure are given in Sec. I A of
the Supplemental Material [29].

Fourier-Wannier interpolation procedure [6] is used next
to perform the interpolation of electron-lattice coupling con-
stants. These constants are obtained first from a density
functional perturbation theory calculation on a coarse grid
in reciprocal space. The long-ranged part of these con-
stants is then removed following the ideas of Refs. [11] and
[12]. In these works, the most important dipole contribu-
tion is considered and we note in passing that most recent
studies [30,31] have addressed the possibility of including
additional quadrupole terms. The transformation of electron-
lattice coupling constants to localized Wannier representation
is performed next using the same unitary matrices obtained
during Wannier interpolation of electronic band structure.
In the following step, these constants are transformed back
to reciprocal space representation, where these can be ob-
tained now for arbitrary wave vectors, not only for those
from original coarse grid. In the final step, long-ranged
part of electron-lattice coupling constants is put back. In
this step, we allow also for the possibility to correct the
long-ranged part of these constants by using the corrected
values of high-frequency dielectric constants or Born effective
charges. Mathematical details of this procedure that include
also comments on some differences of our implementation
in comparison to previous works are given in Sec. I B of
Supplemental Material [29].

The dynamical matrices, the phonon energies and the dis-
placements of phonon modes on the coarse phonon wave
vector grid are obtained from density functional perturba-
tion theory. Interpolation of dynamical matrices to arbitrary
phonon wave vectors is performed in a standard manner (see,
for example, Refs. [4,5]) by (i) removing the long-ranged
part of dynamical matrices; (ii) transforming short-ranged
part of dynamical matrices to force constant representation;
(iii) evaluating the short-ranged part of dynamical matrices
on the dense grid; (iv) putting back the long-ranged part of
dynamical matrices; (v) obtaining the phonon energies and
displacements from the eigenvalue problem of dynamical ma-
trices. As in the case of electron-phonon coupling constants,
we allow here for the possibility to introduce the corrected
dielectric constants and Born effective charges in step (iv) of
the procedure.

In this work we consider the electrons in the conduction
band and assume that the concentration of electrons is rela-
tively low. The mobility obtained this way can be considered
as representative mobility of electrons in the conduction band
of the material. Within the momentum relaxation time approx-
imation, the components of the charge carrier mobility tensor
are given by the expression [32]

μi j = −e0

∑
K v

(i)
K v

( j)
K τK

∂ fK
∂ε̃K∑

K fK
. (1)
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In this equation fK is the population of the state at wave
vector K given by the Maxwell-Boltzmann distribution fK ∝
e− 1

kBT ε̃K , ε̃K is its energy, v
(i)
k are the components of group

velocity vi
K = 1

h̄
∂ε̃K
∂Ki

, e0 is the elementary charge, T is the
temperature, while τK is the momentum relaxation time. In the
limit of low carrier concentration considered here, this time is
given as

1

τK
= 2π

h̄NQ

∑
Q

∑
λ,±

|γ λ(K, Q)|2
(

nλQ + 1

2
∓ 1

2

)

× δ(ε̃K ± h̄ωλQ − ε̃K±Q)(1 − cos θK,K±Q). (2)

In the previous equation γ λ(K, Q) is the electron-phonon
coupling element for scattering of an electron in state K to the
state K ± Q due to interaction with phonon in mode λ with
wave vector Q, h̄ωλQ is the energy of that phonon, nλQ is the
occupation of that phonon state given by the Bose-Einstein
distribution, while NQ is the number of points on the dense
reciprocal space grid. The term cos θK,K±Q is given as

cos θK,K±Q = vK · vK±Q

|vK| · |vK±Q| . (3)

Band indices were omitted in previous equation because only
the states at the bottom of the conduction band are relevant in
this work.

III. RESULTS

A. Electronic structure

Density functional theory calculations of the electronic
structure were performed either by approximating the
exchange-correlation functional using the Perdew-Burke-
Ernzerhof (PBE) generalized gradient approximation (GGA)
[33] or by using the hybrid Heyd-Scuseria-Ernzerhof (HSE06)
functional [34,35]. The effect of spin-orbit interaction was
not included since we focus on the electronic states in the
conduction band that mainly originate from s atomic or-
bitals. Calculations were performed using the ABINIT code
[36,37]. The effect of core electrons was modeled us-
ing optimized norm-conserving scalar relativistic Vanderbilt
pseudopotentials [38,39]. Kinetic energy cutoff for plane-
wave representation of the wave functions was 35 Ha for ZnSe
and ZnTe, and 40 Ha for CdSe and CdTe, while the 8 × 8 × 8
Monkhorst-Pack grid of points in reciprocal space was used.
Experimental lattice constants at room temperature taken from
Ref. [40] were used in all calculations. Their values are sum-
marized in Table I.

Wannier functions were constructed from 18 Bloch bands.
The top eight valence bands and the lowest ten conduction
bands were used to construct ten localized Wannier functions.
We have used the procedure for construction of localized
Wannier functions for entangled energy bands [41] whereas
the Bloch states that lie within the energy window containing
the top three valence bands and the bottom conduction band
were left unchanged in the band disentanglement procedure
(this energy window is called the frozen energy window in
terminology of Ref. [42]). Calculations of the unitary matrices
that connect the Bloch functions and the Wannier functions
(Eq. (2) in Supplemental Material [29]) were performed using

TABLE I. Lattice constants used in the calculation and effective
masses and band gaps obtained from electronic structure calcula-
tions. a0 (expt) denotes the experimental value of the lattice constant
taken from Ref. [40]. meff (m0) denotes the conduction band effective
mass in units of free electron mass m0, while Eg denotes the band gap.
The label (expt) denotes experimental values of effective masses and
gaps taken from the compilation in Ref. [27], while the labels (PBE)
and (HSE06) denote our calculations using the PBE and HSE06
functional.

ZnSe ZnTe CdSe CdTe

a0 (Å) (expt) 5.667 6.0882 6.078 6.482
meff (m0) (expt) 0.137 0.117 0.119 0.090
meff (m0) (PBE) 0.096 0.087 0.061 0.064
meff (m0) (HSE06) 0.14 0.13 0.13 0.13
Eg (eV) (expt) 2.72 2.27 1.68 1.51
Eg (eV) (PBE) 1.29 1.28 0.61 0.77
Eg (eV) (HSE06) 2.32 2.19 1.53 1.61

the WANNIER 90 code [42]. In Sec. II of Supplemental Material
[29] we compare the band structure obtained using direct
DFT calculation with the band structure obtained by Wannier
interpolation. The results suggest that the dispersion of the
first conduction band, which is the relevant band in this study
is excellently reproduced by Wannier interpolation.

Calculated band structure of ZnSe along several high-
symmetry directions is presented in Fig. 1, while the plot
for three other materials that we considered is given in Sup-
plemental material [29] (Sec. III therein). Since we focus on
electronic transport in the conduction band, which is strongly
influenced by the conduction band effective mass, it is instruc-
tive to assess the accuracy of effective masses obtained. For
this reason, we compare in Table I the conduction band effec-
tive mass obtained from our calculations to the experimental
effective mass. The results indicate that the PBE functional
significantly underestimates the effective masses. On the other
hand, the HSE06 functional gives rather accurate effective
masses for ZnSe, ZnTe, and CdSe (interestingly the effective
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FIG. 1. Electronic band structure of ZnSe calculated using the
PBE functional (full line) and the hybrid HSE06 functional (dashed
line).
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masses of the three materials are rather similar; experimental
ones differ by no more than 0.02 m0, while the HSE06 values
differ by no more than 0.01 m0), while it overestimates the
effective mass of CdTe. These facts should be born in mind
in the analysis of electron mobility results, which is the main
focus of this work.

Next, we discuss the need to use the density functional,
which yields reasonably accurate values of the band gap. At
first thought, this does not seem to be important because the
relevant states for electron mobility are the states at the bottom
of the conduction band and the value of the material band
gap is not relevant for transport properties in the conduction
band. The calculated values of the band gap are nevertheless
presented in Table I. We see that the HSE06 gaps agree much
better with experiment than the PBE gaps, which are too small
due to the well-known band gap problem [43] of local and
semilocal approximations for exchange-correlation functional
in DFT. On the other hand, it has been previously established
that HSE06 functional yields quite accurate values of the band
gap [44]. We therefore see that both effective masses and band
gaps are underestimated in PBE calculations. Such a result
could have been expected based on an approximate pertur-
bative formula that connects the conduction band effective
masses and the band gap as (see, for example, Ref. [45], p.
12)

1

meff
= 1

m0
+ 2P2

h̄2Eg
, (4)

with the matrix element P given as P = h̄
m0

〈S|px|Xv〉, where
|S〉 is the conduction band Bloch state at �, px is the operator
of the x component of the momentum, while |Xv〉 is the top
valence band state at � that transforms as x under the op-
eration of the symmetry group of the crystal. We see from
Eq. (4) that the underestimation of the gap is likely to lead
to the underestimation of the conduction band effective mass.
As a consequence, to obtain reasonably good conduction band
effective masses, one needs to obtain reasonably good band
gaps as well.

B. Phonons, electron-phonon coupling constants, Born effective
charges, and high-frequency dielectric constants

The calculation of phonons and electron-lattice coupling
constants on the coarse 8 × 8 × 8 Monkhorst-Pack grid was
also performed using the ABINIT code [36,37]. The PBE
exchange-correlation functional was used in the calculation.
The phonon band structure of ZnSe obtained from the calcula-
tion and subsequent interpolation is presented in Fig. 2, while
the phonon band structure of the other materials considered
is given in Supplemental Material [29] (Sec. IV therein). We
note that HSE06 dielectric constants were used to correct the
long-ranged part of the dynamical matrix, as mentioned in
Sec. II. The comparison of phonon energies at characteristic
points in the Brillouin zone in the cases when this correc-
tion was included and excluded with experimental results is
given in Tables I–IV in Sec. IV of Supplemental Material
[29]. These results suggest that differences between the results
obtained in the two cases are rather small and that the results
of the calculation agree well with experiment. Namely, the
largest difference between the calculation with correction and
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FIG. 2. Phonon band structure of ZnSe.

experiment is 1.3 meV, the largest difference between the cal-
culation without correction and experiment is 1.7 meV, while
the largest difference between calculations with and without
correction is also 1.3 meV.

The electron-phonon coupling constants [defined after
Eq. (2)] obtained from the interpolation procedure are pre-
sented in Fig. 3 in the case of ZnSe, and in Supplemental
Material [29] (Sec. V therein) for other materials. The inter-
polation procedure was performed using our in-house code
that uses as input the output of DFT and DFPT calculations
performed using ABINIT. As a check of accuracy of our imple-
mentation of interpolation procedure, we show in Sec. VI of
Supplemental Material [29] the comparison of electron-lattice
coupling elements obtained directly from DFPT (circles in
these figures) and those obtained after interpolation (full line
in these figures).

The most relevant electronic states for electronic transport
are those in the vicinity of the � point. For this reason we
present the electron-phonon coupling constants for scattering

10−2

10−1

100

Γ L W X Γ K X

|γ
(k

=
Γ
,q

)|(
H

a)

mode 2
mode 3
mode 4
mode 5
mode 6

FIG. 3. Electron-phonon coupling constants (obtained from the
interpolation procedure) for scattering of an electron at wave vector
k = � with a phonon of a given mode at wave vector q in ZnSe. The
modes are labeled in ascending order of their energies at q.
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TABLE II. High-frequency dielectric constants and Born ef-
fective charges obtained from the calculations using the PBE and
HSE06 functional and experimental data for dielectric constants.
Experimental data were taken from Ref. [27] where an average is
taken from the values obtain from different sources.

ZnSe ZnTe CdSe CdTe

ε∞
r (expt) 5.9 6.9 6.2 7.1

ε∞
r (PBE) 7.26 8.86 7.72 8.62

ε∞
r (HSE06) 6.15 7.45 6.13 7.01

Z (PBE) 2.05 2.00 2.23 2.18
Z (HSE06) 2.09 2.05 2.24 2.18

of an electron at � with phonon of different wave vectors q.
The most relevant among these are the coupling constants at
low |q| because only these phonons can satisfy the energy
conservation law for scattering between two electronic states
in the vicinity of �. As can be seen from Fig. 3, in this
region of electron and phonon wave vectors, by far the largest
electron-phonon coupling constants, are those with highest
energy phonon mode, which is the longitudinal optical (LO)
phonon mode. One might even be tempted to conclude from
Fig. 3 that the interaction of an electron with phonons in other
modes could be completely neglected. However, one should
bear in mind that at low temperatures, the number of phonons
in high-energy modes decreases exponentially, which leads
to a strong reduction of electron-phonon scattering rate. We
note that our work does not consider the effect of screening of
electron-phonon interaction that becomes important for higher
concentration of carriers [46,47].

We next discuss the values of Born effective charges
and high-frequency dielectric constants. Since these appear
directly in the expression for long-ranged part of the electron-
phonon interaction, one should pay particular attention to
accuracy of their values. Within PBE approximation to DFT
we have calculated the Born effective charges and high-
frequency dielectric constants using two different methods:
(i) using density functional perturbation theory [5]; (ii) by
performing the calculation of polarization and atomic forces
in finite electric field [48,49] and extracting the slope of
the dependence of these quantities on field at low fields. In
calculations that used the HSE06 functional, we have per-
formed only the calculation using the method (ii) due to higher
computational cost of hybrid functional calculations and a
lack of code that implements DFPT calculation with hybrid
functionals. All calculations were performed using the ABINIT

code, while additional technical details of the calculations are
given in Supplemental Material [29] (Sec. VII therein). We
emphasize that larger grids in reciprocal space than those used
to obtain the band structure are needed to obtain converged
values of dielectric constants. The results of the calculations
are summarized in Table II. The results indicate significant
differences between dielectric constants obtained using PBE
and HSE06 and show that HSE06 results are in much closer
agreement with experiment. On the other hand, Born effective
charges calculated using the two functionals are very similar.
Consequently, we set ε∞

r1 in Eq. (9) in Supplemental Material
[29] to the value obtained using PBE and we set ε∞

r2 in Eq.

(17) in Supplemental Material [29] to the value obtained using
HSE06, while we set both Z1 and Z2 in these equations to the
value obtained using PBE. The difference between dielectric
constants obtained using the two functionals originates from
the fact that dielectric constants describe the screening of the
electric field, which is sensitive to the functional used. On the
other hand, the Born effective charges defined as the restoring
force on an atom in a unit electric field are largely a local
property and appear to be rather insensitive to the functional
used.

C. Mobility: Comparison with experiment

Next, we present the calculated temperature dependence
of the mobility for the materials under consideration. The
mobility was calculated using Eq. (1). The summation was
performed over K points from a 120 × 120 × 120 Monkhorst-
Pack grid, where only the points that satisfy the condition
ε̃K − εmin < εc were taken, where εmin denotes the energy of
the conduction band minimum. The value of εc = 250 meV
is sufficient to get converged results at all temperatures con-
sidered. Detailed convergence checks with respect to the size
of the K points grid and with respect to the value of εc

are presented in Supplemental Material [29] (Secs. VIII and
IX therein). The sums in Eq. (2) containing the δ function
were transformed to integrals that were calculated using the
tetrahedron method [50,51]. All calculations were performed
using our in-house code. Our calculations are based on the
momentum relaxation time approximation [Eqs. (2) and (1)].
For this reason, we have estimated the accuracy of this ap-
proximation by comparing the results with the full solution of
Boltzmann equations in the case of the model with parabolic
bands and Fröhlich electron-phonon coupling with a single
dispersionless phonon mode. The results of the comparison
are presented in Sec. X in Supplemental Material [29]. The
results suggest that the error introduced due to momentum
relaxation time approximation is smaller than 5% at room
temperature and smaller than 30% at lowest temperatures
considered. The conclusion in this regard is similar as the
conclusion for GaAs in Ref. [8] where the error of momen-
tum relaxation time approximation was also small at higher
temperatures and increased as the temperature decreased.

Calculated temperature dependence of the mobility in
ZnSe is presented in Fig. 4 along with experimental data from
Refs. [52–58]. It can be seen from Fig. 4 that the results
obtained when PBE functional is used throughout the cal-
culation significantly overestimate the experimental results.
Two main reasons of this overestimation can be identified.
We have shown in Sec. III A that the PBE functional cal-
culations underestimate the effective masses. This leads to
overestimate of the mobility since lower effective masses are
beneficial for efficient charge transport and therefore lead to
higher mobilities. In Sec. III B, we have demonstrated that
ε∞

r obtained from PBE is larger than the experimental one.
Since the long-ranged part of electron-phonon interaction is
inversely proportional (see Eq. (17) in Supplemental Mate-
rial [29]) to ε∞

r , it follows that overestimate of ε∞
r leads to

underestimate of electron-phonon scattering matrix elements.
Smaller scattering is also beneficial for charge transport and
therefore larger mobility is obtained in the calculation.
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FIG. 4. Temperature dependence of electron mobility in ZnSe.
The label “calc. PBE” denotes the calculation where PBE exchange
correlation functional is used throughout the calculation, while
“calc. HSE06” denotes the calculation where energies and dielec-
tric constants obtained using PBE are replaced with those obtained
using HSE06. Experimental data from Refs. [52–58] are given for
comparison.

To overcome the limitations of the PBE functional, we per-
formed the calculations where more accurate conduction band
structure and ε∞

r are used in the calculation. More precisely, to
improve the conduction band structure, we change in the diag-
onal matrix hd (k) in Eq. (3) in Supplemental Material [29] the
eigenenergies obtained by PBE with those obtained in HSE06
calculation. To obtain a better description of the screening of
the long-ranged part of the electron-phonon interaction, we
set ε∞

r2 in Eq. (17) in Supplemental Material [29] to the value
obtained using HSE06 instead of the value ε∞

r1 obtained using
PBE that is used in Eq. (9) in Supplemental Material [29]. For
brevity, we refer to these calculations as HSE06 calculations,
although we note that this does not mean that full DFPT
calculation with HSE06 functional was performed. The results
obtained in such a calculation are also shown in Fig. 4. It can
be seen from the figure that the level of agreement of these
results with experimental data from the literature becomes
much better, as will be discussed in what follows.

The agreement between HSE06 calculation and experiment
is rather good for experimental results presented in Ref. [52]
(the high mobility sample in Fig. 4 therein) that concern high-
quality samples of ZnSe grown by molecular beam epitaxy.
The same is the case regarding the results of Ref. [53] (Fig. 3
therein). The calculation results are also only slightly larger
than the measurement results on the highest mobility sample
in Ref. [54] (Fig. 5 therein), while two other samples in
Ref. [54] have lower mobilities (these are also presented in
our Fig. 4) suggesting that nonintrinsic scattering mechanisms
could be present. Our calculation results are somewhat larger
than the experimental data in Ref. [55] [Fig. 2(b) therein] in
the temperature range between 200 K and 300 K. At lower
temperatures experimental data of Ref. [55] show a decrease
of mobility with decreasing temperature, which is a signa-
ture of the effects of impurity scattering and for this reason
comparison of our calculation with experiment would not

103
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exp-Ref.60
exp-Ref.61
exp-Ref.61
exp-Ref.62

FIG. 5. Temperature dependence of electron mobility in CdTe.
The label “calc. PBE” denotes the calculation where PBE exchange
correlation functional is used throughout the calculation, “calc.
HSE06” denotes the calculation where energies and dielectric con-
stants obtained using PBE are replaced with those obtained using
HSE06, while “calc. parab.” denotes the calculation where parabolic
band structure with experimental effective mass is used along the
HSE06 dielectric constants. Experimental data from Refs. [59–62]
are given for comparison.

be meaningful in this temperature range. The experimental
results of Refs. [56] (Fig. 1 therein) and [57] (Table I therein)
are noticeably smaller than the results of our calculation, even
around room temperature, suggesting that these samples could
be of somewhat lower quality than the samples previously
considered. Our calculation results are also in reasonably good
agreement with the results of Ref. [58] except at the low-
est temperatures (around 100 K) where, surprisingly, larger
values of mobility are obtained in experiment. We note that
this is the region where the concentration of carriers (and
therefore the current in the experiment) is rather small and
that the origin of the difference could potentially be the issues
with accurate measurements of small currents. Overall, Fig. 4
suggests that HSE06 calculation results are at the upper limit
of the results obtained in experiments and are in agreement
with the experimental results obtained on highest purity and
highest mobility samples.

Next, we turn our attention to the CdTe material and
compare in Fig. 5 the results of our calculations with experi-
mental data from Refs. [59] (highest mobility sample in Fig. 1
therein), [60] (highest mobility sample in Fig. 3 therein), [61]
(Figs. 2 and 6), [62] (Fig. 3). As in the case of ZnSe, PBE
calculation gives higher mobility than the HSE06 calculation
due to differences in effective masses and dielectric constants
predicted by two different functionals. The HSE06 results in
the region of temperatures near 300 K are lower than experi-
mental results. To understand why this is the case, we recall
from Table I that HSE06 effective mass of CdTe is larger than
experimental effective mass. For this reason, the calculation
that uses the HSE06 band structure underestimates the mate-
rial mobility. On the other hand, the PBE calculation where
effective mass is underestimated overestimates the mobility.
Such results point to the necessity of accurately describing
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FIG. 6. Temperature dependence of electron mobility in ZnTe.
The label “calc. PBE” denotes the calculation where PBE exchange
correlation functional is used throughout the calculation, while “calc.
HSE06” denotes the calculation where energies and dielectric con-
stants obtained using PBE are replaced with those obtained using
HSE06. Experimental data from Ref. [63] are given for comparison.

the band curvature near the bottom of conduction band (i.e.,
the conduction band effective mass) for accurate prediction
of electron mobility. To confirm that this is the case, we
performed an additional calculation where a parabolic band
structure with experimental effective mass was assumed. As
expected, this calculation gives a rather good agreement with
experiment at temperatures around the room temperature, see
Fig. 5. Nevertheless, one should note that the calculation can
no longer be considered as an ab initio calculation if the band
structure obtained from experimental effective mass is used in
the calculation.

We consider next the ZnTe material. Experimental data for
mobility in n-type ZnTe are rather scarce probably because
n-type doping of ZnTe is rather difficult [40]. We compare
in Fig. 6 our HSE06 result with the results of Ref. [63] (the
point at lowest concentration in Fig. 2 therein) and obtain
reasonably good agreement. As in the case of other materials,
our PBE results are significantly larger than HSE06 results.

Finally, we discuss the results obtained for CdSe. The
comparison of our calculation results with experimental data
from Refs. [64] (Fig. 3) and [65] (Fig. 2) is presented in
Fig. 7. Our HSE06 calculation results closely follow the re-
sults of Ref. [64] and are somewhat smaller than the results
of Ref. [65]. It should be noted that our calculations con-
cern the zincblende form of CdSe, while it has been reported
that experimental data correspond to wurtzite form of CdSe.
However, the arrangement of atoms and the distances between
them in two forms of CdSe are rather similar and the values
of most relevant material parameters (such as the conduction
band effective mass, the high-frequency dielectric constant,
the band gap, the optical phonon energies, and the material
density) are also rather similar (see, for example, Ref. [27]
for the values of these parameters in wurtzite and zincblende
CdSe). For this reason, the comparison of our results with
experimental data could be meaningful.
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FIG. 7. Temperature dependence of electron mobility in CdSe.
The label “calc. PBE” denotes the calculation where PBE exchange
correlation functional is used throughout the calculation, while
“calc. HSE06” denotes the calculation where energies and dielec-
tric constants obtained using PBE are replaced with those obtained
using HSE06. Experimental data from Refs. [64,65] are given for
comparison.

It is evident from previous results that better results for
mobility were obtained by introducing two corrections: the
correction to the dielectric constant and the correction to the
band structure. It is instructive to assess the importance of
each of the two corrections. For this reason, we have also per-
formed the calculations where only one of these corrections
was included. The results presented in Sec. XI of Supplemen-
tal Material [29] indicate that correction to the band structure
is larger and that both contributions are significant. For ex-
ample, in the case of ZnSe, the correction to the dielectric
constant reduces the room-temperature mobility by a factor of
approximately 1.25, while the correction to the band structure
reduces it by a factor of 1.6, yielding a total reduction by
approximately a factor of 2.

We note that all our calculations concern the drift mobility
μd of electrons in the material, while most of the experiments
report the Hall mobility μH . The two are related as μH =
rHμd , where rH is the so-called Hall factor. A good estimate
of the Hall factor can be obtained from a result derived for a
parabolic band that reads (see, for example, Ref. [32], p. 196)

rH = 〈ε〉 · 〈ε · τ 2〉
〈ε · τ 〉2

, (5)

where ε is the energy of the carrier with respect to the bottom
of the conduction band, τ is the momentum relaxation time,
and the averages are defined as 〈x〉 ≡

∑
k fkx∑
k fk

. We expect that
this is a good estimate for the materials at hand because the
bottom of the conduction band can be well approximated to
be parabolic. We have calculated rH using Eq. (5) for all
materials that we considered throughout the whole range of
temperatures and we have found that rH is within the range
(1.03,1.17), while corresponding values at four different tem-
peratures for all material considered are given in Sec. XII of
Supplemental Material [29]. Since it only slightly deviates
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Fröhlich
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FIG. 8. Temperature dependence of mobility in ZnSe: different
contributions and the results from different models. The label “all
modes” denotes the results when all phonon modes are included,
while the labels “modes 1–6” denote the results when only a par-
ticular phonon mode is included. The phonon modes are numbered
in ascending order of their energies. The label “SR” concerns the
results where only short-ranged part of electron-phonon coupling is
included. The label “Fröhlich” denotes the results where only mode 6
is included and where Fröhlich model for electron-phonon coupling
is used. The label “Fröhlich parab.” refers to the previous case where
the band energies are replaced with those obtained from a parabolic
band dispersion model.

from the value of 1 the comparison of calculated drift mo-
bilities with experimental Hall mobilities is fully appropriate.

D. Mobility: Results of different models

Next, we analyze different contributions to the total mo-
bility of the material and use the results obtained to consider
the possibility to obtain accurate mobility results without per-
forming the whole procedure of evaluating electron-phonon
coupling constants on a dense reciprocal space grid.

In Fig. 8 we plot the results that are obtained when only one
phonon mode is included in the calculation. The results indi-
cate that mobility in the presence of scattering at longitudinal
optical phonons (mode 6) is very similar to the total mobility
at temperatures around the room temperature. This implies
that LO-phonon scattering is the dominant scattering mecha-
nism at these temperatures. At low temperatures, the mobility
in the presence of scattering at acoustic phonons (modes 1–3)
becomes comparable or even smaller than the mobility in the
presence of LO-phonon scattering. These modes then provide
the dominant scattering mechanism (We note that in realistic
samples at low temperatures or at high impurity concentration
one should as well consider impurity scattering as an impor-
tant scattering mechanism). Such a behavior is fully expected
and has been identified starting from the early studies [66]
of transport in these materials. The origin of such a behavior
comes from the fact that at low temperatures there are very
few LO phonons and very few electrons at the states from
which LO phonon emission could be possible.

10−3

10−2

10−1

100

Γ L W X Γ K X

|γ
(k

=
Γ
,q

)|(
H

a)

mode 6
Fröhlich

mode 6 - LR
mode 6 - SR

FIG. 9. Electron-phonon coupling constants for scattering of an
electron at wave vector k = � with a mode 6 phonon at wave vector
q in ZnSe. The label “mode 6” denotes the results of the full calcu-
lation, “mode 6 - LR” and “mode 6 - SR” denote its long-ranged and
short-ranged part, while the label “Fröhlich” denotes the result for
the Fröhlich model.

Given the fact that mobility is mostly determined by LO
phonon scattering at higher temperatures, it is interesting to
consider if the same results could be obtained using some
relevant model for electron-phonon interaction without per-
forming the evaluation of electron-phonon coupling constants
on the dense grid. The model that is expected to provide a
reasonably good description of the interaction between elec-
trons and LO phonons is the Fröhlich model since we consider
direct band gap materials where all relevant electronic states
are at the vicinity of the � point and no intervalley scattering
effects are relevant. Within the Fröhlich model, the electron-
phonon coupling constant is given as

|γ (k, q)|2 = h̄e2
0ωLO

2V ε0

(
1

ε∞
r

− 1

εst
r

)
1

q2
, (6)

where h̄ωLO is the LO phonon energy, V is the volume of
the primitive cell of the crystal and εst

r is the static relative
dielectric constant. The values of the parameters used in the
Fröhlich model are summarized in Supplemental Material
[29] (Sec. XIII). The results obtained with electron-phonon
coupling from Eq. (6) and by taking into account only the LO
phonon mode are also shown in Fig. 8 (labeled as “Fröhlich”).
These results are very similar to the results obtained when
only mode 6 is considered and consequently they are close
to the full mobility results at higher temperature when mode
6 provides the dominant scattering mechanism. To better un-
derstand the origin of such a good agreement we compare
in Fig. 9 the electron-phonon coupling constants for mode
6 in the full calculation and within the Fröhlich model. The
figure shows that the long-ranged part of electron-phonon
interaction dominates over the short-ranged part and that it
nicely matches the Fröhlich model in the relevant range of q
vectors around the � point.

The agreement between electron-phonon coupling con-
stants further leads to the agreement in scattering times. In
Fig. 10 we present the dependence of scattering time on carrier

085203-8



CALCULATIONS OF ELECTRON MOBILITY IN II-VI … PHYSICAL REVIEW B 104, 085203 (2021)

0

50

100

150

0 50 100 150 200

τ
(f

s)

ε (meV)

all modes
all modes - PBE

mode 6
mode 6 - Fröhlich
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FIG. 10. Dependence of momentum relaxation time on electron
energy at a temperature of T = 300 K in ZnSe. The label “all modes”
denotes the results of the full calculation, the label “all modes - PBE”
refers to the results of the full calculation when PBE functional is
used, the label “mode 6” denotes the results when only phonon mode
6 is included, the label “mode 6 - Fröhlich” denotes the results for the
Fröhlich model for mode 6, while the label “Fröhlich parabolic” de-
notes the results for the Fröhlich model with parabolic band structure.

energy with respect to the bottom of the conduction band.
There is an overall good agreement between the scattering
time due to mode 6 and the scattering times in the Fröhlich
model. The scattering times caused by all phonon modes differ
from these at low energies where LO phonon emission is not
possible and where main contribution therefore comes from
acoustic phonons. Due to this difference, it is not possible
to accurately predict mobility at lower temperatures using a
model that includes LO phonons only. All conclusions stem-
ming from Figs. 8, 9, and 10 carry over to other materials,
while analogous figures are given in Supplemental Material
[29] (Secs. XIV, XV, and XVI therein).

We also note that the results indicate that the momentum
relaxation times increase when electron energy increases ex-
cept in the region around LO phonon energy when phonon
emission events become energetically allowed. There are two
opposing factors that determine the dependence of momentum
relaxation time on electronic energy. On the one hand, for
larger energy, the phase space for scattering increases and for
this reason one would expect the momentum relaxation time
to decrease. On the other hand, for larger energy, the phonon
momenta involved in a scattering event become larger on aver-
age (when electron energy is sufficiently large that LO phonon
emission is possible) and hence the scattering matrix element
becomes smaller, an effect that would lead to an increase
of momentum relaxation time. Which of these two opposing
effects will prevail can be concluded with certainty only from
a full calculation. In Sec. XVII of the Supplemental Material
[29] we show an analytic expression in the case of the Fröhlich
model with parabolic band structure. The results of this model
(shown in Fig. 10 and in Figs. 42–44 in Supplemental Material
[29]) exhibit essentially the same behavior as the results of the
full calculation. Such an agreement is certainly not expected
to extend to large energies above the bottom of the conduction

band. For example, it was shown in Ref. [67] that in GaN
the scattering rates from the Fröhlich model agree with full
calculation up to energies of ∼150 meV above the bottom of
the conduction band, while in the case of GaAs this agreement
cannot extend up to more than ∼250 meV when L valley
states start to play a role [13]. We find that in the case of ZnSe
this agreement extends up to ∼600 meV. Such conclusion was
drawn from Fig. 45 in Sec. XVIII of Supplemental Material
[29]. That section contains also a more detailed discussion on
the relation of our results for momentum relaxation times and
scattering times and the results of Refs. [67] and [13].

Comparison of the momentum relaxation times for calcu-
lations with PBE and HSE06 functional gives as an additional
insight why the HSE06 calculation gives lower values of
mobility. As already discussed, the HSE06 calculation yields
a higher effective mass than PBE calculation. It is not obvi-
ous whether a higher effective mass would lead to larger or
smaller momentum relaxation times, because two opposing
effects stemming from effective mass lead to the change of
momentum relaxation time. On the one hand, larger effec-
tive mass leads to smaller phase space for scattering, which
would lead to increased momentum relaxation time. On the
other hand, for larger effective mass, the phonon momenta
involved in the scattering event are smaller on average (when
electron energy is sufficiently large that LO phonon emission
is possible), the scattering matrix element is therefore larger,
which would lead to decreased momentum relaxation time. In
addition, HSE scattering matrix elements are larger because
of smaller dielectric constant, which would lead to decreased
momentum relaxation time. The results shown in Fig. 10 and
in Figs. 42–44 in Supplemental Material [29] suggest that the
effects that tend to decrease the momentum relaxation time
prevail so that the momentum relaxation time is smaller in
HSE06 calculation when the effective mass is larger. Larger
effective mass also yields smaller band velocities. Therefore,
given the fact that both the momentum relaxation times and
the band velocities are smaller for larger effective mass, the
mobility is also smaller for larger effective mass. These results
confirm the well-known fact that small effective masses are
desirable to have large mobility.

Next possible simplification in the evaluation of the mobil-
ity could be to even avoid the electronic structure and phonon
band structure calculation and assume a parabolic band struc-
ture, a dispersionless phonon mode and Fröhlich coupling
between electrons and phonons. This is a textbook model of
electrons, phonons, and their coupling in polar semiconduc-
tors. The results obtained within such a model are shown as
well in Fig. 8 (labeled as “Fröhlich parab.”). These results dif-
fer very little from the previous model (where full electronic
and LO phonon dispersions are considered), suggesting that
these are a viable alternative for mobility calculation at higher
temperatures.

However, if one is interested to obtain reasonably accurate
results for phonon-limited mobility at lower temperatures, the
approach where only the LO phonon mode is considered is
clearly not appropriate. To obtain a simpler model, which
could be accurate in the broader range of temperatures, we
consider the possibility of including only the short-ranged
or the long-ranged term in Eq. (18) in Supplemental Mate-
rial [29] for electron-phonon scattering elements. The results
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obtained when only the short-ranged term is included are
presented in Fig. 8 (labeled as “SR”), while the results ob-
tained when only the long-ranged term is included fully
coincide with the full mobility result (labeled as “all modes”).
We therefore conclude that the long-ranged part of electron-
phonon interaction fully determines the mobility, while it can
be evaluated directly from Eq. (17) in Supplemental Material
[29] without the need to previously obtain electron-phonon
coupling constants from DFPT and without the need to per-
form their interpolation.

IV. CONCLUSION

We conclude by pointing out several lessons learned from
our ab initio calculations of electron mobility in representative
II-VI semiconductors. Our study points to the necessity of
having accurate band structure and dielectric constants as
input to the calculation. For example, in the case of ZnSe
one obtains twofold larger mobility at room temperature if the
values obtained from PBE are directly used. While previous
studies of other materials have also considered the issue of
band structure and dielectric constants accuracy, the changes
of mobility when local density approximation (LDA) or PBE
results were replaced by more accurate results were relatively
small (around 15% in the case of silicon in Ref. [9] and around
25% in the case of GaAs in Ref. [8]).

Since the whole approach that includes the interpolation of
electron-phonon coupling constants to a dense grid is rather
computationally demanding, we used the results obtained to
benchmark possible simpler models that should yield compa-

rable accuracy. Such models have the potential to be used in
high-throughput screening of materials with desirable prop-
erties, where fast calculation of material properties in the
screening process is needed.

We found that the Fröhlich model of electron-phonon
coupling constants can give reasonably accurate results at
temperatures around room temperature for these direct band
gap materials where all relevant electronic states are at the
vicinity of the � point and no intervalley scattering effects
are present. Additional simplification of such model where
parabolic bands are assumed gives essentially the same re-
sults. These two results stem from the fact that the band
structure of the materials considered in the relevant range
of energies at the bottom of the conduction band is nearly
isotropic.

We also found that the long-ranged part of the electron-
phonon interaction fully determines the mobility. Therefore,
the approach where only this part is calculated is a viable
alternative that avoids the need to perform interpolation of
electron-phonon coupling constants.
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I. RELEVANT EQUATIONS

A. Electronic states and Wannier functions

Density functional theory is used to obtain the wave functions of electronic states |ψnk〉 and the corresponding
energies εnk which satisfy the eigenproblem of the Kohn-Sham single-particle Hamiltonian

HKS |ψnk〉 = εnk |ψnk〉 . (1)

The index n denotes the electronic band, while k is the electronic wave vector from the first Brillouin zone.
Wannier functions are related to the wave functions of electronic states |ψnk〉 as [1]

|wmR〉 = 1√
Nk

∑

k

e−ik·R
∑

n

Unm(k) |ψnk〉 . (2)

In previous equation, the index m denotes the Wannier functions (it is in the range [1, . . . , nw] with nw being the
total number of constructed Wannier functions per unit cell), R is the direct lattice vector of the unit cell where the
Wannier function is localized, while the summation is performed over the Nk electronic wave vectors k from the grid
used to perform density functional theory calculation of the states |ψnk〉. The matrices Unm(k) are unitary matrices
of the transformation from the basis of Bloch states |ψnk〉 to Wannier functions |wmR〉.
The matrix elements of the Kohn-Sham Hamiltonian in the Wannier representation are then given as

〈wm1R1
|HKS |wm2R2

〉 = 1

Nk

∑

k

eik·(R1−R2) ·
[

U(k)
†
hd(k)U(k)

]

m1m2

(3)

where hd(k) is a diagonal matrix that contains the eigenenergies εnk. To obtain the eigenstates and eigenenergies of
the Kohn-Sham Hamiltonian at K points which are not from the grid used in the DFT calculation, one forms the
matrix

hm1m2
(K) =

∑

R

eiK·R 〈wm10|HKS |wm2R〉 (4)

and solves its eigenvalue problem. The eigenvalues ε̃nK of this matrix are the eigenenergies of HKS at K, while the
eigenstates of HKS are given as

∣

∣

∣
ψ̃nK

〉

=
1√
Nk

∑

R

eiK·R
∑

m

Ũ∗
nm(K) |wmR〉 . (5)

where the matrix Ũ(K) is the adjoint matrix of the matrix whose columns contain the eigenvectors of h(K), while
the symbol ∗ denotes complex conjugation.

B. Electron-lattice coupling constants

Density functional perturbation theory calculation is used to obtain the coupling constants on the coarse grid of k
and q points

〈ψn1,k+q|
∂HKS

∂u−qSα

|ψn2k〉 (6)

that describe coupling between electronic states |ψn1,k+q〉 and |ψn2k〉 caused by lattice displacement of atom S in
direction α. These lattice displacements form a wave whose wave vector is −q and the relation

u−qSα =
1

Nk

∑

R

e−iq·RuRSα (7)

holds, where uRSα is the real space displacement in direction α of atom S that is located in primitive cell whose
position is specified by direct lattice vector R. In polar materials where atoms carry Born effective charges, the
change of potential created when atoms are displaced is long-ranged. Direct transformation of matrix elements from
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Eq. (6) to local representation would however erase part of the information about this long-ranged part. For this
reason, the operator in Eq. (6) is first divided into short-ranged and long-ranged part as

∂HKS

∂u−qSα

=
∂H

(SR)
KS

∂u−qSα

+
∂V (LR)

∂u−qSα

. (8)

The long-ranged operator which exists due to the presence of Born charges is given as [2]

∂V (LR)

∂u−qSα

=
ie0
ε0V

∑

G 6=−q

e−
σ2

2 (q+G)·ε̂∞r1·(q+G)

(q+G) · ε̂∞r1 · (q+G)
ei(q+G)(r−rS)

[

Ẑ1S · (q+G)
]

α
, (9)

where e0 is the elementary charge, ε0 is the vacuum permittivity, V is the volume of the primitive cell of the crystal,
ε̂∞r1 is the tensor of the high-frequency relative dielectric constant, Ẑ1S is the tensor of Born effective charge for atom
S, rS is the position of atom S in the primitive cell, while the summation is performed over reciprocal lattice vectors
G that satisfy the condition G + q 6= 0 and σ is the parameter that controls the convergence of this sum. We note
in passing that most recent studies [3, 4] have addressed the possibility of including additional quadrupole terms in
Eq. (9). The matrix elements of the short-ranged part are next evaluated as

〈ψn1,k+q|
∂H

(SR)
KS

∂u−qSα

|ψn2k〉 = 〈ψn1,k+q|
∂HKS

∂u−qSα

|ψn2k〉 − 〈ψn1,k+q|
∂V (LR)

∂u−qSα

|ψn2k〉 . (10)

To calculate 〈ψn1,k+q| ∂V
(LR)

∂u−qSα
|ψn2k〉 one needs to calculate the matrix elements 〈ψn1,k+q|ei(q+G)·(r−rS)|ψn2k〉. These

are related to matrix elements between Wannier functions as

〈ψn1,k+q|ei(q+G)·(r−rS)|ψn2k〉 =
∑

Re

eik·Re

∑

m1m2

Un1m1
(k+ q) 〈wm10|ei(q+G)·(r−rS)|wm2Re

〉
[

U(k)
†
]

m2n2

. (11)

To simplify Eq. (11) we further note that dominant terms in the sum in Eq. (9) are those with small values of |q+G|.
For these terms, the ei(q+G)·(r−rS) factor in Eq. (11) is a slowly varying function of r on the length scale of Wannier
function localization. Therefore, we can use the following approximation

〈wm10|ei(q+G)·(r−rS)|wm2Re
〉 ≈ ei(q+G)·(r(w)

m1
−rS) 〈wm10|wm2Re

〉 = δm1m2
δRe,0e

i(q+G)·(r(w)
m1

−rS), (12)

where r
(w)
m1 is the position of the center of the Wannier function |wm10〉. From Eqs. (11) and (12) it follows that

〈ψn1,k+q|ei(q+G)·(r−rS)|ψn2k〉 ≈
∑

m

Un1m(k+ q)ei(q+G)·(r(w)
m −rS)

[

U(k)
†
]

mn2

. (13)

We note that Eq. (13) is different than corresponding equations in Refs. [5] and [2]. In Ref. [5] the approximations
that lead to 〈ψn1,k+q|ei(q+G)·(r−rS)|ψn2k〉 ≈ δn1n2

were used, while in Ref. [2] the approximations used lead to the
expression

〈ψn1,k+q|ei(q+G)·(r−rS)|ψn2k〉 ≈
∑

m

Un1m(k+ q)
[

U(k)
†
]

mn2

. (14)

Using a limited set of tests, we found that the final result for the mobility is essentially the same when Eq. (14)
from Ref. [2] is used, while differences can be noticed if the approximation from Ref. [5] is used. The difference
between electron-phonon coupling constants from different approaches occurs mainly for large phonon momenta and
it is therefore not relevant for the present study.
Using Eqs. (2) and (7), matrix elements of the short-ranged part in Wannier representation can be expressed as

〈wm10|
∂H

(SR)
KS

∂uRpSα

|wm2Re
〉 = 1

N2
k

∑

kq

e−ik·Ree−iq·Rp

∑

n1n2

[

U(k+ q)
†
]

m1n1

〈ψn1,k+q|
∂H

(SR)
KS

∂u−qSα

|ψn2k〉Un2m2
(k). (15)

Using Eq. (5) one obtains the coupling elements due to short-ranged part between the Bloch states at arbitrary values
of electron and phonon wave vector

〈

ψ̃n1,K+Q

∣

∣

∣

∂H
(SR)
KS

∂u−QSα

∣

∣

∣
ψ̃n2K

〉

=
∑

Re,Rp

eiK·ReeiQ·Rp

∑

m1m2

Ũ(K+Q)n1m1
〈wm10|

∂H
(SR)
KS

∂uRpSα

|wm2Re
〉
[

Ũ(K)
†
]

m2n2

. (16)
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The coupling elements
〈

ψ̃n1,K+Q

∣

∣

∣

∂V (LR)

∂u−QSα

∣

∣

∣
ψ̃n2K

〉

due to long-ranged part for Bloch states at arbitrary values of

electron and phonon wave vector can now be obtained using equations analogous to Eqs. (9), (11) and (13), where k

and q are replaced by K and Q, unitary matrices U are replaced by Ũ and Bloch states |ψnk〉 are replaced by
∣

∣

∣
ψ̃nK

〉

.

For example, the equation analogous to Eq. (9) is

∂V (LR)

∂u−QSα

=
ie0
ε0V

∑

G 6=−Q

e−
σ2

2 (Q+G)·ε̂∞r2·(Q+G)

(Q+G) · ε̂∞r2 · (Q+G)
ei(Q+G)(r−rS)

[

Ẑ2S · (Q+G)
]

α
, (17)

At this stage we also allow for the possibility to introduce the correction in the dielectric tensor or Born effective
charges. Namely, if DFT calculation does not yield sufficiently accurate dielectric constant or Born effective charges
and more accurate values are known (either from experiment or from the calculation using a more accurate method),

we can use these more accurate values in the Eq. (17) to evaluate
〈

ψ̃n1,K+Q

∣

∣

∣

∂V (LR)

∂u−QSα

∣

∣

∣
ψ̃n2K

〉

. This is emphasized in

Eqs. (9) and (17) since the symbols ε̂∞r1 and Ẑ1 are used in Eq. (9), while the symbols ε̂∞r2 and Ẑ2 are used in Eq. (17).

With these elements at hand, the coupling elements for arbitrary K and Q are finally obtained as

〈

ψ̃n1,K+Q

∣

∣

∣

∂HKS

∂u−QSα

∣

∣

∣
ψ̃n2K

〉

=
〈

ψ̃n1,K+Q

∣

∣

∣

∂H
(SR)
KS

∂u−QSα

∣

∣

∣
ψ̃n2K

〉

+
〈

ψ̃n1,K+Q

∣

∣

∣

∂V (LR)

∂u−QSα

∣

∣

∣
ψ̃n2K

〉

. (18)

The electron-phonon coupling elements γλ (K,Q) that enter the expression for momentum relaxation time are
related to the coupling elements from Eq. (18) as

γλ (K,Q) =
∑

Sα

√

~

2MSωλQ

e(Q)
λ
Sα

〈

ψ̃K+Q

∣

∣

∣

∂HKS

∂u−QSα

∣

∣

∣
ψ̃K

〉

, (19)

where MS is the mass of atom S, while e(Q)
λ
Sα are the components of the eigenvectors of the dynamical matrix

∑

Tβ

D(Q)Sα,Tβe(Q)
λ
Tβ = ω2

λQe(Q)
λ
Sα. (20)
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II. ELECTRONIC BAND STRUCTURE INTERPOLATION
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FIG. 1. Comparison of electronic band structure of ZnSe obtained using DFT calculation using the PBE functional (dashed
line) and by its Wannier interpolation (full line).
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FIG. 2. Comparison of electronic band structure of CdTe obtained using DFT calculation using the PBE functional (dashed
line) and by its Wannier interpolation (full line).
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FIG. 3. Comparison of electronic band structure of ZnTe obtained using DFT calculation using the PBE functional (dashed
line) and by its Wannier interpolation (full line).
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FIG. 4. Comparison of electronic band structure of CdSe obtained using DFT calculation using the PBE functional (dashed
line) and by its Wannier interpolation (full line).
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III. ELECTRONIC BAND STRUCTURE
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FIG. 5. Electronic band structure of CdTe calculated using the PBE functional (full line) and the hybrid HSE06 functional
(dashed line).
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FIG. 6. Electronic band structure of ZnTe calculated using the PBE functional (full line) and the hybrid HSE06 functional
(dashed line).
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FIG. 7. Electronic band structure of CdSe calculated using the PBE functional (full line) and the hybrid HSE06 functional
(dashed line).



9

IV. PHONON BAND STRUCTURE AND PHONON ENERGIES
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FIG. 8. Phonon band structure of CdTe.
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FIG. 9. Phonon band structure of ZnTe.
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FIG. 10. Phonon band structure of CdSe.

exp. (cm−1) exp. (meV) calc cor. (meV) calc no cor. (meV)

Γ TO 213 26.4 25.7 25.7

LO 252 31.2 31.2 30.6

X TA 71 8.8 9.2 8.1

LA 193 23.9 24.2 23.9

TO 220 27.3 26.2 26.4

LO 213 26.4 25.1 24.7

L TA 57 7.1 6.9 6.4

LA 170 21.1 22.1 20.9

TO 217 26.9 25.9 26.0

LO 222 27.5 26.5 26.5

TABLE I. Phonon energies at characteristic points in the Brollouin zone for ZnSe. The label ”exp.” denotes the experimental
results from Ref. [6], the label ”calc cor.” denotes the calculation where high-frequency dielectric constant was changed to the
HSE06 value in the long-ranged part of the dynamical matrix, while the label ”calc no cor.” denotes the calculation where this
correction was not performed.

exp. (cm−1) exp. (meV) calc cor. (meV) calc no cor. (meV)

Γ TO 140 17.4 18.1 18.1

LO 169 21.0 21.3 20.8

X TA 35 4.3 4.6 3.4

LA 16.6 16.3

TO 148 18.3 18.9 19.2

LO 16.6 16.3

L TA 29 3.6 3.5 2.9

LA 108 13.4 14.1 13.2

TO 144 17.9 18.5 18.6

LO 144 17.9 18.5 18.6

TABLE II. Phonon energies at characteristic points in the Brollouin zone for CdTe. The label ”exp.” denotes the experimental
results from Ref. [6], the label ”calc cor.” denotes the calculation where high-frequency dielectric constant was changed to the
HSE06 value in the long-ranged part of the dynamical matrix, while the label ”calc no cor.” denotes the calculation where this
correction was not performed.
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exp. (cm−1) exp. (meV) calc cor. (meV) calc no cor. (meV)

Γ TO 177 21.9 22.6 22.7

LO 207 25.7 26.1 25.6

X TA 54 6.7 6.9 6.2

LA 143 17.7 17.9 17.7

TO 174 21.6 22.2 22.3

LO 184 22.8 23.0 22.6

L TA 42 5.2 5.2 4.9

LA 135 16.7 17.4 16.7

TO 173 21.4 22.5 22.4

LO 180 22.3 22.6 22.6

TABLE III. Phonon energies at characteristic points in the Brollouin zone for ZnTe. The label ”exp.” denotes the experimental
results from Ref. [6], the label ”calc cor.” denotes the calculation where high-frequency dielectric constant was changed to the
HSE06 value in the long-ranged part of the dynamical matrix, while the label ”calc no cor.” denotes the calculation where this
correction was not performed.

exp. (cm−1) exp. (meV) calc cor. (meV) calc no cor. (meV)

Γ TO 169 21.0 21.2 21.3

LO 211 26.2 26.1 25.4

X TA 6.1 4.3

LA 18.2 17.8

TO 23.2 23.5

LO 22.4 21.9

L TA 34 4.2 4.5 3.6

LA 16.6 15.3

TO 22.1 22.3

LO 23.8 23.7

TABLE IV. Phonon energies at characteristic points in the Brollouin zone for CdSe. The label ”exp.” denotes the experimental
results from Ref. [6], the label ”calc cor.” denotes the calculation where high-frequency dielectric constant was changed to the
HSE06 value in the long-ranged part of the dynamical matrix, while the label ”calc no cor.” denotes the calculation where this
correction was not performed.
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V. ELECTRON-PHONON COUPLING CONSTANTS
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FIG. 11. Electron-phonon coupling constants for scattering of an electron at wave vector k = Γ with a phonon of a given mode
at wave vector q in CdTe. The modes are labeled in ascending order of their energies at q.
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FIG. 12. Electron-phonon coupling constants for scattering of an electron at wave vector k = Γ with a phonon of a given mode
at wave vector q in ZnTe. The modes are labeled in ascending order of their energies at q.
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FIG. 13. Electron-phonon coupling constants for scattering of an electron at wave vector k = Γ with a phonon of a given mode
at wave vector q in CdSe. The modes are labeled in ascending order of their energies at q.
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VI. ELECTRON-LATTICE COUPLING ELEMENTS
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FIG. 14. Moduli of electron-lattice coupling elements in ZnSe: gq,1x denotes the element 〈ψn,k+q|
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|ψnk〉 for k = Γ, S
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calculated using the PBE dielectric constant; vcorQ,1x denotes the same element when the long-ranged part was calculated using
the HSE06 dielectric constant
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FIG. 15. Moduli of electron-lattice coupling elements in CdTe: gq,1x denotes the element 〈ψn,k+q|
∂HKS

∂u−qSα
|ψnk〉 for k = Γ, S

labels the first atom (Cd), α = x, and n equal to the index of the conduction band; gSRq,1x denotes the short-ranged part of the
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FIG. 16. Moduli of electron-lattice coupling elements in ZnTe: gq,1x denotes the element 〈ψn,k+q|
∂HKS

∂u−qSα
|ψnk〉 for k = Γ, S

labels the first atom (Zn), α = x, and n equal to the index of the conduction band; gSRq,1x denotes the short-ranged part of the

same element; vSRQ,1x denotes
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the HSE06 dielectric constant
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FIG. 17. Moduli of electron-lattice coupling elements in CdSe: gq,1x denotes the element 〈ψn,k+q|
∂HKS

∂u−qSα
|ψnk〉 for k = Γ, S
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VII. HIGH-FREQUENCY DIELECTRIC CONSTANTS AND BORN EFFECTIVE CHARGES

As mentioned in the main text, calculation of high-frequency dielectric constants and Born effective charges was
performed using two different methods: (i) using density functional perturbation theory; (ii) by performing the
calculation of polarization and atomic forces in finite electric field. The same plane-wave kinetic energy cut-off as in
the case of band structure calculations was used since it was checked that it gives converged results for high-frequency
dielectric constants and Born effective charges. In DFPT calculations we used the cubic grid in reciprocal space with
spacing between nearest points of 2π

Nga0
, where a0 is the lattice constant of the material and Ng is a positive integer. In

finite electric-field calculations we used four-times-shifted Monkhorst Pack grid of size Ng×Ng×Ng. The dependence
of dielectric constants obtained on Ng is presented in Figs. 18-21. We note that PBE calculations using two different
methods converge towards the same value, as expected, while this convergence is slower in the case of finite electric
field calculations. Due to computational limitations, it was not possible to perform hybrid functional calculations for
large values of Ng. To obtain the value of dielectric constant within the hybrid functional approach we extrapolate
the dependence of ε∞r on Ng as follows. We note that the ratio of ε∞r calculated in finite electric field calculations
using the PBE and the hybrid functional approach is nearly the same for Ng ∈ {2, 4, 6} where both calculations could
be performed (this constant is 1.18 for ZnSe, 1.19 for ZnTe, 1.23 for CdTe and 1.26 for CdSe). Therefore we assume
that this ratio will be the same for larger values of Ng as well and we obtain ε∞r in hybrid functional approach as the
converged value of PBE dielectric constant divided by the determined ratio.
Unlike dielectric constants, Born effective charges appear to be much less sensitive to the choice of functional and

to the reciprocal space grid size. While the values of Born effective charge reported in the main text were obtained
using formally the same procedure as for dielectric constants, its values would change very little if one simply took
the Ng = 6 values in the calculation.

FIG. 18. Dependence of the calculated dielectric constant on the size of the grid in reciprocal space for the case of ZnSe.
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FIG. 19. Dependence of the calculated dielectric constant on the size of the grid in reciprocal space for the case of CdTe.

FIG. 20. Dependence of the calculated dielectric constant on the size of the grid in reciprocal space for the case of ZnTe.

FIG. 21. Dependence of the calculated dielectric constant on the size of the grid in reciprocal space for the case of CdSe.
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VIII. CONVERGENCE WITH RESPECT TO GRID SIZE
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FIG. 22. Temperature dependence of mobility in ZnSe for different dense grid dimensions. The parameter εc was set to 140meV
in these calculations.
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FIG. 23. Temperature dependence of mobility in CdTe for different dense grid dimensions. The parameter εc was set to
140 meV in these calculations.
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FIG. 24. Temperature dependence of mobility in ZnTe for different dense grid dimensions. The parameter εc was set to 140meV
in these calculations.
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FIG. 25. Temperature dependence of mobility in CdSe for different dense grid dimensions. The parameter εc was set to 140meV
in these calculations.
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IX. CONVERGENCE WITH RESPECT TO εc - THE ENERGY CUT-OFF THAT DETERMINES THE

K POINTS USED IN THE CALCULATION
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FIG. 26. Temperature dependence of mobility in ZnSe for different values of εc. The K point grid of size 120× 120× 120 was
used in these calculations.
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FIG. 27. Temperature dependence of mobility in CdTe for different values of εc. The K point grid of size 120× 120× 120 was
used in these calculations.
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FIG. 28. Temperature dependence of mobility in ZnTe for different values of εc. The K point grid of size 120× 120× 120 was
used in these calculations.
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FIG. 29. Temperature dependence of mobility in CdSe for different values of εc. The K point grid of size 120× 120× 120 was
used in these calculations.
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X. ACCURACY OF MOMENTUM RELAXATION TIME APPROXIMATION

All our calculations are based on momentum relaxation time approximation (MRTA) and in this section we estimate
its accuracy. In the derivation of MRTA from Boltzmann equations one assumes at a certain point that

|vk| · τk ≈ |vk′ | · τk′ (21)

where k and k′ are the wave vectors of the two states involved in the scattering event, τk are the momentum relaxation
times and vk are the band velocities. The approximation is best satisfied when the change of momentum in a scattering
event is small. This is quite well satisfied for acoustic phonons which have low energies and therefore the two states
k and k′ need to have both similar energy and momenta to satisfy the conservation of energy and momentum in a
scattering event. One could expect that the approximation could be less satisfactory in the case of optical phonons.
For this reason, we investigate the effect of this approximation on mobility in a model with a single logitudinal optical
phonon. We assume that the dispersion of the bands is parabolic and that the phonon is dispersionless. For such
a model the Boltzmann equation can be solved with much smaller computational effort than in the general case,
while the model has similar band dispersion and the main electron-phonon scattering mechanism as in the materials
considered. For this reason, the conclusions on the validity of MRTA in this model could be extended to the materials
considered. The comparison of the mobility obtained from the Boltzmann equation and from the MRTA is given
in Figs. 30 and 31. The results indicate excellent accuracy of MRTA around room temperature. For all materials
considered its accuracy (compared to the solution of Boltzmann equation) is better than 5% at room temperature,
while the largest differences between the two models occur at lowest temperature of 100 K where they reach 30%.
However, at the lowest temperatures the acoustic phonons, rather than longitudinal optical phonons, determine the
electron-phonon scattering rate. One therefore expects better accuracy (than 30%) of MRTA applied to full model
with all electron-phonon scattering mechanisms at lowest temperatures considered.
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FIG. 30. Comparison of mobility for ZnSe and CdTe obtained from momentum relaxation time approximation (MRTA) and
from the solution of Boltzmann equations in the case of of the model with parabolic bands and Fröhlich electron-phonon
coupling with a single dispersionless phonon mode.
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FIG. 31. Comparison of mobility for ZnTe and CdSe obtained from momentum relaxation time approximation (MRTA) and
from the solution of Boltzmann equations in the case of of the model with parabolic bands and Fröhlich electron-phonon
coupling with a single dispersionless phonon mode.
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XI. COMPARISON OF THE EFFECTS OF BAND STRUCTURE CORRECTION AND DIELECTRIC

CONSTANT CORRECTION ON THE MOBILITY
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FIG. 32. Temperature dependence of mobility in ZnSe. The label PBE denotes the calculation where all quantities were
calculated using the PBE functional, the label ”diel HSE06” denotes the calculation where the dielectric constant obtained
from the HSE06 functional was used, the label ”bands HSE06” denotes the calculation where the band energies obtained from
the HSE06 functional were used, while the label HSE06 denotes the calculation where the dielectric constant and band energies
obtained from the HSE06 functional were used.
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FIG. 33. Temperature dependence of mobility in CdTe. The label PBE denotes the calculation where all quantities were
calculated using the PBE functional, the label ”diel HSE06” denotes the calculation where the dielectric constant obtained
from the HSE06 functional was used, the label ”bands HSE06” denotes the calculation where the band energies obtained from
the HSE06 functional were used, while the label HSE06 denotes the calculation where the dielectric constant and band energies
obtained from the HSE06 functional were used.
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FIG. 34. Temperature dependence of mobility in ZnTe. The label PBE denotes the calculation where all quantities were
calculated using the PBE functional, the label ”diel HSE06” denotes the calculation where the dielectric constant obtained
from the HSE06 functional was used, the label ”bands HSE06” denotes the calculation where the band energies obtained from
the HSE06 functional were used, while the label HSE06 denotes the calculation where the dielectric constant and band energies
obtained from the HSE06 functional were used.
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FIG. 35. Temperature dependence of mobility in CdSe. The label PBE denotes the calculation where all quantities were
calculated using the PBE functional, the label ”diel HSE06” denotes the calculation where the dielectric constant obtained
from the HSE06 functional was used, the label ”bands HSE06” denotes the calculation where the band energies obtained from
the HSE06 functional were used, while the label HSE06 denotes the calculation where the dielectric constant and band energies
obtained from the HSE06 functional were used.
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XII. CALCULATED HALL FACTORS

The calculated values of electron Hall factors for the materials considered are given in Table V.

ZnSe ZnTe CdSe CdTe

100 K 1.12 1.12 1.08 1.07

200 K 1.14 1.09 1.05 1.04

300 K 1.06 1.05 1.05 1.07

400 K 1.05 1.05 1.08 1.10

TABLE V. Calculated values of electron Hall factors of investigated II-VI materials at different temperatures.
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XIII. PARAMETERS USED IN THE FRÖHLICH MODEL

In Fröhlich model for electron-phonon interaction we use the following parameters that were taken from Ref. [6].

ZnSe ZnTe CdSe CdTe

ε∞r 5.9 6.9 6.2 7.1

εstr 8.9 9.4 9.6 10.4

~ωLO (meV) 31.24 25.66 26.2 20.95

TABLE VI. The parameters of the Fröhlich model used in the calculation.
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XIV. CONTRIBUTIONS OF DIFFERENT MODES TO MOBILITY AND THE MOBILITY OBTAINED

FROM DIFFERENT MODELS
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FIG. 36. Temperature dependence of mobility in CdTe: different contributions and the results from different models. The label
”all modes” denotes the results when all phonon modes are included, while the labels ”modes 1-6” denote the results when
only a particular phonon mode is included. The phonon modes are numbered in ascending order of their energies. The label
”SR” concerns the results where only short-ranged part of electron-phonon coupling is included. The label ”Fröhlich” denotes
the results where only mode 6 is included and where Fröhlich model for electron-phonon coupling is used. The label ”Fröhlich
parab.” refers to the previous case where the band energies are replaced with those obtained from a parabolic band dispersion
model.
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FIG. 37. Temperature dependence of mobility in ZnTe: different contributions and the results from different models. The label
”all modes” denotes the results when all phonon modes are included, while the labels ”modes 1-6” denote the results when
only a particular phonon mode is included. The phonon modes are numbered in ascending order of their energies. The label
”SR” concerns the results where only short-ranged part of electron-phonon coupling is included. The label ”Fröhlich” denotes
the results where only mode 6 is included and where Fröhlich model for electron-phonon coupling is used. The label ”Fröhlich
parab.” refers to the previous case where the band energies are replaced with those obtained from a parabolic band dispersion
model.
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FIG. 38. Temperature dependence of mobility in CdSe: different contributions and the results from different models. The label
”all modes” denotes the results when all phonon modes are included, while the labels ”modes 1-6” denote the results when
only a particular phonon mode is included. The phonon modes are numbered in ascending order of their energies. The label
”SR” concerns the results where only short-ranged part of electron-phonon coupling is included. The label ”Fröhlich” denotes
the results where only mode 6 is included and where Fröhlich model for electron-phonon coupling is used. The label ”Fröhlich
parab.” refers to the previous case where the band energies are replaced with those obtained from a parabolic band dispersion
model.
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XV. COMPARISON OF ELECTRON-LO-PHONON COUPLING CONSTANTS IN DIFFERENT

MODELS
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FIG. 39. Electron-phonon coupling constants for scattering of an electron at wave vector k = Γ with a mode 6 phonon at wave
vector q in CdTe. The label ”mode 6” denotes the results of the full calculation, ”mode 6 - LR” and ”mode 6 - SR” denote its
long-ranged and short-ranged part, while the label ”Fröhlich” denotes the result for the Froöhlich model.
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FIG. 40. Electron-phonon coupling constants for scattering of an electron at wave vector k = Γ with a mode 6 phonon at wave
vector q in ZnTe. The label ”mode 6” denotes the results of the full calculation, ”mode 6 - LR” and ”mode 6 - SR” denote its
long-ranged and short-ranged part, while the label ”Fröhlich” denotes the result for the Froöhlich model.
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FIG. 41. Electron-phonon coupling constants for scattering of an electron at wave vector k = Γ with a mode 6 phonon at wave
vector q in CdSe. The label ”mode 6” denotes the results of the full calculation, ”mode 6 - LR” and ”mode 6 - SR” denote its
long-ranged and short-ranged part, while the label ”Fröhlich” denotes the result for the Froöhlich model.
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XVI. DEPENDENCE OF MOMENUTUM RELAXATION TIME ON ELECTRONIC ENERGY
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FIG. 42. Dependence of momentum relaxation time on electron energy at a temperature of T = 300 K in CdTe. The label
”all modes” denotes the results of the full calculation, the label ”all modes - PBE” refers to the results of the full calculation
when PBE functional is used, the label ”mode 6” denotes the results when only phonon mode 6 is included, the label ”mode 6
- Fröhlich” denotes the results for the Fröhlich model for mode 6, while the label ”Fröhlich parabolic” denotes the results for
the Fröhlich model with parabolic band structure.
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FIG. 43. Dependence of momentum relaxation time on electron energy at a temperature of T = 300 K in ZnTe. The label
”all modes” denotes the results of the full calculation, the label ”all modes - PBE” refers to the results of the full calculation
when PBE functional is used, the label ”mode 6” denotes the results when only phonon mode 6 is included, the label ”mode 6
- Fröhlich” denotes the results for the Fröhlich model for mode 6, while the label ”Fröhlich parabolic” denotes the results for
the Fröhlich model with parabolic band structure.
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Fröhlich parabolic

FIG. 44. Dependence of momentum relaxation time on electron energy at a temperature of T = 300K in CdSe. The label ”all
modes” denotes the results of the full calculation, the label ”all modes - PBE” refers to the results of the full calculation when
PBE functional is used, the label ”mode 6” denotes the results when only phonon mode 6 is included, while the label ”mode 6
- Fröhlich” denotes the results for the Fröhlich model for mode 6, while the label ”Fröhlich parabolic” denotes the results for
the Fröhlich model with parabolic band structure.
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XVII. ANALYTIC EXPRESSION FOR MOMENTUM RELAXATION TIME AND SCATTERING TIME

IN THE CASE OF FRÖHLICH MODEL WITH PARABOLIC BAND STRUCTURE

In the case of parabolic band structure with effective mass m the momentum relaxation time of an electron at
momentum k that interacts with dispersionless phonon mode of energy ~ωLO via the Fröhlich interaction reads

τ =
1

Wa +We

, (22)

where the term
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comes from phonon absorption and
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comes from phonon emission. In previous equations nLO = 1

e

~ωLO
kBT −1

is the number of phonons of energy ~ωLO,

C1 = k2 + 2mωLO

~
, C2 = k2 − 2mωLO

~
and C =

~e20ωLO

2ε0

(

1
ε∞r

− 1
εstr

)

. The phonon emission term should be set to zero

when C2 < 0.
The scattering time which is given by Eq. (2) of the paper without the cos θ term reads

τ sc =
1

W sc
a +W sc

e

, (25)

where

W sc
a =

1

2π

nLOmC

~3k
ln

∣

∣

∣

∣

k +
√
C1

k −
√
C1

∣

∣

∣

∣

(26)

and

W sc
e =

1

2π

(nLO + 1)mC

~3k
ln

∣

∣

∣

∣

k +
√
C2

k −
√
C2

∣

∣

∣

∣

. (27)
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XVIII. DEPENDENCE OF MOMENUTUM RELAXATION TIME ON ELECTRONIC ENERGY IN

WIDER ENERGY RANGE

The results shown in Fig. 10 of the paper and in Figs. 42-44 indicate that momentum relaxation times follow nicely
the prediction of the Fröhlich model in the energy range from one LO phonon energy up to at least 250 meV. It is
certainly expected that this agreement will no longer be good at energies that are sufficiently high. To establish at
what energies will this happen, we calculated the momentum relaxation times and scattering times for energies up to
1.5 eV above the bottom of the conduction band in the case of ZnSe. The results shown in Fig. 45 indicate that the
Fröhlich model with parabolic band structure gives a good description of momentum relaxation times and scattering
times for energies up to ∼ 600 meV.
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FIG. 45. Dependence of momentum relaxation time (m.r.t.) and scattering time (s.t.) on electron energy at a temperature
of T = 300 K in ZnSe. The results are shown for electronic states that are randomly selected in such a way that there is on
average 1 state per 10 meV. The results obtained from the Fröhlich model with parabolic band structure are shown as full
lines.

Next, we compare our results with the results of Refs. [7] (GaN) and [8] (GaAs). It was shown in these references
that at low energies scattering rates are almost independent of electron energy. Our results for scattering times in
ZnSe are in agreement with these results, while we note that momentum relaxation times do not follow the same
trend. At higher energies scattering rates in Refs. [7] and [8] increase (and therefore scattering times decrease). As
can be seen in Fig. 45 we also obtain that scattering times decrease at energies above ∼ 600 meV. Our results for
ZnSe therefore qualitatively follow the same trend as the results for GaN and GaAs. Quantitatively, the Fröhlich
model is applicable in ZnSe up to larger energies and scattering times start to decrease at larger energies in ZnSe in
comparison to GaN and GaAs.
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