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Abstract – Investigations of bonds between single molecules and molecular complexes by dynamic
force spectroscopy are subject to large fluctuations at nanoscale and possible aspecific binding,
which mask the experimental output. Big efforts are devoted to develop methods for the effective
selection of the relevant experimental data, before the quantitative analysis of bond parameters.
Here we present a methodology which is based on the application of graph theory. The force-
distance curves corresponding to repeated pulling events are mapped onto their correlation network
(mathematical graph). On these graphs the groups of similar curves appear as topological modules,
which are identified using the spectral analysis of graphs. We demonstrate the approach by
analyzing a large ensemble of the force-distance curves measured on: ssDNA-ssDNA, peptide-
RNA (from HIV1), and peptide-Au surface systems. Within our data sets the methodology
systematically separates subgroups of curves which are related to different types of intermolecular
interactions and to spatial arrangements in which the molecules are brought together and/or
pulling speeds. This demonstrates the sensitivity of the method to the spatial degrees of freedom,
suggesting potential applications in the case of large molecular complexes and situations with
multiple binding sites.

Copyright c© EPLA, 2010

Introduction. – It has been recognized recently [1]
that the signals generated at a single molecule (or another
nanosize object) differ from signals obtained in large-scale
systems consisting of ensemble of molecules. In particular,
enhanced fluctuations, randomness and irreproducibility
of the signals are observed in single-molecule measure-
ments. A representative example is the mechanical signal
generated in the dynamic force spectroscopy (DFS) of
intermolecular bonds [2,3]. The force spectroscopy of indi-
vidual molecules and molecular complexes has become a
leading methodology for measuring biomolecular unbind-
ing forces, which form the bases of biologically relevant
molecular processes [4]. For instance, recently studied
examples include measurements of fundamental biomole-
cular forces in DNA unzipping [5], ALCAM-ALCAM [6],
peptide-antibody [7], RNA-protein [8] interactions, etc.

(a)E-mail: bosiljka.tadic@ijs.si

In a typical pulling experiment in DFS based on the
atomic force microscopy, the ligand and receptor molecule
are attached via polymer linkers on the AFM tip and the
solid support (e.g., glass, mica, gold surfaces). The mole-
cules are brought close to each other for a certain contact
time allowing them to form a bond and then pulled apart
until the bond breaks. The process is repeated many
times. In each pulling event, changes in the deflection of
the AFM cantilever as a function of distance are measured.
Knowing the spring constant of the cantilever, these data
can be converted into distance-dependent forces, resulting
in the so-called force-distance curves. From these curves
different parameters can be obtained, such as the force
needed to break a certain bond and the force loading rate.
Further quantitative analysis of these data requires an
elaborated theoretical framework [2] enabling the extrac-
tion of binding parameters, i.e., potential barrier and
the survival time. The applied force reduces the barrier
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between the bound and dissociated states of the binding
molecules, allowing one to estimate the force at which the
barrier disappears and to measure the dissociation rate.
Then the natural dissociation rate at vanishing force is
extracted using an appropriate theoretical framework.
Within the reaction-rate theory a unified formulation is
currently available [9,10] for several types of interaction
potentials, which also contains the classical model [2] as
a special limit. Another direction of theoretical research,
whereto also our work belongs, focuses on the nature of
fluctuations (beyond the problem of signal-to-noise ratio)
and suitable selection of the force-distance curves in
different molecular systems. Curve selection represents an
important step which precedes the quantitative analysis
yielding the bonding parameters. The complexity of the
problem arises from i) strong fluctuation in chemically
rich and spatially extended molecular systems (see our
discussion below), and ii) the large amount of data
necessary to analyse. Hence, to sort the relevant data,
both new concepts to treat the fluctuations properly as
well as efficient computational approaches are needed.
Recently two methods were proposed based on pattern
recognition [11] and master-curve fitting [12].
The analytical expression for the profile of the force-

distance curve is known in the case of a pulled linear poly-
mer chain [13]. However, the data collected from the force
spectroscopy experiments in molecular complexes (such
as DNA-DNA, RNA-protein, ligand-receptor, etc.) often
show very diverse profiles. In such (chemically) complex
situations several binding events can occur simultaneously.
For instance, an aspecific binding of RNA to the substrate
or to the polymer linkers. Moreover, multiple bonds can
be formed, which may result in many peaks per curve or
larger detected forces. This makes force-distance curves
difficult to sort and analyze on the basis of a single proto-
type profile, calling for more appropriate methods. It is
generally accepted (see also discussion in [12]) that the
force-distance curves originating from the same unbinding
process share strong similarity.
In this work we present a new approach for system-

atic selection of groups of mutually similar force-distance
curves and demonstrate it on a mixed set of force-distance
curves from different experiments. Our methodology is
based on the theory of complex networks and their spec-
tral analysis [14–16]. Mapping multichannel datasets onto
a graph representation has proved as a useful tool [17]
in the analysis of many complex dynamical systems, for
example stock-market time series [18], gene-expression
signals [19,20], neural activity signals [21–23], tempera-
ture records in climate [24], and information traffic [25].
Compared to these examples, where the time-series are
measured at each unit of an extended interacting system,
our approach here is to map the force-distance signal
measured in repeated experiments on the same molecular
complex with many degrees of freedom. To demonstrate
our approach, we analyze a large dataset consisting of
force-distance curves measured under different conditions

Fig. 1: (Colour on-line) Correlation matrix of different types of
force curves, described in the text. Color intensity from blue
(low) to red (high) indicates the strength of correlation Cij
between pairs of curves. Shown are correlations Cij > 0.5 after
matrix filtering.

on RNA-peptide complex (from HIV1), a set of curves
from ssDNA-ssDNA binding and two control sets. The
filtered correlation matrix mapped onto a binary graph
exhibits modularity, with the subgraphs of nodes (curve
index) grouped according to their similarity over the entire
datasets. We then look at the force curves in each subgraph
and find the underlying reasons for their clustering.

Description of the experimental data. – We
created the correlation matrix from all pairs of N = 1188
force curves, that were pre-processed in the following
way: We remove the contact part which mainly carries
information on the cantilever. Further we applied an
offset to shift the interaction free part of the curves to
the baseline, and only the part where interactions are
expected was kept (first 200 nm). Curves for the correla-
tion matrix were selected from four different experiments
with two different experimental setups. The experimental
setups differ in the number of flexible linkers to couple
molecules to the surface and the cantilever: either both
molecules were coupled to the cantilever/surface via PEG
spacers or one was coupled directly to the gold surface
and the other to the cantilever via PEG spacer (NHS-
PEG-MAL, length ∼ 40 nm). In the correlation matrix
(see fig. 1 and text below), from left-to-right, the first
block (I) consists of 200 curves from measurements of the
RNA-Rev peptide interaction (two linkers, velocity
581 nm/s); the second block (II) consists of 188 binding
curves of RNA-Rev peptide in the presence of neomycin
(two linkers, velocity 581 nm/s); the third block (III)
contains 200 curves from RNA-Rev peptide interaction
(one linker, velocity 2540 nm/s); the fourth block (IV)
contains 200 curves measured on ssDNA-ssDNA inter-
action (with 30 complementary bp, two linkers, velocity
218 nm/s); the fifth block (V) has 200 curves of RNA-Rev
peptide interaction (one linker, velocity 1160 nm/s), and
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Fig. 2: (Colour on-line) Scatterplot of the eigenvectors
V1, V2, V3 of three lowest eigenvalues of the Laplacian oper-
ator (2) related to the full correlation matrix in fig. 1.
Four branches are visible in this projection, marked as
G1, G2, G3, G4.

Fig. 3: (Colour on-line) Overlap plot of all curves belonging
to the groups G1, G2, G3, G4 identified from the scatterplot in
fig. 2.

the block (VI) consists of 200 curves of Rev peptide-Au
interaction (one linker, velocity 1160 nm/s). Overlay of
all curves used in this paper, grouped according to fig. 2,
is shown in figs. 3.

Correlation matrix and its spectral analysis. – In
our dataset consisting of N = 1188 force-distance curves,
{fi(x}), i= 1, 2, 3, . . . , N , each curve is identified by a
uniquely defined index i, thus representing a separate
pulling event. The elements of the correlation matrix Cij
are calculated as Pearson’s correlation coefficient between
each pair (i, j) of curves as follows:

Cij =

∑
i,j [fi(x)−〈fi〉][fj(x)−〈fj〉]

σiσj
, (1)

where the distance x is given by a discrete set of measured
values, and σi, σj stand for the standard deviation of
the force signal fi(x) and fj(x). In fig. 1 we show
the correlation matrix of all force curves, after filtering
out spurious correlations (the color map indicates values
of the coefficients Cij). For the filtering, we used the
affinity transformation method [22,25], where the element

is enhanced as Cij→MijCij if the rows i and j correlate
with the rest of the matrix in a similar way, yielding
Mij ∼ 1, and diminished otherwise. The meta-correlation
factor Mij is computed as a Pearson’s coefficient of
the rearranged elements {Cij , Ci1, . . . , Cii−1, Cii+1, . . . ,
CiN} and {Cji, Cj1, . . . , Cjj−1, Cjj+1, . . . , CjN} without
diagonal.
For further discussion we note that the matrix can be

represented by a network (mathematical graph), where
each matrix index i= 1, 2, . . . , N defines a network node
and the matrix element Cij —a link between nodes i
and j. In our case the links are symmetrical Cij =Cji by
definition (1). Note that the matrix and network repre-
sentations are formally equivalent. The network picture is
suitable for visualization and topological interpretation.
In particular, the matrix in fig. 1 makes a sparse network
containing topological modules, i.e., groups of nodes with
strong connections inside the group and sparse connections
between them. As the fig. 1 shows, correlations between
different sets of data (blocks I through VI) shown as off-
diagonal block-matrices can be as strong as correlations
inside the same set (diagonal blocks). This means that the
network modules may contain curves from different data
blocks, suggesting their similarity over different experi-
mental setups! In the following we apply the eigenvalue
spectral methods to identify these modules.
Here we perform spectral analysis of the normalized

Laplacian operator L related to the filtered correlation
C in fig. 1, or more precisely, its binary form with the
elements: Aij = 1 whenever Cij >C0, or Aij = 0 other-
wise. The matrix elements of the Laplacian are given by
[16,26]

Lij = δij − Aij√
qiqj
, (2)

where qi, qj are the number of links at nodes i and
j, respectively. Although the same conclusions can be
reached using the adjacency matrix Aij directly, the
analysis of the Laplacian (2) is more convenient since its
eigenvalue spectrum is limited in the range λi ∈ [0, 2].
Moreover, its eigenvectors belonging to few lowest
nonzero eigenvalues tend to localize along the network
modules [15,16]. This is a direct consequence of the
orthogonality to the eigenvector belonging to zero eigen-
value of the Laplacian (or the largest eigenvalue of the
adjacency matrix) which has all components positive
(Perron-Frobenius theorem [27]). Precisely, the localiza-
tion means that, among N components of the eigenvector,
the nonzero (positive/negative) components have indexes
which coincide with nodes in a network module (a detailed
analysis of spectra in modular networks is given in [16]).
This property of the eigenvectors we use to identify nodes
in different modules.

Identification of modules: force-curves grouping.
– When a modular structure occurs, the localization of
eigenvectors belonging to the smallest nonzero eigenvalues
is manifested in a branched pattern of the scatter plot
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Table 1: Upper part: representative curves appearing at tips
of four branches G1, G2, G3, G4 in the scatterplot in fig. 2 and
their distribution over original blocks of data I through VI.
Middle and bottom: further splitting of groups G2 and G3.

Block I II III IV V VI

G1 5 9 0 16 0 0
G2 51 28 177 0 181 148
G3 60 68 0 135 1 7
G4 4 0 1 0 0 0
G2-g1 5 1 3 0 35 22
G2-g2 0 0 45 0 7 0
G2-g3 20 10 5 0 3 21
G3-g1 5 6 0 24 1 0
G3-g2 24 9 0 24 0 5
G3-g3 18 15 0 28 0 1

in the space of these eigenvectors [16]. In fig. 2 we show
the scatterplot of the eigenvectors (V1, V2, V3) for three
smallest nonzero eigenvalues of the Laplacian (2), related
to the correlation matrix in fig. 1. In the scatterplot, each
point carries one index, thus indicating one network node,
that is a force curve index in our original dataset. The plot
in fig. 2 shows four branches, marked as G1, G2, G3, G4,
thus four groups of curves can be identified. The most
representative curves in each group are those at the tips
of branches with the most distinct curves situated at
the opposite ends of the branches G2 and G3, whereas,
the differences gradually diminishes closer to the center
of the plot. By matching the indexes with curves in the
original dataset, we identify representative curves at the
tips of four branches (table 1). Overlay of all curves in
the G1 . . . G4 groups is shown in fig. 3. Heterogeneity of
the curves in the block I, eventually splitting into two
distinct groups, is compatible with the occurrence of weak
correlations in the block after the filtering. Part of the
curves from block I has strong correlation with the curves
from block VI, which can be explained by the dominant
adhesion peak and unspecific interaction of the peptide
with the surface present in both data sets [28].
Each of the groups contains a number of curves from

one or several blocks of the original datasets. Recalling
the nature of the data in different blocks, we see that
the module G2 contains curves obtained predominantly
on experimental setup with one PEG spacer (blocks III,
V, and VI) and a fraction of data with two spacers (from
blocks I and II) while completely excluding the DNA-DNA
interactions (block IV). On the other hand, the module G3
contains data from DNA-DNA interactions and a number
of curves from Rev-RNA and blocked Rev-RNA with
neomycin, all obtained with two spacers. G1 has similar
composition although it appears as a separate module,
similar as the small group G4. Note that these groups of
curves show peaks at different regions of forces, cf. fig. 3,
and occupy different areas in the force-distance plane (see
rupture patterns below and supportive material [28]).

Fig. 4: (Colour on-line) Example of the correlation network
constructed from the force curves in group G2 from fig. 2,
exhibiting modular structure. Shown are only links above the
threshold C0 = 0.91.
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Fig. 5: (Colour on-line) For the branch G2 of fig. 2: (top)
the eigenvalue spectrum and (bottom) the scatterplot of three
eigenvectors belonging to the lowest nonzero eigenvalues. Three
subgroups are identified marked by g1, g2, g3, see text for
details.

We further analyze the group of curves in G2 apply-
ing the same approach on the now reduced correla-
tion matrix. The complete group consists of N2 = 597
curves. The correlation network of these curves, shown
in fig. 4, exhibits a modular structure, suggesting that
smaller subgroups of the group G2 can be identified.
The eigenvalues of the Laplacian related to this correla-
tion matrix are shown in the ranking order in fig. 5, top
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Fig. 6: (Colour on-line) Overlay of the selected force curves
of low- and high-velocity associated to ends of the scatterplot
ring in fig. 5.

panel. Compatible with the network modularity in fig. 4
is the appearance of three eigenvalues in the gap between
λ= 0 and the main part of the spectrum. The correspond-
ing scatterplot in the space of three eigenvectors belong-
ing to these eigenvalues is also shown in fig. 5, bottom
panel. In this case similarity between points, forming a
half-helmet in (V1, V2, V3) space, is stronger compared to
fig. 2, however, groups can be identified by the end points
of the half-ring in the horizontal plane and points with
largest vertical distance, marked as g1, g2, g3 and different
symbols (colors) in fig. 5.
The identity of these curves with respect to the origi-

nal datasets is also indicated in table 1, middle part. As
mentioned above, curves in the large group G2 are on Rev
peptide binding, whereas, their subgroups appear to stem
from experiments with different pulling velocities: G2-g1
consists mostly of curves in blocks V and VI, measure-
ments at velocity of 1160 nm/s, while the groups G2-g2
and G2-g3 at two ends of the semi-ring contains curves
measured at highest (2540 nm/s) and lowest (581 nm/s)
velocity. In the experiment, measurements at different
velocities and correct assignments of the curves are impor-
tant for the extrapolation of bonding parameters to zero
force values. The pulling velocity affects both force loading
rate and the disruption force. Within our methods selected
groups of high- and low-velocity curves, G2-g2 and G2-g3,
respectively, are shown in fig. 6. Similar analysis of the
group G3 (not shown) leads to the curves identified in the
lower part of the table 1. Here data contain three molecu-
lar systems (DNA-DNA, Rev-RNA, and Rev-RNA-with-
neomycin) with multiple rupture profiles (see fig. 7) from
the setup with two spacers and low velocity. Much larger
mixing between the experimental situations in this group
indicates either increased amount of aspecific binding or a
dominant role of spacers.
The quality of the clustering is further demonstrated

in figs. 7 and 8, where we show the rupture patterns in
the force-distance plane and the histograms of the rupture
forces for curves in groups G2 and G3 selected by our
methodology. Different rupture patterns shown in fig. 7
suggest that not only different values of the most proba-
ble rupture forces are measured, i.e., 0.141± 0.013 nN and
0.0337± 0.0012 nN, respectively for G2 and G3, but also
indicate different distances where these events occur. It

Fig. 7: (Colour on-line) Contour plots showing different
patterns of the rupture events in the force-distance plane for
two groups of curves selected by our methodology.

Fig. 8: (Colour on-line) Histograms of the rupture forces for
three selected subgroups of FD curves of the groups G2 (left)
and G3 (right).

is remarkable that G2 contains curves with the peptide
interactions, while excluding the DNA-DNA curves conse-
quently. Moreover, the identified subgroups, for instance
within G2, represent three distinct areas of the rupture
pattern (supportive material [28]). Accordingly, the corre-
sponding histograms for these subgroups of curves, shown
in fig. 8, indicate different values of the most proba-
ble rupture forces, i.e., 0.066± 0.006, 0.135± 0.008, and
0.038± 0.004. These results are estimates of the forces
involved in these diverse sets of data used here for the
demonstration. Further testing of the algorithm on data
from a single experiment is necessary to optimize the clus-
tering parameters such that different interactions, possible
different binding sites or even different binding modes can
be identified.

Conclusions. – We have shown that stochastic signals
of different molecular systems (peptide-RNA, DNA-DNA)
measured by dynamic force spectroscopy can be effectively
selected according to their similarities. Our methodology
uses the signal’s relevant correlation matrix mapped onto
a mathematical graph. Then using the eigenvalue spec-
tral analysis of these graphs the groups of similar curves
are detected, which appear as topological modules on
them. We have shown that strong regularities in group-
ings of the force curves occur (and can be effectively
used for the signal evaluation), based on the pulling
speeds and experimental setup and even the type of
the interaction measured, supported by different rupture
patterns in the force-distance plane. This methodology
represents a step towards clustering of the data accord-
ing to the force-distance curve profiles, revealing a higher
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sensitivity to certain bond natures than current stan-
dard methods. Along with the specificity, the numerical
routines involved in our approach are faster compared to
the classical pattern recognition methods [11]. Within a
selected subgroup of FD curves further pre-processing,
e.g., with master-curve fitting [12], could be incorpo-
rated and increase the selectivity of our method. Improved
efficiency of this approach is expected in particular in
the case of larger molecular complexes and situations
where distinction between many different binding sites is
desired.
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[19] Živković J., Tadić B., Wick N. and Thurner S., Eur.

Phys. J. B, 50 (2006) 255.
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