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Abstract

Spin-�ip scattering from magnetic impurities has a strong pair-breaking effect in s-wave

superconductors where increasing the concentration of impurities rapidly destroys

superconductivity. For small Kondo temperature TK the destruction of superconductivity is

preceded by the reentrant superconductivity at �nite temperature range Tc2 < T < Tc1, while

the normal phase reappears at T < Tc2 ∼ TK. Here we explore the superconducting phase in a

periodic system modeled as the Anderson lattice with additional attractive on-site (Hubbard)

interaction g acting on the conduction band electrons. We solve the equations using dynamical

mean �eld theory which incorporates Kondo physics, while the pairing interaction is treated

on the static mean-�eld level. For large coupling g we �nd reentrant superconductivity which

resembles the case with diluted impurities. However, we �nd evidence that reentrant

superconductivity is here not a consequence of many-body correlations leading to the Kondo

effect, but it rather stems from a competition between the single-particle hybridization and

superconducting pairing. An insight into the spectral functions with in-gap structures is

obtained from an approximate noninteracting dual model whose solution interpolates between

several exact limits.

Keywords: Anderson lattice model, superconductivity, dynamical mean �eld theory

(Some �gures may appear in colour only in the online journal)

1. Introduction

The in�uence of magnetic impurities on conventional s-wave

superconductors has been intensively explored since the early

sixties [1–4]. In a seminal work Abrikosov and Gor’kov (AG)

have shown [1], within the second-order Born approxima-

tion, that the scattering from impurity spins breaks the Cooper

pairs and suppresses superconductivity. AG theory predicts

the decrease in transition temperature Tc determined by a

universal function of the pair-breaking parameter which is

proportional to the impurity concentration, spin magnitude,

and the exchange interaction. There is excellent quantitative

1 Author to whom any correspondence should be addressed.

agreement between the AG theory and numerous experiments

on conventional superconductors with rare earth impurity ions

[3, 5, 6].

A notable deviation from the AG theory is observed in

some alloys, like La1−xCexAl2 [7, 8]. In these systems Tc ini-

tially decreases with increasing the concentration x similar as

in AG theory, but near the critical concentration there is a

regime where the system is superconducting below an ‘upper’

critical temperature Tc1, but it ‘reenters’ the normal phase at

nonzero Tc2. This reentrant superconductivity is explained as

a consequence of Kondo physics [9, 10], and it appears when

the characteristic Kondo temperature TK is much smaller than

the critical temperature of the clean system Tc0. The impu-

rity scattering and the pair-breaking parameter acquire strong
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temperature dependence. At temperatures T ≫ TK the impu-

rity spins are weakly coupled to the conduction electrons and

the superconducting (SC) phase persists, while the normal

phase reappears at temperatures T ∼ TK when the scattering

becomes stronger. More recently, reentrant superconductivity

is obtained from a solution of the Eliashberg equations supple-

mented by the quantumMonte Carlo solution of the Anderson

impurity problem [11]. The critical concentration for the full

suppression of the superconductivitygrowswith increasing the

electron–phonon coupling, but it typically remains of the order

of 1%.

Can the superconductivity and the reentrant behavior per-

sist in the case of periodic impurities, i.e. in the presence of a

second band of interacting dispersionless electrons hybridized

with the conduction band? The reentrant superconductivity

is indeed observed in several ternary [12–15] and quater-

nary conventional superconductors [16] with periodic weakly

hybridized rare-earth magnetic ions. The reentrant behavior is

here attributed to the magnetic ordering for T < Tc2 and not

the Kondo physics. More recently, the reentrant superconduc-

tivity is observed also in some iron based superconductors like

EuFe2As2 [17, 18].

In heavy fermion compounds the superconductivity is

mediated by spin �uctuations instead of the electron–phonon

coupling [19]. This generically leads to d-wave pairing, though

recent studies on CeCu2Si2 surprisingly indicated a fully

gapped s-wave state [20]. Hence, theoretical work on the sys-

tems with periodic magnetic moments was mostly focused

on unconventional d-wave pairing near the antiferromagnetic

quantum critical point in the Kondo/Anderson lattice model

[22, 23], with few exceptions that treated attractive on-site

pairing interaction in the Kondo lattice model [24–27].

In this work we explore the effect of periodic magnetic

impurities on conventional superconductivity. Our starting

point is the Anderson lattice model with the addition of

an on-site pairing (attractive Hubbard) interaction acting on

the conduction c-electrons. The repulsive interaction U on

f-orbitals is treated within dynamical mean �eld theory [28]

(DMFT) using continuous time hybridization expansion quan-

tumMonte Carlo (CthybQMC) impurity solver [29], while the

on-site pairing g is treated on the static mean-�eld level. This

model is closely related to the Kondo lattice model that has

been very recently studied [24, 25], but here we focus on �nite

temperatures and away from half-�lling where magnetic and

charge densitywave instabilities are expected to beweaker.We

study the superconductivity phase diagram for different pair-

ing couplings g and hybridization V. For strong coupling g we

�nd reentrant superconductivitywhich resembles the one seen

in the diluted impurities case. In the weak coupling case we

could not identify if the reentrance persists due to the very

small relevant energy scales that cannot be accessed by the

QMC solver. We have also solved the model for parameters

away from the Kondo limit and found that the reentrant super-

conductivity may appear in some cases due to band structure

physics, i.e. due to the competition between single-particle

hybridization and superconducting pairing. In order to bet-

ter understand the electronic spectrum of the model Hamil-

tonian, we have also introduced and solved an approximate

noninteracting dual model [30, 31].

The paper is organized as follows. Section 2 contains the

de�nition of the model and describes the methods of its solu-

tion. Numerical results in several parameter regimes are shown

in section 3 and our conclusions are in section 4. Some

derivations are presented in the appendix.

2. Model and methods

We solve the periodic Anderson model with an additional

attractive Hubbard interaction in the conduction band. The

Hamiltonian is given by

H = −t
∑

〈i j〉σ
(c

†
iσc jσ + H.c.)− µ

∑

iσ

c
†
iσciσ

− V
∑

iσ

(c
†
iσ fiσ + H.c.)+ (ǫ f − µ)

∑

iσ

f
†
iσ fiσ

− g
∑

i

c
†
i↑c

†
i↓ci↓ci↑ + U

∑

i

f
†
i↑ f

†
i↓ fi↓ fi↑, (1)

where t is the hopping parameter, V the hybridization strength,

g is the attractive coupling for the conduction band c-electrons,

and U is the repulsive coupling constant of the f-electrons. ǫf
sets the energy level of the f-electrons, and µ is the chem-

ical potential. c†iσ and f
†
iσ create a c-electron and f-electron

at site i with spin σ =↑, ↓. This model reduces to the attrac-

tive Hubbard model with decoupled impurities in the limit

V→ 0, whereas in the limit g→ 0 we recover the standard

Anderson lattice model. We take as a unit of energy the half-

bandwidth D corresponding to the noninteracting c electrons.

We will restrict to the paramagnetic solution allowing for

s-wave superconductivity.

We start with a static mean-�eld decoupling of the c-

electron attractive interaction in the Cooper channel, viz

g
∑

i

c
†
i↑c

†
i↓ci↓ci↑ →∆BCS

∑

i

(c
†
i↑c

†
i↓ + H.c.), (2)

where ∆BCS = g〈c†i↑c
†
i↓〉 = g〈ci↓ci↑〉 = gΦc is the supercon-

ducting order parameter. This recasts the problem in the form

of a self-consistently determined Hamiltonian H[∆BCS], fea-

turing both the pairing terms and the repulsive Hubbard inter-

action.Without the repulsiveHubbard interaction, this reduces

to a Bardeen–Cooper–Schrieffer (BCS) mean-�eld theory,

hence the index in the pairing amplitude.

We now introduce momentum-dependent fermionic Grass-

mann �elds in orbital-Nambu space:

Ψk(τ ) =

[

ck(τ )
fk(τ )

]

,

ck(τ ) =

(

ck↑(τ )
c̄−k↓(τ )

)

, fk(τ ) =

(

fk↑(τ )
f̄ −k↓(τ )

)

. (3)

Here τ is the imaginary time variable and overbar indicates the

conjugate �eld. In Grassmann �eld formalism, the action for

2
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the self-consistent Hamiltonian reads

S = −
∫ β

0

dτ

∫ β

0

dτ ′
∑

k

Ψ̄k(τ )G
−1
0,k(τ − τ ′)Ψk(τ

′)

+ U

∫ β

0

dτ
∑

k,k′,q

f̄ k+q↑(τ ) f̄ k′−q↓(τ ) fk′↓(τ ) fk↑(τ ).

(4)

β is the inverse temperature and G0,k is the bare propaga-

tor, implicitly dependent on ∆BCS. In Matsubara frequency

domain, the bare propagator reads

G0,k(iωn) =
[

iωnI−H0,k

]−1
. (5)

Here ωn are fermionic Matsubara frequencies ωn = (2n+

1)π/β, I is the four-dimensional identity matrix, and H0,k is

the non-interacting Hamiltonian matrix in the orbital-Nambu

basis, i.e.

H0,k =









ξk −∆BCS −V 0

−∆BCS −ξk 0 V

−V 0 ǫ f − µ 0

0 V 0 −ǫ f + µ









, (6)

where ξk ≡ εk − µ.
The full (interacting) Green’s function in the Matsubara

domain is de�ned component-wise as

Gk = −〈Ψk ⊗Ψ
†
k〉 ≡









Gc,k Fc,k Gc f ,k Fc f ,k

Fc,k −G∗
c,k Fc f ,k Gc f ,k

−G∗
c f ,k Fc f ,k G f ,k F f ,k

Fc f ,k −G∗
c f ,k F f ,k −G∗

f ,k









≡
[

Gc,k Gc f ,k

G fc,k G f ,k

]

. (7)

where we have used Gc/ f ,k(−iωn) = G∗
c/ f ,k(iωn), and the lat-

tice inversion symmetry k→−k. The second equivalence

states the de�nitions of the c and f Nambu (two-dimensional)

Green’s functions in their respective orbital subsectors, and the

ωn-dependence is implicit.

The fullGk is to be determined through the Dyson equation

G−1
k (iωn) = G−1

0,k(iωn)−Σk(iωn) (8)

whereΣ is the matrix self-energy capturing the on-site corre-

lation effects, viz

Σk =









0 0 0 0

0 0 0 0

0 0 Σk Sk

0 0 Sk −Σ
∗
k









. (9)

Sk is the self-energy’s anomalous component, and satis�es

Sk(iωn →∞) = UF f ,k(τ = 0). The superconducting order

parameter is determined from the scalar c-electrons’ Green’s

function as

∆BCS =
g

Nk

∑

k

Fc,k(τ = 0). (10)

Here Nk is the total number of momenta in the discretized �rst

Brillouin zone. Henceforth, the local quantities will be indi-

cated by omitting the k index,while the normalization constant

N−1
k will be absorbed into the sum—e.g. equation (10) then

reads∆BCS = gFc(τ = 0).

2.1. DMFT

We solve the self-consistent problem equation (4) using the

dynamical mean �eld theory. DMFT assumes the self-energy

to be entirely local, i.e. Σk → Σ. The local self energy is

computed from an effective single-impurity problem

Simp = −
∫ β

0

dτ

∫ β

0

dτ ′ f̄(τ )G−1
0 (τ − τ ′)f(τ ′)

+ U

∫ β

0

dτ f̄ ↑(τ ) f̄ ↓(τ ) f↓(τ ) f↑(τ ), (11)

where G0 is the so-called Weiss �eld, and is to be determined

self-consistently to satisfy the condition

G f = Gimp. (12)

Here, Gimp is the Green’s function of the single impurity

problem (11)

G−1
imp(iωn) = G

−1
0 (iωn)−Σimp(iωn), (13)

whereas Gf is the local Green’s function of the lattice in the

f-sector, cf equation (7)

G f (iωn) =
∑

k

G f ,k(iωn) (14)

The lattice self-energy (9) needed to calculate Gf,k(iωn)

through equation (8) is approximated as

Σk →
[

0 0

0 Σimp

]

. (15)

We satisfy the DMFT self-consistency condition by the

standard iterative forward-substitution algorithm. A single

DMFT iteration proceeds as follows: (i) given the Σimp and

∆BCS from the previous iteration, get new G using (8); (ii)

from Fc determine ∆BCS using (10). (iii) With the updated

∆BCS determine a new G using (6), (5), (8). (iv) update G0

cf G−1
0 (iωn) = G−1

f (iωn)+Σimp(iωn). (v) Given the G0 solve

(11) to calculateΣimp. The last step is performed using Cthyb

QMC impurity solver.

We note that steps (ii) and (iii) may be performed in two

ways: either determine∆BCS self consistently for givenΣimp,

or make a single ∆BCS update and solve the BCS problem in

parallel with the DMFT problem. We have opted for the lat-

ter approach due to better convergence of the problem in the

vicinity of phase boundaries.

We will solve the equations on the square and the Bethe

lattice. The self-consistency equations slightly simplify on the

Bethe lattice and they are shown in appendix A. We initially

considered the Bethe lattice, but then switched to the square

lattice in order to make a better connectionwith the dualmodel

3
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solution. Since we ignore the inter-site correlations the results

on the square and Bethe lattice are similar.

We note that, on the level of a single impurity in a given

SC bath, we benchmarked the Cthyb QMC calculation with

the numerical renormalization group (NRG) [32] and exact

diagonalization (ED) [33, 34]. The agreement was excellent.

However, the application of the NRG impurity solver, would

require additional programmingoutside the scope of this work,

while ED is limited by �nite number of poles on the real fre-

quency axis. Therefore, we opted for the numerically exact

QMC impurity solver.

2.2. Dual model

We also devise and solve a non-interacting model that is

approximately dual to model equation (4): it exactly repro-

duces certain limits and interpolates between them. The abil-

ity of the dual model to reproduce the reentrant behavior as

observed in the DMFT solution, will be a strong indication

that the higher-order correlations captured by DMFT do not

play an important role. In addition, the dual model solution

will give us insight into the spectral functions.

To motivate the speci�c form of our non-interacting dual

model, we start by noting that there are several limits in which

the self-consistent model H[∆BCS] reduces to a clean BCS

superconductor with decoupled atomic impurities. Such is the

case for V→ 0, g→∞ and/or ǫf →±∞. In the particle–hole

symmetric case U→∞ reproduces this case as well.

Next, we observe that for an isolated Hubbard atom one can

write down an exactly dual non-interactingmodelwhich repro-

duces the full Green’s function of the original model, but not

the higher-order correlation functions. This non-interacting

dual model features two non-interacting orbitals connected by

an appropriate hopping. One of the orbitals is dual to the origi-

nal Hubbard atom, while the other can be considered a ‘hidden

fermion’ state [30, 31]. The coupling to the hidden fermion

state plays the role of the self-energy for the dual orbital. For

the derivation of the non-interacting dual model in the atomic

limit, see appendix B.

We now perform a straightforward generalization of the

Hubbard atom dual model. In simple terms, we take the non-

interacting part of H[∆BCS] and couple a hidden fermion state

F to each f-orbital, so that each pair f–F on their own is the

exact dualmodel to the atomic limit. Then,we introduce a copy

C of the c-band and attach it to the F states in such a way that

at particle–hole symmetry the hidden states C and F become

equivalent to the dual states c and f. This model reproduces

exactly the Green’s function of the model equation (4) in the

non-interacting limit (U = 0) as well as in all the aforemen-

tioned limits where the f-orbitals remain effectively decoupled

from the c-band. This model reads

Hdual[∆BCS, n f σ] = HHF
0 [∆BCS]

−
∑

kσ

ξk(C
†
kσCkσ + H.c.)−∆BCS

∑

k

(

C
†
k↑C

†
−k↓ + H.c.

)

+ V
∑

kσ

(C
†
kσFkσ + H.c.)+ (µ+ U(n f σ − 1))

∑

kσ

F
†
kσFkσ

+

√

U2n f σ(1− n f σ)
∑

k

(

f
†
k↑F

†
−k↓ + F

†
k↑ f

†
−k↓ + H.c.

)

(16)

where HHF
0 [∆BCS] is the reduced Hamiltonian introduced pre-

viously, without the repulsive interaction term, and with a

Hartree-shifted f-level energy ǫf → ǫf + Unfσ . The model is

self-consistently solved for the f-level occupation number per

spin nfσ ∈ [0, 1]. The problem reduces to a BCS theory in an

eight-dimensional orbital/Nambu space. See appendix B for

details.

Additionally, the dual model will allow us to gain insight

in the band structure at �nite U. Our DMFT calculation is per-

formed in Matsubara formalism, thus one needs the ill-de�ned

analytical continuation to obtain the spectral function. We

tried the analytical continuation with the Maximum entropy

method, but this resulted in the absence of any sharp features

from the spectra. Thus we restrict to the dual model results

when considering the electronic dispersions and local density

of states.

3. Results

We present the results in two distinct cases: for param-

eters which correspond to the Kondo lattice limit of the

Anderson lattice model (nf ≈ 1 and small double occupancy

of f orbitals) and away from the Kondo limit where the

occupation of f-electrons deviates signi�cantly from half-

�lling. To understand the result better, we have also solved

the non-interacting U = 0 model and the effective dual

model.

3.1. Reentrant superconductivity in the Kondo lattice limit

We study �rst the superconductivity for model parameters

which correspond to the local moment regime, i.e to the limit

of the Kondo lattice [35]. We set ǫf = −0.4, U = 1.2 and

µ = 0.03 in the energy units D = 1, and take the semicircu-

lar density of states for c-electrons corresponding to the Bethe

lattice. These parameters give nf,σ ≈ 0.5 and total occupation
∑

σ(nc,σ + nf,σ) ≈ 1.9. We solve the model for different val-

ues of hybridization V and pairing parameter g. Figure 1(a)

shows the pairing amplitude of c-electrons Φc = 〈ci↓ci↑〉 as

a function of the coupling g at temperature T = 0.0025. At
large coupling Φc approaches to the single band BCS result,

indicated with the dashed-dotted line. Transition to the super-

conducting phase is accompaniedwith hysteresis as a function

of g: as the BCS interaction g increases there is a discontinuous

transition to the SC phase at g = gc2, while as g decreases the

normal phase is entered at a gc1 < gc2. For weaker hybridiza-

tion the SC solution appears for smaller values of coupling g

while the hysteresis region gradually shrinks. We note that we

did not �nd any indication of unconventional s-wave supercon-

ductivitywithout g coupling,which was presented in reference

[36]. This type of SC solution was not found in references [21,

37–39] either.

A pronounced feature of this model is the reentrant super-

conductivity that we �nd for strong coupling g, �gure 1(b). At

4
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Figure 1. (a) Pairing amplitude Φc as a function of coupling
constant g for several values of V. The gray line represents the
V = 0 BCS result. There is a discontinuous transition from the
normal into the superconducting phase accompanied by hysteresis.
(b) Superconducting gap as a function of temperature. The reentrant
superconducting phase appears in a broad temperature range
accompanied also by a hysteresis. (c) Inset shows the estimate of the
Kondo temperature.

the critical temperature Tc1 there is a continuous transition to

the SC phase. With decreasing temperature the SC phase per-

sists until Tc2, where a �rst-order transition to the normal phase

takes place. There is also a hysteresis in temperature since with

the increase of T the SC phase appears at T ′
c2 > Tc2. The reen-

trant superconductivity resembles to what is found for diluted

impurities, but a direct connection is dif�cult to con�rm since

we cannot reach very small temperatures and hence we are

restricted to large g.

At temperatures T≪ TK the impurity spins are screened

and the Fermi liquid is formed from composite heavy quasipar-

ticles. Figure 1(c) shows the estimate of theKondo temperature

TK ∼ e−1/(2ρ0JK ). Here ρ0 is the density of states of bare c-

electrons at the Fermi level and JK =

(

1
|ǫ f −µ| +

1
|U+ǫ f −µ|

)

V2

is the Kondo coupling. One may assume that the formation

of coherent quasiparticles will facilitate the superconductiv-

ity for smaller coupling g. However, for example for V = 0.26
we have T = 0.0025≪ TK ∼ 0.05, but the critical g coupling
is large. In order to understand better why the superconduc-

tivity is so sensitive to the presence of the second band of

f-electrons, we consider next the solution of the model in the

non-interactingU = 0 case.

3.2. Superconductivity in the U = 0 limit

In the non-interacting U = 0 case we have derived an analyt-

ical expression for the free energy and the gap equation, see

appendix C. A numerical solution of the gap equation (C6) is

shown as a color plot on the V− µ phase diagram at T = 0 in

Figure 2. Superconducting gap in the V− µ plane for the
non-interacting (U = 0) model at T = 0 (a) and T = 0.001 (b). Here
g = 0.25 and ǫf = −0.4 − µ. The total occupation number is shown
in panel (c).

�gure 2(a) and at T = 0.001 in �gure 2(b). The attractive Hub-
bard coupling g is set to 0.25 which gives Tc0 ∼ 0.002 ≪ D

for V = 0, while ǫf was kept to −0.4− µ. The occupation

number is varied by the chemical potential, �gure 2(c). We

observe that the pairing amplitude is quickly suppressed by

increasing the hybridization. The critical temperature Tc also

strongly depends on the occupation number and it goes to zero

at half-�lling when hybridization opens the band gap.

This phase diagram can be understood from a simple

approximate formula for Tc(V) in the weak coupling limit

whose derivation we now sketch. We �rst note that the

hybridized band crosses the Fermi level at ǫ = V2

ǫ f −µ
+ µ. Then

we look for the contribution of the c and f electrons to the

hybridized eigenstate at the Fermi level. It is easy to check that

the contribution of the c-electron is equal to
(ǫ f −µ)2

V2+(ǫ f −µ)2
. Hence,

the hybridized eigenstate is predominantlymade of c-electrons

forV ≪ |ǫf − µ|, and it hasmixed character forV ∼ |ǫf|. Then,
from the usual BCS gap equation in the weak coupling limit

(with the interaction cutoff set to D = 1),∆BCS = 2e
− 1
gρ0 , we

conclude that

∆BCS = 2e

−
V2+(ǫ f −µ)2

g(ǫ f −µ)2ρ

[

V2
ǫ f −µ+µ

]

, (17)

where ρ
[

V2

ǫ f −µ + µ
]

is the density of states of the bare c-

electrons at the shifted Fermi level. This expression for the

superconducting gap is in excellent agreement with �gure 2.

5
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Figure 3. T–U phase diagram for V = 0.165 (a) and V = 0.2 (b).
The superconducting region is shaded in beige color and the normal
phase in blue. Colored dots are the calculated values of the
superconducting order parameter at given T and U. Here g = 1 and
ǫf = µ = 0. Panels (c) and (d) show the corresponding occupation
numbers per spin for c and f electrons, as well as the double
occupation of the f orbital.

3.3. Phase diagram away from the Kondo limit

In the followingwe probe the phase diagramof themodel away

from the Kondo limit at parameters accessible with our numer-

ical methods. We show the results for the square lattice. We

set g = 1 while �xing ǫf and µ to 0. In �gure 3 we present

the results for V = 0.165 (left column) and V = 0.2 (right col-
umn). Panels (a) and (b) show the T–U phase diagram. Here

colored dots indicate the value of∆BCS. The beige color region

indicates the SC phase, whereas the blue region corresponds to

the normal phase. Panels (c) and (d) show the occupation num-

bers nc (orange), nf (blue) and double occupation d (green) of

the f-orbital.

For V = 0.165 we �nd that at low temperature and small

U ∼ 0.05 the phase diagram exhibits an enclosed normal-

phase region. Starting from this region, going up in temper-

ature, we encounter a reentrant superconducting phase. By

increasing the hybridization strength to V = 0.2, we �nd that

the normal phase now dominates the low-to-moderate U part

of the phase diagram, whereas we �nd reentrant superconduc-

tivity at U ∼ 1.

At small U we are close to the non-interacting solution and

we �nd that the superconducting phase is strongly affected

by the hybridization strength, similar as in section 3.2. As

U increases, the f-orbital occupation number drops and the

contribution of f states to the hybridized state diminishes,

allowing for pairing to persist. We argue that the reentrant

behavior found for U ∼ 1 is caused by thermal excitations

which reduce the hybridization at intermediate temperatures,

allowing for superconductivity, before destroying the Cooper

pairing at higher temperatures. In the weak coupling limit (for

small g) we expect the phase diagram to retain these features,

however with appropriately scaled T and V.

3.4. Dual model solution and in-gap states

Numerical DMFT results indicate that the reentrant super-

conductivity that we have observed is mainly the conse-

Figure 4. DMFT (a) vs the dual model superconducting gap (b) as a
function of temperature. Here ǫf = 0, µ = 0 and U = 0.4. Spectral
function and the dispersion relations of the c- and f-electrons in the
dual model are shown in panels (c) and (d), for parameters
∆BCS = 0.166, V = 0.14 which correspond to the solution indicated
with purple cross in panel (b).

quence of band physics and not the consequence of physics

related directly to the Kondo effect. To strengthen this argu-

ment, we consider an approximate non-interacting model

which is ‘dual’ to the one given by equation (1). The dual

Hamiltonian given by equation (16) is an approximation to

model equation (1) which in several limits coincides with the

exact solution. See appendix B for details. The dual model

also gives access to the real-frequency data and the spectral

function.

In �gure 4 we present a comparison of the DMFT super-

conducting gap (a) and the dual model superconducting gap

(b) at ǫf = 0, µ = 0 and U = 0.4. We �nd that the dual model

approximately reproduces the DMFT results, in particular

capturing the reentrant superconducting solution. Here we

adjusted g to 0.98 to make the V = 0.1 results almost coincide.

In �gure 4(c) we present the c- and f-electrons spectral

functions. The parameters are ∆BCS = 0.166, V = 0.14 and

nσ = 0.337, which correspond to the purple cross in panel (b).
We �nd spectral weight within the superconductinggap,which

originates predominantly from the f-electrons. The upper f

Hubbard band is situated around ω ∼ U.

4. Conclusion

In summary, we have studied how the presence of dispersion-

less f-electrons hybridizedwith the conduction band in�uences

superconductivity. We solved the periodic Anderson model

with an additional attractive on-site interaction between c-

electrons restricting to the paramagnetic phase and s-wave
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superconductivity. The superconducting pairing is treated at

the static mean �eld level and the correlations on the f

orbitals are treated within DMFT using Cthyb QMC impu-

rity solver. The DMFT equations were supplemented by the

self-consistency condition for the superconducting gap.

We �rst solved the model in the Kondo regime (nf ≈ 1

and small double occupancy of f orbitals). We found that a

large coupling g was necessary in order to stabilize the super-

conducting solution even for small Kondo temperature TK.

This indicates that the many-body correlations that lead to

the Kondo effect are not crucial for understanding the super-

conducting solution. Suppression of the superconductivity is

mainly a consequence of the single-particle physics as can be

understood from the noninteractingU = 0 limit of the model.

We derived a simple formula that shows that the suppression

of the superconducting gap depends on the contribution of the

f states to the hybridized eigenstate at the Fermi level.

We scanned the phase diagram also away from the Kondo

limit where the strength of the hybridization of f-states and

appearance of the superconducting phase can be tuned by

changing the parameters V, U, and ǫf. Better insight into

the band structure is obtained from the approximate dual

model whose solution interpolates between several exact lim-

its and semiquantitatively reproduces our main results. The

dual model solution features in-gap states of predominantly f

character.

The most prominent feature of the model is its reentrant

superconductivity. Here it is observed for large coupling g

at temperatures accessible to Cthyb QMC impurity solver.

Though the reentrant superconductivity resembles to what was

found previously for diluted magnetic impurities, we were not

able to relate its appearance with the ratio of TK and single

band Tc0. Interestingly, we found reentrant superconductiv-

ity also away from the Kondo limit by tuning the interaction

U, which also indicates that the reentrant superconductivity is

here not the consequence of higher-order many-body correla-

tions, but rather the consequence of thermal �uctuationswhich

weaken the hybridization of c-electrons making them super-

conducting at intermediate temperatures. Finally, we note that

our conclusions are not directly relevant to heavy-fermion sys-

tems, mainly due to unphysically large coupling constant g.

Future study would, therefore, need to consider �nite concen-

tration of impurities, e.g. by using real-space DMFT and to

treat the attractive interaction beyond the simplest mean-�eld

decoupling.
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Appendix A. DMFT equations for the Bethe lattice

On the Bethe lattice there is no translational symmetry, and we

may solve the DMFT as follows. The full (interacting)Green’s

function in the orbital-Nambu space is given by

G(iωn, ǫ) =

[

Gc(iωn, ǫ) Gc f (iωn, ǫ)
G fc(iωn, ǫ) G f (iωn, ǫ)

]

=









iωn + µ− ǫ −∆BCS −V 0

−∆BCS iωn − µ+ ǫ 0 V

−V 0 iωn + µ− ǫ f − Σ(iωn) −S(iωn)
0 V −S(iωn) iωn − µ+ ǫ f +Σ

∗(iωn)









−1

. (A1)

In the limit of large coordination number the noninteracting

density of states of c-electrons is equal to ρ0(ǫ) =
2
π

√
1− ǫ2.

By integrating over the density of states we extract local

quantities on the lattice, viz

G(iωn) =

[

Gc(iωn) Gc f (iωn)
G fc(iωn) G f (iωn)

]

=

∫ D

−D
dǫρ0(ǫ)G(iωn, ǫ). (A2)

The lattice self-energy is equal to the impurity self-energy

Σ→Σimp and the local Green’s function is equal to the

impurity Green’s function G→Gimp. The self-consistency

condition is slightly simpli�ed in the case of the Bethe lattice:

the hybridization bath∆f is equal to

∆ f (iωn) = V(iωn1+ µ− tGc(iωn)t−∆BCS)
−1V. (A3)

Here the boldface Hamiltonian parameters V, t, µ and ǫf mean

that they are diagonal in Nambu space, e.g.V ≡ V

(

1 0

0 −1

)

,

while ∆BCS is off-diagonal ∆BCS ≡ ∆BCS

(

0 1

1 0

)

and 1 =

(

1 0

0 1

)

. The Weiss �eld is

7
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G
−1
0 (iωn) = iωn1+ µ− ǫ f −∆ f (iωn). (A4)

The self-consistent solution is obtained by solving the impurity

problem (11) with the self-consistency conduction (A3) using

iterative procedure.

Appendix B. Dual model

We start by considering a Hubbard atom d

H = −µ
∑

σ

d†σdσ + Ud
†
↑d

†
↓d↓d↑ (B1)

with chemical potential µ and interaction strength U, whose

Green’s function (for Matsubara frequencies ωn) reads

Gσ(iωn) =
1− nσ

iωn + µ
+

nσ

iωn + µ− U
. (B2)

nσ ∈ [0, 1] is the occupation number of spin projection σ.
Writing the Dyson equation

G−1(iωn) = G−1
0 (iωn)− Σ(iωn) (B3)

with G−1
0 (iωn) = iωn + µ the bare propagator, we derive the

Hubbard atom self-energy

Σσ(iωn) =
Unσ(iωn + µ)

iωn + µ+ U(nσ − 1)
. (B4)

It has the property

Σσ(iωn →∞) = Unσ ≡ Σ
HF
σ , (B5)

which is the static Hartree–Fock shift of the chemical poten-

tial. Particle–hole symmetry is achieved for µ = U/2.
We write the self energy ‘beyond’ Hartree–Fock as

Σ
(HF)
σ (iωn) = Σσ(iωn)− Σ

HF
σ (iωn) (B6)

such that after some manipulations

Σ
(HF)
σ (iωn) =

−U2nσ(nσ − 1)

iωn + µ+ U(nσ − 1)
. (B7)

Writing a hybridization function of the general form

∆(iωn) =
∑

α

|Aα|2
iωn − εα

, (B8)

where α is some degrees of freedom, we recognize that

Σ
(HF) has the form of a hybridization function with

Aσ = ±
√

U2nσ(1− nσ) (B9)

and

εσ = −µ− U(nσ − 1). (B10)

(At particle–hole symmetry Aσ →±U/2 and εσ → 0.) Thus,

we can write a non-interacting dual model for the Hubbard

atom as follows;

Hdual[nσ] = −
∑

σ

(µ− Unσ)d
†
σdσ (B11)

−
∑

σ

(µ+ U(nσ − 1))D†
σDσ

−
∑

σ

(

√

U2nσ(1− nσ)d
†
σDσ + H.c.

)

where D are the ‘hidden fermion’ operators dual to d, and nσ
and µ need to be determined self-consistently.

We now establish a correspondence of the Hubbard atom

operators (d andD) for the Anderson lattice model with a spin-

mixing pairing term in the c−band, i.e. Hamiltonian (1). We

may identify d with f↑, but since we are interested in solutions
for any doping, we cannot identify D with f↓. However, for

n→ 1− n we may identify D with f
†
↑ , thus 〈dd†〉 = 〈 f↑ f †↑ 〉,

but 〈DD†〉 = 〈 f †↓ f↓〉 for the opposite doping. Therefore the

solution is to couple the model (1) to its dual at the oppo-

site doping, where the model has the symmetry that ∆BCS

is the same regardless of the ‘sign’ of the doping (i.e. n or

1− n),

〈 f †σ (τ ) fσ(0)〉[n] = 〈 fσ(τ ) f †σ (0)〉[1− n]. (B12)

Thus,

〈 fσ(τ ) f †σ (0)〉 = 〈F†
σ(τ )Fσ(0)〉, (B13)

whereas

〈 f↑(τ ) f †↑ (0)〉 = 〈 f↓(τ ) f †↓ (0)〉 (B14)

(similarly for c and C). Hence, using the spinors

Ψk =

(

ck↑ c
†
−k↓ fk↑ f

†
−k↓ Ck↑ C

†
−k↓ Fk↑ F

†
−k↓

)T

, the Hamil-

tonian matrix in orbital-Nambu space acquires the

form

Hdual[∆BCS, n] =
∑

k

Ψ
†
k

























ξk −∆BCS −V 0 0 0 0 0

−∆BCS −ξk 0 V 0 0 0 0

−V 0 ǫ f ,1 0 0 0 0 A

0 V 0 −ǫ f ,1 0 0 A 0

0 0 0 0 −ξk −∆BCS V 0

0 0 0 0 −∆BCS ξk 0 −V
0 0 0 A V 0 ǫ f ,2 0

0 0 A 0 0 −V 0 −ǫ f ,2

























Ψk (B15)

8



J. Phys.: Condens. Matter 32 (2020) 325601 W V van Gerven Oei and D Tanasković

with ǫf,1 = −µ+Σ
HF and ǫf,2 = −ǫ (spin indices are

dropped). If setting V→ 0 there are two decoupled copies of

the single-band BCS problem with decoupled f electrons at

opposite doping. Setting U→ 0 results in two separate copies

of the non-interacting model.

Appendix C. U = 0 gap equation

The c-electron’s anomalous Green’s function at U = 0 reads

[from equation (8)], after Fourier transform to Matsubara

space,

Fk,c(iωn) =
−∆BCS

(

iωn + ξk − V2

iωn+ǫ f

)(

iωn− ξk− V2

iωn−ǫ f

)

−∆
2
BCS

.

(C1)

Following equation (10), at self-consistency it must follow

that

1 = −gT
∑

kn

1
(

iωn+ ξk− V2

iωn+ǫ f

)(

iωn− ξk− V2

iωn−ǫ f

)

−∆
2
BCS

.

(C2)

We perform the in�nite Matsubara sum with the standard

method of contour integration. The fraction in (C2) can be

factored as

Lk(ω) =
ω2 − ǫ2f

(ω − λ1,k) · · · (ω − λ4,k)
(C3)

with the λ’s the eigenenergies of the U = 0 Hamiltonian

[equation (1)], viz

λ1 ···, 4,k = ±
√

ak ± bk

2
, (C4)

where

ak = 2V2
+∆

2
BCS + ǫ2f + ξ2k (C5)

bk =

√

(

∆
2
BCS − ǫ2f + ξ2k

)2

+ 4V2
(

∆
2
BCS + (ǫ f + ξk)2

)

.

Since there are only simple poles to consider, the integra-

tion is straightforward and follows by the sum of residues of

Lk(ω)f(ω) at the four eigenenergies, where f(ω) = β/(eβω +
1) the counting function. After some manipulations the gap

equation for the non-interacting model follows as

1 = g
∑

k

λ−,k(λ
2
+,k − 2ǫ2f ) tanh

βλ+,k√
8

− λ+,k(λ
2
−,k − 2ǫ2f ) tanh

βλ−,k√
8√

8λ−,kλ+,kbk
(C6)

with λ±,k =
√
ak ± bk. In the limit T→ 0, tanhβλ±,k → 1.
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