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Hybrid semiconductor-superconductor quantum dot devices are tunable physical realizations of quantum
impurity models for a magnetic impurity in a superconducting host. The binding energy of the localized subgap
Shiba states is set by the gate voltages and external magnetic field. In this work we discuss the effects of the
Zeeman spin splitting, which is generically present both in the quantum dot and in the (thin-film) superconductor.
The unequal g factors in semiconductor and superconductor materials result in respective Zeeman splittings of
different magnitude. We consider both classical and quantum impurities. In the first case we analytically study
the spectral function and the subgap states. The energy of bound states depends on the spin-splitting of the
Bogoliubov quasiparticle bands as a simple rigid shift. For the case of collinear magnetization of impurity and
host, the Shiba resonance of a given spin polarization remains unperturbed when it overlaps with the branch
of the quasiparticle excitations of the opposite spin polarization. In the quantum case, we employ numerical
renormalization group calculations to study the effect of the Zeeman field for different values of the g factors of
the impurity and of the superconductor. We find that in general the critical magnetic field for the singlet-doublet
transition changes nonmonotonically as a function of the superconducting gap, demonstrating the existence of
two different transition mechanisms: Zeeman splitting of Shiba states or gap closure due to Zeeman splitting
of Bogoliubov states. We also study how in the presence of spin-orbit coupling, modeled as an additional
noncollinear component of the magnetic field at the impurity site, the Shiba resonance overlapping with the
quasiparticle continuum of the opposite spin gradually broadens and then merges with the continuum.
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I. INTRODUCTION

The interest in bound states induced by magnetic impu-
rities in superconductors, predicted in the early works of
Yu, Shiba, and Rusinov [1–3], has been recently revived
by the advances in the synthesis and characterization of
semiconductor-superconductor nanostructures [4–9] and in
the tunneling spectroscopy of magnetic adsorbates on su-
perconductor surfaces [10–15]. In particular, hybrid devices
based on quantum dots can be used as fully controllable
physical realizations of quantum impurity models with gapped
conduction bands [16–27]. The ground state of the quantum
dot can be tuned to be either a spin singlet or a spin doublet
depending on the impurity level and the hybridization with the
bulk superconductor [5,6,28–31]. The Coulomb interaction on
the quantum dot favors the spin doublet ground state, while the
spin singlet can be stabilized by the Kondo effect or by pairing
due to the superconducting proximity effect [32–36]. The
position of the in-gap (Shiba) resonances, as determined from
the tunneling conductance, agrees even quantitatively with
the calculations based on the simple single-orbital Anderson
impurity model [37,38].

Very recently, research has focused on the effects of the
magnetic field on the in-gap states [39–48] because systems
of this class have been proposed as possible building blocks
for topologically ordered systems exhibiting Majorana edge
states [49–52]. These are significant for fundamental reasons
and might also find application in quantum computation
[53–55]. When an external magnetic field is applied to a
thin-film superconductor in the parallel (in-plane) direction,
the superconducting state persists to relatively large fields. The
quasiparticle states become, however, strongly spin polarized

and the coherence peaks in the density of states become
Zeeman split [56–60]: Systems in this regime are known as
spin-split or Zeeman-split superconductors, and play a key role
in the emerging field of superconducting spintronics [61]. The
spectral function of a spin-split superconductor has two band
edges with diverging coherence peaks separated by the bulk
Zeeman energy, reflecting the fact that the Bogoliubov excita-
tions have spin-dependent energies Ekσ =

√
ξ 2
k +�2+gbulkμBBσ . Here

ξk = εk − μ is the energy level εk of electron with momentum
k measured with respect to the chemical potential μ, � is
the gap, gbulk is the g factor of the superconductor, μB is the
Bohr magneton, B is the magnetic field, and σ = ±1/2 is the
quasiparticle spin. Since the Shiba states can be considered
as bound states of Bogoliubov quasiparticles, the spectral
properties of magnetic impurities in spin-split superconductors
are modified.

The theoretical work has, so far, mainly focused on the
effect of a local magnetic field applied on the position of the
impurity only [45,46]. For bulk electrons in the normal state,
this approximation is usually justified because the impurity
magnetic susceptibility is typically much larger (χimp ∝ 1/TK ,
where TK is the Kondo temperature) than that of the bulk
electrons (Pauli susceptibility, χbulk ∝ ρ ∝ 1/D, where ρ is
the density of states at the Fermi level and D is the bandwidth).
In superconductors, however, the Zeeman splitting of the
Bogoliubov quasiparticle bands and the Zeeman splitting of
the doublet subgap states are of comparable magnitude: The
splitting of the first is simply the Zeeman energy gbulkμBB,
while the splitting of the second is g̃impμBB, where g̃imp is
the impurity g factor gimp renormalized by the coupling with
the bulk. Generically, both splittings are comparable with
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the possible exception of nanowire quantum dots made of
materials with extremely strong spin-orbit (SO) coupling and
hence very high bare gimp. For this reason, it is important to
include the Zeeman terms both in the impurity and in the bulk
part of the Hamiltonian.

We introduce the ratio r of the Landé g factors which
describe the magnitude of the Zeeman splittings:

r = gbulk/gimp. (1)

For many elemental superconductors the g factor is close to the
free electron value, gbulk ≈ 2. In semiconductors the g factor
usually differs strongly from this value due to SO coupling.
The effective g factors are quite variable [62]: They can be
very large positive, as well as very large negative, or can even
be tuned close to 0. The control of g can be achieved through
strain engineering [63], nanostructuring [64], or by electrical
tuning in quantum dots [62,65–67]. In the r = 0 limit, the
Zeeman term is only present on the impurity site: This limit is
appropriate for materials with very large positive or negative
g factor, where the Zeeman splitting in the superconductor is
indeed negligible. Another special limit is r = 1, where all
sites (bulk and impurity) have the same g factor. In general,
however, the value of r is essentially unconstrained.

Here we study, using analytical calculations for a classical
impurity (with no internal dynamics) and with the numerical
renormalization group (NRG) method [22,68–74] for a quan-
tum impurity (which incorporates the effect of spin flips), the
spectral properties of the Shiba states. In the classical case
we perform a calculation along the lines of Refs. [1–3], but
include the effect of the Zeeman term in the superconductor.
In the quantum case we focus on the single-orbital Anderson
impurity and discuss the changes in the singlet-doublet phase
transition as the ratio of the g factors of the impurity and the
bulk is varied. We study the fate of a subgap resonance when it
approaches the continuum of the Bogoliubov quasiparticles
with the opposite spin, with and without the additional
transverse magnetic field that mimics noncollinearity in the
presence of SO coupling.

II. CLASSICAL IMPURITY

Initially, the impurity is described using a quantum me-
chanical spin-S operator, which is exchange coupled with the
spin density of the conduction band electrons at the position
of the impurity at r = 0. The corresponding Hamiltonian is
H = HBCS + Himp with

HBCS =
∑
kσ

ξkc
†
k,σ ck,σ − �

∑
k

(c†k,↑c
†
−k,↓ + H.c.)

+
∑

k

bbulksz,k (2)

and

Himp = JS · s(r = 0), (3)

where bbulk = gbulkμBB is the magnetic field expressed in the
energy units (i.e., the Zeeman splitting), sz,k = 1

2 (n↑,k − n↓,k),
and s(r = 0) = 1

N

∑
k sk. J is the exchange coupling between

the impurity and the host. All other quantities have already
been defined in the previous section. The classical impurity

limit consists of taking the S → ∞ limit while keeping
JS = const. In this limit, the longitudinal component of the
exchange interaction persists, while the transverse (spin-flip)
components decrease as 1/S and hence drop out of the
problem. The Hamiltonian then becomes noninteracting. We
introduce the effective local field

h = JS (4)

and the dimensionless impurity coupling parameter

α = πρh/2 = πρJS/2, (5)

where ρ is the density of states (DOS) at the Fermi level in the
normal state. We will first assume that the bulk field bbulk and
the effective local field h are collinear and of the same sign.
To be specific, we choose bbulk > 0, h > 0.

The nonperturbed Green’s function of the Zeeman-split
superconductor is

G0
k(z) = (z − bbulk/2)τ0 + εkτ3 − �τ1

(z − bbulk/2)2 − (
ε2
k + �2

) . (6)

Here τ1,τ2,τ3 are the Pauli matrices, τ0 is the identity matrix,
and z is the frequency argument. To obtain the local Green’s
function at the origin, G0

loc, we sum over the momenta k and
switch over to an integral over energies assuming a flat DOS
in the normal state. In the wide-band limit we find

G0(z) = −πρ
(z − bbulk/2)τ0 − �τ1√

�2 − (z − bbulk/2)2
. (7)

The Dyson’s equation to include the impurity effect can be
written as [1–3]

[G(z)]−1 = [G0(z)]−1 − hτ0. (8)

We have

[G0(z)]−1 = −
√

�2 − (
z− bbulk

2

)2

πρ
[(

z− bbulk
2

)2−�2
] [(z − bbulk/2)τ0+�τ1],

(9)

and finally

G(z) = −πρ
1

D

(
a �

� a

)
, (10)

where

D = 2α

(
bbulk

2
− z

)
+ (α2 − 1)

√
�2 −

(
bbulk

2
− z

)2

,

a = bbulk/2 − z + α
√

�2 − (bbulk/2 − z)2. (11)

The spin-up spectral function is A↑(ω) = −(1/π )ImG11(ω +
iδ), while the spin-down spectral function is A↓(ω) =
−(1/π )Im[−G22(−ω − iδ)] = −(1/π )ImG22(−ω + iδ).

The 11 (spin-up) matrix component of G(z) has two poles:

ω1,2 = bbulk/2 ± �
1 − α2

1 + α2
. (12)
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FIG. 1. Spin-projected spectral functions (blue for spin-up, red for spin-down) for a range of the dimensionless impurity coupling
α = πρJS/2 in a Zeeman-split superconductor with bbulk/� = 0.4.

Only one pole has a finite residue. For h > 0 (hence α > 0)
we find a subgap resonance in the spin-up spectral function at

ω↑ = bbulk/2 − �
1 − α2

1 + α2
. (13)

Conversely, the spin-down spectral function has a resonance
at ω↓ = −ω↑:

ω↓ = −bbulk/2 + �
1 − α2

1 + α2
. (14)

We emphasize that the spin-projected spectral functions have
a single subgap resonance, one for each spin. This is to be
contrasted with the behavior of the quantum model discussed
in the following section which has (in the spin-singlet regime
for finite magnetic field) two resonances in each spin-projected
spectral function. This is a clear indication of the different
degeneracies of states in the classical and quantum impurity
models.

Some representative spectra are plotted in Fig. 1. The
α = 0 case corresponds to the limit of a clean Zeeman-split
superconductor. Each quasiparticle continuum branch has a
characteristic inverse square root divergence at its edge.

For small α = 0.25, the Shiba bound states emerge out
of the quasiparticle continuum, the spin-up resonance in the
negative part of the spectrum, and the spin-down resonance in
the positive part, in line with Eqs. (13) and (14) for small α.
The shift by bbulk/2 is expected, since the spin-up Shiba state
is generated by the Bogoliubov states with spin up, which
are themselves shifted by the same amount. Conversely, the
spin-down Shiba state is generated as a linear superposition
of Bogoliubov states with spin down, which are shifted by
−bbulk/2. We observe that all four branches of the quasiparticle
band lose their inverse square-root singularity and contribute
spectral weight to the nascent Shiba state (see also Ref. [48]),
not only the “inner” ones (spin-up occupied and spin-down
unoccupied).

With increasing α, the Shiba states move toward the gap
center (chemical potential) and they cross when the condition

bbulk/2 = �
1 − α2

1 + α2
(15)

is met, i.e., at

α∗ =
√

1 − bbulk/2�√
1 + bbulk/2�

. (16)

For bbulk/� = 0.4, as used here, this happens at α∗ ≈ 0.82<1.
This signals the occurrence of the quantum phase transition in
which the fermion parity of the (sub)system changes. We also
note that alternatively, for constant α < 1, the transition can
be driven by the external magnetic field.

For still larger α = 2.5, the spin-up Shiba resonance
overlaps with the spin-down quasiparticle continuum (and vice
versa for the spin-down Shiba resonance), but since the spin is
assumed to be a good quantum number there is no broadening
of the Shiba resonances. (See below, Sec. III B, for a discussion
of the SO effects in the case of a quantum impurity.)

For very large values of α, the Shiba states eventually
merge with the continuum again. This trend is accompanied
by the reappearance of the inverse square-root resonances, an
indication of which is visible for α = 5 in Fig. 1.

We now discuss the case of antialigned fields, taking bbulk >

0 and h < 0. In this case, for small |α| the spin-up Shiba state
occurs at

ω↑ = bbulk/2 + �
1 − α2

1 + α2
, (17)

and hence overlaps with the continuum of spin-down quasi-
particles for |α| < 1/

√
2�/bbulk − 1. The quantum phase

transition occurs for

|α∗| =
√

1 + bbulk/2�

1 − bbulk/2�
> 1. (18)
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FIG. 2. (a) Schematic phase diagram for B = 0. (b) Subgap
splitting for finite field B.

For large |α| the Shiba states again merge with the continuum
at the inner edges of the Bogoliubov bands. The regimes that
the system goes through for α < 0 are thus in the opposite
order to those for α > 0.

The main deficiency of the impurity model in the clas-
sical limit is the reduced multiplicity of the subgap states.
Physically, this is due to the fact that in the classical limit
the effective impurity potential for particle-like excitations
is attractive for one spin orientation and repulsive for the
other; hence a single bound state is generated for a given
spin orientation. The spin-flip processes in the quantum model
lead to a situation where the effective potential is attractive
for both spin polarizations, hence twice the degeneracy.
We discuss this more general situation in the following
section.

III. QUANTUM IMPURITY

A. Model and method

We consider a single spin- 1
2 impurity level with on-site

Coulomb interaction. The Hamiltonian is given by

H =
∑
k,σ

εkc
†
kσ ckσ − �

∑
k

(c†k↑c
†
−k↓ + H.c.)

+ V
∑
k,σ

(d†
σ ckσ + H.c.) + εd

∑
σ

nσ + Un↑n↓

+ gimpμB(BSz + BxSx) + gbulkμBB
∑

k

sz,k. (19)

d†
σ is the creation operator on the impurity which is hy-

bridized with the bulk by V and has the energy level
εd . nσ = d†

σ dσ , Sz = 1
2 (d†

↑d↑ − d
†
↓d↓), Sx = 1

2 (d†
↑d↓ + d

†
↓d↑),

sz,k = 1
2 (c†k↑ck↑ − c

†
k↓ck↓). The magnetic field B couples with

the quantum dot by the g factor equal to gimp and with
the superconductor by gbulk. The transverse magnetic field
which can flip the spin is introduced through the parameter
Bx . We will consider a flat particle-hole symmetric band of
half-width D so that ρ = 1/2D. The hybridization strength is
characterized by  = πρV 2.

We employ the NRG method to solve the problem. There
are two ways to introduce a bulk Zeeman field in the NRG: as
local Zeeman terms on all sites of the Wilson chain, or through
a separate discretization of spin-up and spin-down densities of
states shifted by the Zeeman term [75]. The former approach
is suitable for models with a spectral gap, as discussed here,
while the latter has to be used for spin-polarized metals with
finite DOS at the Fermi level. We use a fine discretization mesh
with twist averaging over Nz = 64 grids so that high spectral
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FIG. 3. Spectral function of the impurity for the spin singlet (a) and spin doublet ground state (b). The parameters are bimp/U = 0.005
and �/U = 0.02. For the singlet ground state /U = 0.2 and for the doublet /U = 0.075. The spectrum for r = gbulk/gimp = 0 is shown
in central panels, the adjoining panels show the evolution of the position of the Shiba resonances as |r| increases, and the top/bottom panels
correspond to r = 1 and r = −1, respectively.
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resolution is possible inside the gap and in the vicinity of the
gap edges, which are the regions of main interest in this work.
The only conserved quantum number in the presence of an
external field along the z axis is the projection of total spin Sz,
i.e., the problem has U(1) spin symmetry. Other parameters
are � = 2, the NRG truncation cutoff energy is 10εN where
εN ∝ �−N/2 is the energy scale at the N th step of the iteration,
and at least 200 states were used at late iterations N when
the gap is opened. The spectral functions are computed with
the DMNRG algorithm [70] with the N/N + 2 scheme for
patching the spectral functions. This approach allows maximal
spectral resolution at zero temperature. The broadening is
performed on a logarithmic mesh with a small ratio r = 1.01
between two energies outside the gap and on a linear mesh
inside the gap. As can be seen in the figures further down, the
use of these different broadening kernels leads to some artifacts
at the continuum edges. All calculations are performed in the
zero-temperature limit, T = 0.

Unless otherwise specified, the model parameters are
U/D = 1, �/U = 0.02, and εd = −U/2.

The ground state of the Anderson impurity model,
Eq. (19), in the absence of the magnetic field is either a singlet
or a doublet depending on the ratio of the Kondo temper-
ature [68,69] TK ≈ 0.18U

√
8/πU exp(−πU/8) and the

superconducting gap �. The impurity spin is screened by the
conduction electrons for � < �c forming a spin singlet, while
for � > �c the local moment is unscreened and the ground
state forms a spin doublet; here �c ≈ TK/0.3 [17,18,22] in the
limit U/ 
 1. At the quantum phase transition the energy of
the excited many-particle state goes to zero, and the energy
levels cross. The transition is accompanied by a jump in
the spectral weight of the in-gap resonances and a change
of sign of the pairing amplitude [34]. The Zeeman field B

lifts the degeneracy of the doublet state [44–46,76]. For a
spin singlet ground state, the in-gap resonances corresponding
to the doublet state are split in the magnetic field B. In the
case of doublet ground state, the positions of the singlet Shiba
resonances are shifted in the Zeeman field.

Figure 2 shows a schematic phase diagram in zero magnetic
field and the evolution of the energy levels of the ground
and excited states with increasing Zeeman magnetic field.
This evolution of the in-gap resonances with changes of
the hybridization and the magnetic field has been recently
observed in tunneling experiments and agrees with the theo-
retical predictions in the case when the field is coupled only
with impurity [44–47]. Here, we explore the fate of the subgap
states when the magnetic field is also Zeeman coupled with
the bulk superconductor.

B. Results

We now discuss the spectral function of the impurity in
different parameter regimes and identify the boundary of the
singlet-doublet phase transition in the (B,�) parameter plane
for different values of the g-factor ratio r .

We first consider the case of singlet ground state. In the
magnetic field the subgap resonance (which is a spin doublet)
splits to its spin-up and spin-down components. The impurity
spectral function for /U = 0.2, bimp/U = 0.005 is shown
in Fig. 3(a) for r = 0 (central panel), r = 1 (top panel), and
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FIG. 4. (a) Phase diagram in the (B,�) plane for several values
of r = gbulk/gimp. Here /U = 0.2, �c/U ≈ 0.13. (b) For small �

the singlet-doublet transition coincides with the closure of the SC
gap for bbulk ≈ 2�. (c) The expectation value 〈Sz〉 and (d) the pairing
amplitude 〈d↑d↓〉 abruptly change across the phase transition. Here
� = 0.385�c.

r = −1 (bottom panel). The additional panels show how the
position of the resonances shifts as the parameter r is varied.
For r = 1 the expectation value of the spin projection 〈Sz〉 at
the impurity site is 〈Sz〉 = 0 [see Fig. 4(c) and the appendix].
Such compensation holds also in the particle-hole asymmetric
case as long as gimp = gbulk. If the g factors are different,
there will be net magnetization at the impurity site even if the
ground state is a spin singlet and there is a finite gap to excited
states.
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We next consider the case of smaller hybridization, /U =
0.075, so that the impurity is in the doublet ground state. The
spectral functions for r = 0, r = 1, and r = −1, as well as
the evolution between them, are shown in Fig. 3(b). A single
resonance is now visible for ω > 0, since the ground state
has spin projection Sz = 1/2, and the only possible excitation
is adding a spin-up particle to form a Sz = 0 singlet state.
We also observe notable differences in the appearance of the
gap edges for both spin projections, related to the strong spin
polarization of the impurity state in the doublet regime. We
emphasize that this distinguishing feature is not present in the
classical impurity model discussed above.

The phase diagram in the (B,�) plane is shown in Fig. 4.
This plot represents the main result of this work. In the
absence of a magnetic field, the ground state changes from
singlet to doublet for � = �c = 0.13U . Here, TK ≈ 0.018U

and TK/�c = 0.138 for the chosen value of /U = 0.2. For
� < �c the transition can be also induced by changing the
magnetic field. For r = 0 the magnetic field is coupled only
with the impurity. In this case, as shown in Ref. [45], the critical
magnetic field Bc for the singlet-doublet transition linearly
depends on the gap, Bc ∼ �c − �. For r �= 0, however, Bc has
nonmonotonic dependence on �: It increases approximately
linearly with � as it gets reduced from �c, reaches a maximum,
and then decreases to zero as � → 0. For � ∼ �c the singlet-
doublet transition is a consequence of a competition of three
characteristic energies: �, TK , and B. For very small values of
� (for � 
 �c) the singlet-doublet transition coincides with
the closure of the superconducting gap for bbulk = 2�. The
phase boundary for small value of � is shown in Fig. 4(b). We
note that for small � the transition to the normal phase would
actually occur for smaller value of B, B = Bcl = √

g� ≈√
2�, known as the Clogston limit [77,78]. For B > Bcl the

normal phase has lower free energy than the superconducting
one. Our main focus is, however, on larger values of the
superconducting gap when it is comparable to the Kondo
temperature.

The average value of the projection of the local spin
〈Sz〉 abruptly changes at the phase transition, Fig. 4(c). For
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FIG. 5. Spin up in-gap resonances and continuum of excitations
for several values of r . Here bbulk/U = 0.01 was kept constant. The
finite width of the Shiba resonances is a broadening artifact: These
resonances are true δ peaks at zero temperature.
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FIG. 6. Spectral function of the spin-up Shiba resonance and
the quasiparticle continuum for several values of the spin-flipping
transverse magnetic field. As bx increases, the Shiba resonance
broadens.

gimp = gbulk, i.e., for r = 1, the average value 〈Sz〉 = 0 in
the singlet case (see also the appendix). For r �= 1, 〈Sz〉 is
nonzero but small for singlet ground state, and it jumps to
large absolute value by increasing the magnetic field at the
transition to doublet ground state. The pairing amplitude on
the impurity, 〈d↑d↓〉, shows a characteristic sign change at the
transition, Fig. 4(d).

When the spin-up Shiba state begins to overlap with
the spin-down branch of Bogoliubov excitations, it remains
unperturbed, as in the classical impurity model. This is
the case in spite of the spin-flip processes in the quantum
model and is a simple consequence of the conservation of
the spin projection Sz quantum number. In other words, the
spin-up Shiba state is a bound state of spin-up Bogoliubov
quasiparticles, which are orthogonal to and do not mix with
the spin-down Bogoliubov quasiparticles. This is illustrated
in Fig. 5. Here gbulk and B were kept constant, while the
position of the spin-up resonance was changed by changing
gimp. A transverse magnetic field, however, flips the spin and
the Shiba resonances broaden, as illustrated in Fig. 6. Such
broadening effects are expected in realistic systems due to SO
coupling.

IV. CONCLUSION

We have analyzed the behavior of magnetic impurities
coupled to superconductors subject to an applied magnetic
field that does not fully suppress the superconducting or-
der but strongly spin splits the Bogoliubov quasiparticle
continua because of the Zeeman coupling. This situation
commonly occurs when the field is applied in the plane of
a superconducting thin layer and leads to clearly observable
effects.

For a classical impurity, approximated as a static local
pointlike magnetic field (and aligned with the external field),
we find that the position of the Shiba state is shifted linearly
with the external field as a simple consequence of the shifting
edges of the quasiparticle bands. In fact, the only effect of the
spin splitting of the Bogoliubov states is that the frequency
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argument in the impurity Green’s function is shifted as
ω → ω + bbulk/2 for spin-up and ω → ω − bbulk/2 for spin-
down particles. The parity-changing quantum phase transition
no longer occurs at α = πρJS/2 = 1, but rather when the
condition bbulk = gbulkμBB/2 = �(1 − α2)/(1 + α2) is met.
This occurs for α = α∗ < 1. We observed that for large
α the Shiba state of a given spin may overlap with the
quasiparticle continuum of the opposite spin and still remain
a sharp resonance (a δ peak). This remains true as long as
there is no matrix element linking the quasiparticles of both
spins.

We then turned to the case of a quantum impurity with
far more complex behavior. The Zeeman coupling is present
both in the bulk and on the impurity site, and generically
the corresponding g factors are different: This is typically
indeed the case in the nanoscale hybrid superconductor-
semiconductor devices. We find a very significant effect
of the Zeeman splitting of the quasiparticle continua: The
phase diagram of the possible many-particle ground states
(singlet or doublet) in the (�,B) plane actually has two
very different regimes. In the � → �c limiting regime, the
transition occurs because a strong enough field decreases the
energy of spin-down doublet state below that of the singlet
state. In this regime, the phase boundary in the (�,B) plane
has a negative slope: The closer � is to �c, the smaller the
separation between the singlet and doublet states in the absence
of the field and hence a smaller Zeeman splitting is necessary
to induce the transition. We have established that for finite
r = gbulk/gimp the splitting between the doublet subgap states
is larger than for r = 0 and hence the separation between the
singlet and the spin-down doublet is smaller; thus the transition
occurs for a smaller value of the magnetic field. In the other
limiting regime of small �, the transition occurs because the
gap between the spin-polarized Bogoliubov bands closes and
the transition line is given asymptotically as bbulk/2 = �;
hence the transition line has a positive slope. In reality,
such transition is of course preempted by a bulk transition
to the normal state (Clogston limit). Nevertheless, even in
the physically accessible regime we observe that the actual
behavior is determined by a competition of both trends and that
the slope of the transition line changes at some intermediate
point where the system crosses over from one limiting behavior
to another. The actual transition line is therefore bell-shaped
and depends on the value of r . The straight line found in the
limit r → 0 is, in fact, highly anomalous, and for realistic
values of the ratio r there will be a significant degree of
curvature.

We have confirmed the possibility of a sharp Shiba
resonance overlapping with the continuum of opposite-spin
Bogoliubov quasiparticles. In addition, we have considered
the gradual widening of the Shiba resonance if local spin-flip
processes are allowed (generated, e.g., by SO coupling leading
to noncollinear effective magnetic fields): Such processes lead
to the hybridization of the Shiba state and its gradual engulfing
in the continuum.

In conclusion, we have established the importance of
including the Zeeman splitting in the bulk of the supercon-
ductor when discussing the effect of the external magnetic
field on the subgap states induced by magnetic impurities in
superconductors.
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APPENDIX: NONINTERACTING MODEL

For completeness, in this appendix we define the analytical
expression for the noninteracting Anderson impurity model
(U = 0); see also Ref. [79]. We work in the Nambu space,
D† = (d†

↑,d↓), C
†
k = (c†k↑,c−k↓). The Hamiltonian can be

written as

HSC =
∑

k

C
†
kAkCk, (A1)

where

Ak =
(

εk + bbulk/2 −�

−� −εk + bbulk/2

)
. (A2)

The Green’s function is given by gk(z) = (z − Ak)−1,

gk(z)−1 = (z − bbulk/2)σ0 − εkσ3 + �σ1, (A3)

with σ1,2,3 being Pauli matrices and σ0 being the identity
matrix, so that

gk(z) = (z − bbulk/2)σ0 + εkσ3 − �σ1

(z − bbulk/2)2 − (
ε2
k + �2

) . (A4)

The impurity Green’s function is

G(z)−1(z) = zσ0−εdσ3 − (bimp/2)σ0 − V 2σ3
1

N

∑
k

gk(z)σ3.

(A5)

In the wide-band limit

−V 2 1

N
σ3

∑
k

gk(z)σ3 = 
(z − bbulk/2)σ0 + �σ1

E(z − bbulk/2)
, (A6)

where  = πρ0V
2. T → 0, on real axis, z = x + iδ:

E(x) = −isgn(x)
√

x2 − �2, for |x| > �,

E(x) =
√

�2 − x2, for |x| < �. (A7)

Finally, we have

G−1(ω) = (ω − bimp/2)σ0 − εdσ3

+
(ω − bbulk/2)σ0 + �σ1

E(ω − bbulk/2)
. (A8)

Matrix inversion yields

G(ω) = 1

D(ω)

{
(ω − bimp/2)

[
1 + 

E(ω − bbulk/2)

]
σ0

− �

E(ω − bbulk/2)
σ1 + εdσ3

}
, (A9)
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with

D(ω) = (ω − bimp/2)2

[
1 + 

E(ω − bbulk/2)

]2

− 2�2

E(ω − bbulk/2)2
− ε2

d . (A10)

Now assume b ≡ bimp = bbulk. We consider two functions
G↑(ω) = G11(ω + b/2) and G↓(ω) = −G22(−ω − b/2)∗.

Taking into account the symmetry properties of E(x), it is
easily shown that G↑ = G↓ both inside and outside the gap.
This shows that as long as the system is in the singlet ground
state, it is possible to shift the spectral functions of spin-up
and spin-down subsystems to make them overlap; thus their
integrals over the negative energies (occupied states) are equal
and hence 〈Sz〉 = 0. This is also the case in the interacting case.
For bimp �= bbulk, 〈Sz〉 in the singlet regime will be nonzero
but small. In the doublet regime, irrespective of the value of
r = bbulk/bimp, 〈Sz〉 is large.

[1] L. Yu, Bound state in superconductors with paramagnetic
impurities, Acta Phys. Sin. 21, 75 (1965).

[2] H. Shiba, Classical spins in superconductors, Prog. Theor. Phys.
40, 435 (1968).

[3] A. I. Rusinov, Superconductivity near a paramagnetic impurity,
Zh. Eksp. Teor. Fiz. Pisma Red. 9, 146 (1968) [JETP Lett. 9, 85
(1969)].

[4] M. F. Goffman, R. Cron, A. Levy Yeyati, P. Joyez, M. H. Devoret,
D. Esteve, and C. Urbina, Supercurrent in Atomic Point Contacts
and Andreev States, Phys. Rev. Lett. 85, 170 (2000).

[5] J.-D. Pillet, C. H. L. Quay, P. Morin, C. Bena, A. Levy Yeyati,
and P. Joyez, Andreev bound states in supercurrent-carrying
carbon nanotubes revealed, Nat. Phys. 6, 965 (2010).

[6] R. S. Deacon, Y. Tanaka, A. Oiwa, R. Sakano, K. Yoshida, K.
Shibata, K. Hirakawa, and S. Tarucha, Interplay of Kondo and
Superconducting Correlations in the Nonequilibrium Andreev
Transport Through a Quantum Dot, Phys. Rev. Lett. 104, 076805
(2010).

[7] S. De Franceschi, L. Kouwenhoven, C. Schönenberger, and
W. Wernsdorfer, Hybrid superconductor-quantum dot devices,
Nat. Nanotechnol. 5, 703 (2010).

[8] L. Bretheau, C. O. Girit, C. Urbina, D. Esteve, and H. Pothier,
Supercurrent Spectroscopy of Andreev States, Phys. Rev. X 3,
041034 (2013).

[9] C. Janvier, L. Tosi, L. Bretheau, C. O. Girit, M. Stern, P.
Bertet, P. Joyez, D. Vion, D. Esteve, M. F. Goffman, H. Pothier,
and C. Urbina, Coherent manipulation of Andreev states in
superconducting atomic contacts, Science 349, 1199 (2015).

[10] A. Yazdani, B. A. Jones, C. P. Lutz, M. F. Crommie, and
D. M. Eigler, Probing the local effects of magnetic impurities
on superconductivity, Science 275, 1767 (1997).

[11] S. H. Ji, T. Zhang, Y. S. Fu, X. Chen, X.-C. Ma, J. Li, W.-H. Duan,
J.-F. Jia, and Q.-K. Xue, High-Resolution Scanning Tunneling
Spectroscopy of Magnetic Impurity Induced Bound States in the
Superconducting Gap of Pb Thin Films, Phys. Rev. Lett. 100,
226801 (2008).

[12] K. J. Franke, G. Schulze, and J. I. Pascual, Competition
of superconductivity phenomena and Kondo screening at the
nanoscale, Science 332, 940 (2011).

[13] M. Ruby, F. Pientka, Y. Peng, F. von Oppen, B. W. Heinrich,
and K. J. Franke, Tunneling Processes into Localized Sub-
gap States in Superconductors, Phys. Rev. Lett. 115, 087001
(2015).

[14] M. T. Randeria, B. E. Feldman, I. K. Drozdov, and A.
Yazdani, Scanning Josephson spectroscopy on the atomic scale,
Phys. Rev. B 93, 161115 (2016).

[15] N. Hatter, B. W. Heinrich, M. Ruby, J. I. Pascual, and K. J.
Franke, Magnetic anisotropy in Shiba bound states across a
quantum phase transition, Nat. Commun. 6, 8988 (2015).

[16] A. Sakurai, Comments on superconductors with magnetic
impurities, Prog. Theor. Phys. 44, 1472 (1970).

[17] K. Satori, H. Shiba, O. Sakai, and Y. Shimizu, Numerical
renormalization group study of magnetic impurities in super-
conductors, J. Phys. Soc. Jpn. 61, 3239 (1992).

[18] O. Sakai, Y. Shimizu, H. Shiba, and K. Satori, Numerical
renormalization group study of magnetic impurities in superco-
ductors, II: Dynamical excitations spectra and spatial variation
of the order parameter, J. Phys. Soc. Jpn. 62, 3181 (1993).

[19] M. I. Salkola, A. V. Balatsky, and J. R. Schrieffer, Spectral
properties of quasiparticle excitations induced by magnetic
moments in superconductors, Phys. Rev. B 55, 12648 (1997).
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[75] M. Höck and J. Schnack, Numerical renormalization group
calculations of the magnetization of Kondo impurities with and
without uniaxial anisotropy, Phys. Rev. B 87, 184408 (2013).
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