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Abstract
The coherence effects induced by external photons coupled to matter waves
inside a Mach–Zehnder three-grating interferometer are analyzed. Alternatively
to atom–photon entanglement scenarios, the model considered here only relies
on the atomic wavefunction and the momentum shift induced in it by the
photon scattering events. A functional dependence is thus found between the
observables, namely the fringe visibility and the phase shift, and the transversal
momentum transfer distribution. Good quantitative agreement is found when
comparing the results obtained from our model with the experimental
data.

PACS numbers: 03.65.Ta, 03.75.Dg, 42.50.−p, 42.50.Xa, 37.25.+k, 42.25.Hz

(Some figures may appear in colour only in the online journal)

1. Introduction

The remarkable refinement reached in matter wave interferometry in recent decades [1, 2]
has made it possible to explore experimentally fundamental key questions about wave particle
duality and complementarity that have been studied since the very inception of quantum
mechanics [3, 4]. In this regard, Chapman et al [5] carried out an outstanding experiment
in 1995, where the influence of photon–atom scattering events (inside an atomic Mach–
Zehnder interferometer) on the coherence properties of an atomic beam was investigated.
This experiment was interpreted as a realization with atoms of Feynman’s ‘which-way’
gedankenexperiment [6].

The most intriguing result from Chapman’s experiment was the revival of fringe contrast
beyond the limits predicted by the complementary principle [2, 5, 7]. Furthermore, a regain
of fringe contrast after post-selecting atoms at the exit of the interferometer according to
the momentum transferred in the photon–atom scattering process was also observed [5]. The

1751-8113/12/165303+17$33.00 © 2012 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/45/16/165303
mailto:asanz@iff.csic.es
http://stacks.iop.org/JPhysA/45/165303


J. Phys. A: Math. Theor. 45 (2012) 165303 M Davidović et al

regain of interference due to post-selection in momentum space had been previously reported
for optical [8] and neutron [9] experiments with the presence of resonant spin-flipper fields.
In the case of the neutron experiments, a spectral modulation effect was observed by means
of a proper post-selection procedure, where the spatial shift of the wave trains greatly exceeds
the coherence length of the neutron beams traversing the interferometer [1, 9].

By the time the paper by Chapman et al [5] was published, a controversy on the origin of the
disappearance of interference in ‘which-way’ (actually, ‘which-slit’) double-slit experiments
was already in fashion: recoil versus decoherence. At a first glance, it seems that the primacy
of recoil arguments [10] has been contested in favor of more general decoherence mechanisms,
based on considering the entanglement between the observed system and its environment to
be the source of the system loss of fringe contrast or visibility. Nevertheless, Storey et al [11]
argued that, whenever interference is destroyed, transverse momentum has to be transferred
according to the uncertainty principle.

Revivals observed beyond the limit of the complementarity principle enforced Chapman
et al [5] and Cronin et al [2] to argue that ‘the momentum recoil by itself cannot explain
the loss of contrast (as it can in the diffraction experiments), but the path separation at the
point of scattering and the phase shift imprinted by the entanglement in the scattering process
must also be taken into account’. In addition, Cronin et al [2] argued that ‘focusing on the
which-way information carried away by the scattered photons is not the only way decoherence
may be understood. An alternative, but completely equivalent picture involves the phase shift
between the two components of the atomic wavefunction’. These two views (which-way and
dephasing) ‘correspond to two different ways to describe the scattered photon (position basis
versus momentum basis). In these two cases, an observer in the environment can determine
either which path the atom took or else the phase shift of its fringe pattern. The key point is that
when the experimenter is completely ignorant of the state of the scattered photons, whether
an apparatus has been set up to measure them or not, the which-path and phase diffusion
pictures are equally valid (Stern et al 1990, [12]). Both predict decoherence, i.e. the loss of
contrast’ [2].

It is important to note that the apparatus of Chapman et al [5] was set up to detect
atoms, but not to measure the state of the scattered photons. Because of this, in this work
we study this experiment using a model [13, 14] that focuses on atomic states. It accounts
for the effects caused on the atom time-dependent wavefunction by the interferometer as
well as the (environmental) photons scattered from the atoms when the latter are excited in
a resonance fluorescence state by a laser beam. Due to the negligible timescales involved in
the dynamics of the atom–photon scattering process (i.e. the absorption and then re-emission
of the photon by the atom) compared with the timescales involved in the experiment, the
photon–atom resonance scattering is described as a sudden change of the atom wavefunction
accompanying the momentum transfer between the photon and the atom. Hence, we assume
that each atom can be individually described by a pure state, and only when a collection of
atoms is considered statistically does the decoherence effect arising from the photon-induced
momentum displacements become apparent. More specifically, we use here the probability
distribution of transverse momentum transfer to an atom in resonance fluorescence derived by
Mandel [15, 16] from the angular distribution of spontaneously emitted photons.

According to such a model, we present here a functional dependence between the
experimental observables, namely the fringe visibility and the phase shift, and the statistical
distribution of photon–atom transversally transferred momentum. From this relationship,
a direct connection is established between the coherence losses and subsequent revivals
undergone by the atoms, which arise as a consequence of the statistical distribution
of the sudden momentum shifts induced in the atomic wavefunction by the photons
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(a) (b)

Figure 1. (a) Scheme of the experimental setup used by Chapman et al [5] to conduct their
experiments on atom interferometry. Essentially, it consists of a Mach–Zehnder three-grating
interferometer, where atoms are acted by external photons between the first and second gratings
(G1 and G2). (b) Scheme showing the post-selection slits behind the third grating G3; each one
gives rise to a different post-selection momentum transfer distribution (see section 3).

(scattering-mediated momentum transfer processes). Furthermore, when some particular
choices of momentum transfers are considered by selecting the outgoing atoms according
to some prescribed momentum distributions, i.e. by post-selecting the atoms, a regain of the
coherence is observed. As is shown, these results are in good agreement (both qualitatively
and also quantitatively) when compared with the experimental data reported by Chapman et
al [5]. Note therefore that this simple model thus provides a self-consistent explanation of
the experiment based on first-principle-like arguments rather than only a best fitting to some
suitable function.

This work is organized as follows. In section 2, to be self-contained, we start by briefly
introducing the experimental setup used by Chapman et al [5] as well as a brief description
of the two types of experiments they carried out. In section 3, we introduce our theoretical
description of this experiment together with the analytical tools that arise from it, and later
evaluate the fringe visibility and phase shift, which are compared with the experimental
data. As will be seen, this entails the two features of a quantum particle within the same
experiment: wave and corpuscle. In other words, with each individual atom that enters into
and passes through the three-grating Mach–Zehnder interferometer, and then arrives at the
detector, there is a wave associated, which is described by a coherent wavefunction or pure
state. In section 4, results for different functional forms of the transversal momentum transfer
distribution are analyzed and discussed. As is shown, when these results are directly compared
with the experimental data reported in [5], a good agreement is found even without using any
best-fit method, but just introducing the experimental parameters into the functional forms
derived from our theoretical model. Finally, the main conclusions arising from this work are
summarized in section 5.

2. Description of the experiment

In the experimental setup utilized by Chapman et al [5] (a sketch is shown in figure 1(a)),
a beam of atomic sodium with a narrow velocity distribution is produced, collimated and
launched through an atomic Mach–Zehnder interferometer. The interferometer consists of
three 200 nm period nanofabricated Ronchi diffraction gratings (indicated by the vertical
dotted lines in figure 1(a)) separated by L = 65 cm. Each grating acts as a coherent beam
splitter [17], with the zeroth- and first-order maxima being the relevant ones.

A polarized laser beam behind the first grating, G1, is switched on with the direction of
the beam being parallel to this slit. This laser leads the atoms to a resonant excited state, from

3



J. Phys. A: Math. Theor. 45 (2012) 165303 M Davidović et al

(a) (b)

Figure 2. Transversal momentum transfer distributions as a function of the ratio between the
transferred momentum and the incident photon wave number, �kx/ki. In panel (a): bare momentum
transfer distribution P0 (black solid line) and post-selection momentum transfer distributions PI (red
dashed line), PII (green dotted line) and PIII (blue dash–dotted line), as considered in the experiment
[5] (the colors follow those of figure 1(b)). In panel (b): theoretical momentum transfer distributions
Pδ (with kδ = 0.7ki; vertical black solid line), P1 (red dashed line), P2 (green dotted line) and Pc

(blue dash–dotted line). All curves are normalized to unity within the interval 0 � �kx/ki � 2.
See the text for particular details on the values of the parameter.

which they decay back to the ground state via spontaneous emission. The atomic flux collected
behind the third grating, G3 (see figure 1(a)), was then measured as a function of a shift �x3

produced in this grating along the x-axis, with the laser both off and on. This measurement
was performed considering different values of the distance y′

12 between G1 and the laser beam.
Then, next, the same set of measurements was repeated, but adding a selection slit behind G3,
in front of the detector (see figure 1(b)). Each selection slit was associated with a particular
range of values of the transferred transverse momentum.

The dependence of the measured values of the number of detected atoms on the shift �x3,
given by

N(�x3) = N̄

[
1 + C cos

(
2π

dg
�x3 + ϕ

)]
, (1)

revealed interference [5]. In this expression, N̄ is the average atom count rate, dg is the period
of the grating and C is the relative contrast (or fringe visibility). When the laser was off, the
contrast C was typically about 20% and the phase ϕ was zero. When the laser was turned on,
photon scattering events before and immediately after G1 did not affect either the contrast C or
the phase. However, as y′

12 increases, the contrast decreases, first linearly and then it sharply
falls to zero. Afterward, few revivals were observed. This behavior can be seen in figure 2
of [5], where the relative contrast (visibility) was represented as a function of dp/λi, with λi

being the photon wavelength and

dp =
(

2π

kdg

)
y′

12. (2)

Chapman et al [5] interpreted the quantity dp as ‘the relative displacement of the two arms
of the interferometer at the point of scattering’. However, Božić et al [14] pointed out that
this quantity is equal to the separation between the two paths associated with the zeroth- and
first-order interference maxima only in the far field, behind G1. In contrast, in the near field,
dp is equal to the distance between the prolongations of such paths. This distinction should be
taken into account when interpreting the experimental data, since the photon–atom scattering
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(a) (b)

(c) (d )

Figure 3. Functional dependence of the relative contrast (panels (a) and (c)) and the phase shift
(panels (b) and (d)) on the momentum transfer distributions displayed in figure 2(a), and as a
function of the ratio dp/λi. Top: theoretical curves (solid line) and experimental data (black solid
circles) for the bare momentum transfer distribution P0. Bottom: theoretical curves (lines) and
experimental data (symbols) for the post-selection momentum transfer distributions: PI (black
solid line/black solid circles), PII (blue dotted line/blue squares; no experimental data were
available for the corresponding relative contrast) and PIII (red dashed line/red stars). To compare
with, the theoretical curves for the bare momentum transfer distribution P0 have also been included,
being denoted with the gray dashed line. The experimental data have been extracted from [5]; see
the text for particular details on the values of the parameters.

events in this experiment take place in the near field. In this work this is explained in detail,
taking into account the following fact:

y′
12 = kdg

2π
dp = dp

λi

kdg

ki
= dp

λi

LT

2

λi

dg
, (3)

where LT = 2d2
g/λ is the so-called Talbot distance [18]. In the experiment, the ratio dp/λi

ranges between 0 and 2. From the values of the other experimental parameters, it follows that
y′

12 ∈ [0, 19.09] mm and the Talbot distance is LT = 6.48 mm.
The same set of measurements was repeated, but this time adding a selection slit behind

G3, in front of the detector (see figure 1(b)). More specifically, this was done by arranging slits
at three different positions, each selection slit being associated with a particular range of values
of the transverse momentum �kx transferred to the atom (i.e. with a particular momentum
transfer distribution). This was possible because the deflection of the atom at the third grating,
�w3, is proportional to �kx, the transverse momentum transferred to the atom. The curves
shown in figure 3 of [5] show a substantial regain of contrast over the whole range of values
for dp/λi. In particular, a 60% of the contrast lost at dp ≈ λi/2 was regained.
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From these results, Chapman et al [5] concluded that the decrease of contrast to zero in the
range 0 < dp/λi < 0.5 confirms the complementarity in quantum mechanics, which suggests
that the fringe contrast must disappear when it is possible to acquire which-way information,
i.e. for dp/λi > 0.5. Consequently, one should expect that beyond this value no coherence
should be possible. In contrast, the experiment revealed that the atomic coherence displayed
revivals in the relative contrast beyond the first zero, thus allowing the atoms to also display
some wave-like behavior beyond the limits of complementarity. Furthermore, in the second
part of the experiment, it was also observed that the coherence could be regained; actually, no
zero values were observed in the relative contrast.

In our opinion, analyzing these kinds of experiments in terms of the idea of
complementarity might be confusing, though it is very widespread. This was already pointed
out by Englert [19] in 1996, who warned about the misunderstandings that may arise from the
use of concepts like wave-particle duality unless they are clearly specified and disambiguated.
As is shown below, in the model described here, such concepts, namely wave and particle, are
not mutually exclusive, but they both coexist in the experiment, giving a good account of the
experimental data. In particular, the wave aspect of the atom is kept all the way through the
interferometer, the photon only causing a deviation of its translational motion (due to the kick
and subsequent momentum transfer during the scattering event).

Having in mind these ideas and the scheme displayed in figure 1(a), in the derivations
presented below, we assume that the atomic beam incident onto the grating G1 (at y = 0)
can be well approximated by a monochromatic or plane wave of finite transverse width with
wavelength λ and wave vector k = (2π/λ)ŷ. If the atomic beam cross-section is also assumed
to be wide enough (in the experiment, this cross-section is about two orders of magnitude
larger than the grating period [20]), not only it will cover a relatively large number of slits,
but also an important extension along the z-direction. This causes a symmetry along the
z-direction, which allows us to simplify the analysis by reducing it to the XY -plane (for fixed
z, e.g., z = 0).

3. Theoretical approach

3.1. Atom’s wavefunction evolution accompanying atom’s passage through the interferometer

Taking into account the description of the experiment made above, now we are going to analyze
it here according to our model. Thus, consider the incident atomic wavefunction associated
with atoms having a velocity v is given by

�inc(x, y, t) = e−iωt eikyψinc(x), (4)

where �ω = �
2k2/2m, v = �k/m and ψinc(x) describes the width of the initial wavefunction

along the transverse direction. In the paraxial approximation, the outgoing wave evolving
freely after the diffraction caused by G1 is approximated by

�(x, y, t) = e−iωt eikyψ tr(x, t). (5)

This function is a product of the plane wave along the longitudinal y-direction by the
‘transverse’ wavefunction

ψ tr(x, t) = 1√
2π

∫ ∞

−∞
c(kx) eikxx−i�k2

x t/2m dkx = 1√
2π

∫ ∞

−∞
C(kx, t) eikxx dkx (6)

which describes the evolution along the x-direction. The function c(kx) is the Fourier transform
of the function ψ tr(x, 0) which is determined by ψinc(x) through the relation

ψ tr(x, 0) = T (x)ψinc(x), (7)

6
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where T (x) is the given transmission function of the grating G1 located at y = 0. It is also the
transmission function of grating G2. More explicitly,

c(kx) = 1√
2π

∫ ∞

−∞
T (x)ψinc(x) e−ikxx dx, (8)

C(kx, t) = 1√
2π

∫ ∞

−∞
ψ tr(x, t) e−ikxx dx = c(kx) eik2

x �t/2m, (9)

Evidently, C(kx, t) is the time-dependent transverse wavefunction in momentum
representation.

Taking into account the length scales involved in the experiment, the paraxial
approximation can be considered a good approximation. This implies, first, that the particle
motion parallel to the y-direction can be treated as a quasi-classical (uniform) motion, i.e.
satisfying the relation y = vt, with v = �k/m = 2π�/λ. Second, the wavefunction (7) behind
the grating G1 is such that c(kx) is relevant only for k2

x � k2
y ≈ k2 = k2

x +k2
y (in other words, the

spreading of the wavefunction is much slower than its propagation along the y-direction [21]).
Accordingly, equation (6) can be parameterized in terms of the y-coordinate or, equivalently,
the (propagation) time t.

In the passage from G2 to G3 as well as beyond G3, a similar analysis can be conducted
(see below). However, at a time t ′12 and a distance y′

12 = vt ′12 = (�k/m)t ′12 after the grating
G1, the atom absorbs and re-emits a photon. This process induces a sudden change �kx

in the atomic transverse momentum which is accompanied by the sudden change of the
evolution of the atom’s wavefunction. Arsenović et al [13] determined the evolution of the
atom’s wavefunction after photon–atom scattering by assuming that the atom’s wavefunction
in momentum representation after photon–atom scattering C�kx (kx, t) has to satisfy

|C�kx (kx, t ′12)|2 = |C(kx − �kx, t ′12)|2. (10)

The corresponding transverse wavefunction at time t ′12 in accordance with (6) is then given by

ψ tr
�kx

(x, t ′12) = 1√
2π

∫ ∞

−∞
C�kx (kx, t ′12) eikxx dkx. (11)

It should satisfy∣∣ψ tr
�kx

(x, t ′12)
∣∣2 = ∣∣ψ tr(x, t ′12)

∣∣2
. (12)

As shown by Arsenović et al [13], from equations (9)–(11) it follows that condition (12) will
be fulfilled if

C�kx (kx, t ′12) = C(kx − �kx, t ′12). (13)

Substituting (13) into (11) and then using (9), one finds that just after the photon–atom
scattering event, the atomic wavefunction becomes

ψ tr
�kx

(x, t ′12) = 1√
2π

e−i�k2
x �t ′12/2m

∫ ∞

−∞
c(kx − �kx) e−ik2

x �t ′12/2m+ikx(x+�x0 ) dkx, (14)

where

�x0 = �kx�t ′12

m
=

(
�kx

k

)
y′

12. (15)

Assuming that (14) keeps the same form at any t > t ′12, we may write

ψ tr
�kx

(x, t) = 1√
2π

e−i�k2
x �t/2m

∫ ∞

−∞
c(kx − �kx) e−ik2

x �t/2m+ikx(x+�x0 ) dkx. (16)
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By changing now the integration variable k′
x = kx − �kx, (16) transforms into

ψ�kx (x, t) = ei�kx(x+�x0 )−i�k2
x �t/m

∫ ∞

−∞
c(k′

x) e−ik′2
x�t/2m eik′

x(x+�x0−�t�kx/m) dk′
x. (17)

This wavefunction describes the evolution of (6) after the scattering event (i.e. for t > t ′12 or,
equivalently, y > y′

12 = (�k/m)t ′12). After the scattering event the atom wavefunction evolves
freely until it reaches the second grating G2. It is important to note that the wavefunction
ψ tr

0 (x, t), associated with �kx = 0, also describes the evolution of the wave behind the first
grating when laser is off.

It is useful to parameterize wavefunction (17) in terms of coordinate y using the relation
�t/m = y/k,

ψ�kx (x, t = my/�k) = 1√
2π

ei�kx(x+�x0 )−i�k2
x y/k

∫ ∞

−∞
c(k′

x) e−ik′2
x y/2k eik′

x(x+�x0−�kxy/k) dk′
x.

(18)

The integrals in (17) and (18) have no general analytic solution, except for large t or y values.
In such a limit, when the dimensions of the diffracting object and the wavelength of the
diffracted beam are relatively small compared with the typical propagation distances, the far-
field or Fraunhofer condition, kx′2/y � 1 (with x′ being a measure of the dimensions of the
diffracting object), holds [22] and (18) can be approximated (see appendix A) by

ψ tr
0 (x, t = my/�k) =

√
k

2iπy
eikx2/2yc(kx/y) (19)

when the laser is off, and

ψ tr
�kx

(x, t = my/�k) =
√

k

2iπy
eik(x+�x0 )2/2y−i�k2

x y/2kc[k(x + �x0)/y − �kx] (20)

for �kx ∈ [0, 2ki] and the laser on. By comparing (19) and (20), we conclude that the overall
form of the atom probability density |ψ tr

�kx
(x, t)|2 is the same as for |ψ tr

0 (x, t)|2. However, the
former will display a shift or displacement along the x-direction with respect to the latter given
by

�w2 = �kx

k
(y − y′

12) =
(

�kx

k

)
y − �x0. (21)

The evolution of the wavefunction between G2 and G3 follows a similar description to the
one prior to the scattering event. Thus, if the wavefunction incident onto G2 is denoted as
ψ

(2)

inc,�kx
(x) ≡ ψ tr

�kx
(x, t = my−0

12 /�k), which arises from evaluating (20) at y = y−0
12 , just before

the second grating, then wavefunction evolution behind the second grating (y > y12) is given
by

ψ
(2)

�kx
(x, t) = 1√

2π

∫ ∞

−∞
c(2)

�kx
(kx) eikxx−i�k2

x t/2m dkx

= 1√
2π

∫ ∞

−∞
C(2)

�kx
(kx, t) eikxx dkx, (22)

where the relation between the time t and y is now y−y12 = vt and the momentum probability
density reads as

c(2)

�kx
(kx) = 1√

2π

∫ ∞

−∞
T (x)ψ

(2)

inc,�kx
(x) e−ikxx dx. (23)

From (22) and (23), one finds by numerical integration that the probability density incident
onto G3 for a given value of �kx ∈ [0, 2ki] oscillates with period dg. This oscillatory pattern

8
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(figure 3 in [13]) is of finite width and its position along the x-axis depends on �kx. In
other words, the oscillatory pattern corresponding to �kx 	= 0 is shifted with respect to the
oscillatory pattern when the laser is off, by the quantity

�w3 = �kx

k
(2y12 − y′

12) =
(

�kx

k

)
2y12 − �x0, (24)

which arises after considering the shift of the wavefunction at G2 (according to (21)) and the
influence of �kx on the propagation direction of the wavefunction emerging from G2. This
estimate of �w3 is consistent with the shifts determined through the numerical evaluation of
the squared modulus of ψ

(2)

�kz
(x, t = my23/�k) [13, 14].

3.2. Atomic flux behind the interferometer

In order to compare the results obtained from the theoretical model exposed above with
the experimental data [5], we first consider the number of atoms transmitted through G3 that
undergo a change of momentum �kx during the scattering process. This number is proportional
to

T̃ (y′
12,�kx,�x3) =

∫
slits

∣∣ψ(2)

�kx
(x, t = my23/�k)

∣∣2
dx, (25)

where �x3 is a lateral shift of the third grating with respect to the alignment of G2 and the
integration limits extend over the region covered by the central maximum at G3. By numerical
integration with the wavefunction determined as described in the previous section, it has been
found [13, 14] that the transmitted flux (25) is a simple periodic function:

T̃ (y′
12,�kx,�x3) = a + b cos(2π�x3/dg + �kxdp), (26)

where dp is defined in (2), and a and b are constants independent of y′
12 and �kx. Far from the

grating (i.e. large values of y′
12), the distance dp is equal to the separation between the paths

associated with the zeroth- and first-order interference maxima of the atomic wave diffracted
by G1 (see figure 1(a)). However, near the grating the emergent diffraction pattern is far more
complex than a series of well-defined paths, obeying a Talbot-like carpet structure [18]. This
implies, as explained after (3) and in [13], that dp should not be interpreted as the distance
between two atomic paths in the region covered by the laser light, for in this region there are,
actually, many more paths than simply two, as is generally assumed [2, 5].

The results reported in [5] essentially come from two types of measurements. The first
type consists of simply counting all atoms that pass through G3; in the second type, only a
certain subset of the transmitted atoms are counted or post-selected, in particular those with a
certain momentum direction, which is done by positioning an additional slit beyond G3 (see
figure 1(b)). Therefore, the observable is not T̃ (y′

12,�kx,�x3) in general, but its integral over
a set of transferred momenta �kx,

T (y′
12,�x3) =

∫ 2ki

0
P̃(�kx)T̃ (y′

12,�kx,�x3) d(�kx)

=
∫ 2ki

0
P̃(�kx)[a + b cos(2π�x3/dg + �kxdp)] d(�kx), (27)

where the weight P̃(�kx) denotes the transversal momentum transfer distribution of the
detected atoms. More specifically, this quantity is the product of the atom momentum transfer
distribution P0(�kx) and the distribution function Ps(�kx) characterizing the way how the
atoms are selected (post-selected) by their momentum beyond the interferometer. That is,
we have P̃(�kx) = P0(�kx)Ps(�kx). In particular, when the post-selection process will
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be included, we shall refer to the normalized P̃ function as the post-selection momentum
transfer distribution. Thus, if P(�kx) ≡ P̃(�kx)/
, with 
 ≡ ∫ 2ki

0 P̃(�kx) d(�kx), is the
corresponding normalized distribution, it is straightforward to verify that (27) reads as

T (y′
12,�x3) = a + bV cos(2π�x3/dg + ϕ), (28)

where the quantities V and ϕ represent the fringe visibility or relative contrast and the phase
shift, respectively, and are determined through the relations

V ≡
√

I2
r + I2

i , tan ϕ ≡ Ii

Ir
, (29)

with

Ir ≡
∫ 2ki

0
P(�kx) cos(�kxdp) d(�kx),

Ii ≡
∫ 2ki

0
P(�kx) sin(�kxdp) d(�kx).

(30)

From a practical point of view, in order to evaluate V and ϕ, it is useful to introduce the
complex integral

I ≡
∫ 2ki

0
P(�kx) ei�kxdp d(�kx) = Ir + iIi, (31)

so that

V =
√

I · I∗, ϕ = − i

2
ln

(
I

I∗

)
. (32)

Taking this into account together with the standard definition of fringe contrast [16], from (28)
we find

C = Tmax − Tmin

Tmax + Tmin
= |b|

a
V. (33)

When the laser is off, �kx = 0 and hence T (y′
12,�x3) = T̃ (y′

12, 0,�x3) = a +
b cos(2π�x3/dg) and C0 = |b|/a. The relative contrast then reads

C
C0

= V, (34)

which is a function of the ratio dp/λi (λi is the scattering photon wavelength), as will be seen
below.

4. Numerical results

In order to compare with the experiment, below we present some calculations, where we
have considered the same parameter values used in the experiment [5]: v = 1400 ms−1,
k = mNav/� = 5.090 67 × 1011 m−1, λi = 589 nm (ki = 1.066 75 × 107 m−1),
y12 = y23 = 0.65 m, dg = 2 × 10−7 m and δ = 1 × 10−7 m. To evaluate the wavefunction,
we have considered a total number of illuminated slits n = 24 in G1, which is an acceptable
range compared with experimental atomic beam cross-sections (i.e. the coherence length of
the atoms arriving in the grating) [20].

Apart from the Mandel distribution [15], which accounts for the bare transversal
momentum transfer distribution, to compare with the experiment we have also considered
the three post-selection momentum transfer distributions used in the experiment, denoted
by PI, PII and PIII. These distributions correspond to the combined effect of the momentum
transfer process (described by Mandel’s distribution) and three different particular selections
(post-selections of atomic momenta (each one given by a different Ps distribution), which

10
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are achieved by arranging a slit behind G3 at three different positions (see figure 1(b)). The
dependence of these four momentum transfer distributions as a function of the ratio between
the transferred momentum and the incident photon wave number, �kx/ki, is displayed in
figure 2(a). Apart from these distributions, we have also considered several other theoretical
forms for the momentum transfer distribution of the detected atoms, which are of interest
to further analyze and better understand the dependence of coherence and visibility on the
experimental distributions. In particular, a Dirac δ-function distribution (Pδ) and three constant
distributions, Pc, P1 and P2, uniform over the intervals [0, 2ki], [0, ki] and [ki, 2ki], respectively.
These four distributions are displayed in figure 2(b).

A straightforward evaluation according to the method indicated at the end of section 3.2
leads us to the following expressions for the visibility and phase shift associated with these
distributions.

(i) As shown by Mandel [15], for photons incident with a momentum ki, the transversal
momentum transfer distribution can be expressed as [15, 16]

P0(�kx) =
(

3

8ki

) [
1 +

(
1 − �kx

ki

)2
]
. (35)

In this case, the visibility and phase shift read

V0 = 3

2

1

kidp

[(
1 − 1

k2
i d2

p

)
sin(kidp) + 1

kidp
cos(kidp)

]
, (36)

ϕ0 = kidp = 2πdp

λi
, (37)

which are both functions of the ratio dp/λi (black solid lines in figures 3(a) and
(b)). As can be seen, we find good agreement between these theoretical expressions
and the experimental data (black solid circles) without taking into account any fitting
procedure. Both the coherence losses and subsequent regains are thus accounted for
without abandoning the idea of the pure state to describe the full evolution of the atom.

(ii) The case of PI is simulated by a half-Gaussian,

PI(�kx) = 2/Nki
√

π e−(�kx/Nki)
2
, �kx � 0, (38)

where N determines the width of the Gaussian (here, we have chosen N = 0.7, so that
PI(2ki) ≈ 0). In this case (see appendix A),

VI = |erf(2/N − iα) + erf(iα)|
erf(2/N)

e−α2/4, (39)

ϕI = 1

2i
ln

[
erf(2/N − iα) + erf(iα)

erf(2/N + iα) + erf(−iα)

]
, (40)

where α = Nkidp. As seen in figures 3(c) and (d) (black solid lines), there are no
recurrences in VI (they are completely damped), while ϕI approaches a constant value of
π/2 as dp/λi increases. Again, as can be seen, we find fair agreement with the experiment
(black solid circles).
If instead of η = 0, one would choose η = 1, i.e. the mirror image of PI with respect to
�kx = ki, then

V ′
I = |erf(2/N − iα) + erf(iα)|

erf(2/N)
e−α2/4, (41)

ϕ′
I = 2kidp + 1

2i
ln

[
erf(2/N + iα) + erf(−iα)

erf(2/N − iα) + erf(iα)

]
. (42)

11
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That is, the visibility is the same in both cases, but ϕ′
I = 2kidp − ϕI is an increasing linear

function of dp/λi (after ϕI reaches its maximum, steady value).
(iii) For PII we consider a displaced Gaussian,

PII(�kx) = 2/Nki
√

π [1 + erf (1/2N)] e−[(�kx−3ki/2)/Nki]2
, (43)

with its maximum at �kx = 3ki/2 and N = 0.7, as before, so that PII(2ki + 3ki/2) ≈ 0.
With this, we find

VII = |erf(1/2N − iα) + erf(3/2N + iα)|
erf(1/2N) + erf(3/2N)

e−α2/4, (44)

ϕII = 3kidp

2
+ 1

2i
ln

[
erf (1/2N − iα) + erf (3/2N + iα)

erf (1/2N + iα) + erf (1/2N − iα)

]
, (45)

which are represented by blue dotted lines in figures 3(c) and (d). In this case, since there
relative contrast is very similar to that found for PI, no experimental data were reported.
We only have experimental results for the phase shift (blue squares in figure 3(d)), where
good agreement is also found.

(iv) PIII is described by means of an increasing exponential,

PIII(�kx) = ε/ki(1 − e−2ε ) eε(�kx/ki−2), (46)

where ε = 1 is the increase rate (see blue dash–dotted line in figure 2(a)). This distribution
leads to

VIII = ε

1 − e−2ε

√
1 + e−4ε − 2e−2ε cos(2kidp)√

ε2 + (kidp)2
, (47)

ϕIII = (tan)−1

{
sin(2kidp − φ) − e−2ε sin φ

cos(2kidp − φ) − e−2ε cos φ

}
, (48)

where φ = (tan)−1(kidp/ε). As seen in figures 3(c) and (d) (red dashed lines), now V
present some damped recurrences and there is a significant phase shift. The same trend is
also observed in the experimental data (red stars), which follow very closely the behavior
of the theoretically predicted curves.

There are several simple cases of particular interest, because grosso modo they capture
the essential features of the distributions used in the experiment, which are the finite, uniform
momentum transfer distributions within the interval [k1, k2] ⊂ [0, 2ki], being zero everywhere
else,

Pu(�kx) = 1

k2 − k1
, (49)

for �kx ∈ [k1, k2]. For this form, we find

Vu =
∣∣∣∣sinc

[
(k2 − k1)dp

2

]∣∣∣∣ , (50)

ϕu = (k2 + k1)dp

2
. (51)

As can be noted, the visibility is given in terms of the half-distance between the limits of
the interval, (k2 − k1)/2, while the phase shift is proportional to their half-sum, (k2 + k1)/2,
which corresponds to the average momentum. This implies that the visibility will decay and
oscillate faster as both k1 and k2 approach the limits of the interval, the phase behaving in
a similar manner (i.e. increasing). In contrast, if k1 → k2, we will be approaching the limit
described by Pδ: Vu will oscillate more and more slowly (behaving almost constant up to very
large values of dp/λi), while its phase will approach k2dp. Now we will analyze each of these
cases separately.
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(a) (b)

Figure 4. Functional dependence of the relative contrast (a) and the phase shift (b) on the momentum
transfer distributions displayed in figure 2(b): Pδ (black solid line), P1 (red dashed line), P2 (green
dotted line; V2 = V1 and no line can be seen) and Pc (blue dash–dotted line). To compare with, the
theoretical curves for the bare momentum transfer distribution P0 have also been included, being
denoted by the gray dashed line. See the text for particular details on the values of the parameter.

(a) For Pδ (�kx) = δ(�kx − kδ ) the visibility is constant and equal to unity along the interval
[0, 2ki] (see black solid line in figure 4(a)). This means that a monochromatic event does
not destroy the coherence of the atom wavefunction, but only produces a phase shift
ϕδ = kδdp (see figure 3(b)).

(b) In the case k1 = 0 and k2 = 2ki, Pc(�kx) = 1/2ki, which is a rough approximation to P0.
Here, we find

Vc = | sin(kidp)|
kidp

, (52)

ϕc = kidp. (53)

(c) If k1 = 0 and k2 = ki, we have P1(�kx) = 1/ki, which roughly describes PI and renders

V1 = | sin(kidp/2)|
kidp/2

, (54)

ϕ1 = kidp

2
. (55)

(d) And, k1 = ki and k2 = 2ki, we have P2(�kx) = 1/ki, which can be an approximation to
either P′

I , PII or PIII, and gives rise to

V2 = | sin(kidp/2)|
kidp/2

, (56)

ϕ2 = 3kidp

2
. (57)

Note that in this case and in the previous one, the visibility is the same, but not the phase
shifts, which increase three times faster for P2 than for P1.

As can be noted, the functional forms found with our model for the visibility and the phase
shift associated with the different momentum transfer distributions are in good agreement with
those reported in [5].

As can be noted, Vc vanishes for dp/λi = n/2, with n being an integer, while V1 and
V2 vanish when dp/λi = n. This is related to the fact that, for these three distributions, the
integrand in (30) is a periodic function of �kx, with the period 2π/dp. For Pc the integration in
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(30) is carried out over the interval [0, 2ki], which contains an integer number of periods when
dp/λi = n/2. For P1 and P2 the integration is performed over the intervals [0, ki] and [ki, 2ki],
respectively, which contain an integer number of periods when dp/λi = n. Nevertheless, it is
worth going further and analyzing the physical reasons why the zeros of Vc, V1 and V2 appear
at these values of dp/λi. To start with, let us remember that the phase �kxdp that appears in
T̃ (y′

12,�kx,�x3) arises as a consequence of the shift �w3 along the x-axis at G3 displayed by
the atom wavefunction after the change of atomic transverse momentum due to photon–atom
scattering. This shift, which is explicitly given by (24), contains the term �x0. The latter is of the
order of the grating constant dg, as can be noted if we define �kx = ηki, with 0 � η � 2 for Pc,
0 � η � 1 for P1 and 1 � η � 2 for P2. Thus, taking into account explicitly the value of dp, we
find �x0 = (dp/λi)ηdg, which implies 0 � �x0 � (dp/λi)2dg for Pc, 0 � �x0 � (dp/λi)dg

for P1 and (dp/λi)dg � �x0 � (dp/λi) for P2. Therefore, when dp/λi = 0.5, �x0 lies within
the intervals [0, dg], [0, dg/2] or [dg/2, dg] depending on whether we have Pc, P1 or P2,
respectively. This is why in the case of a uniform momentum transfer distribution along the
interval [0, 2ki], the total number of detected atoms (27) does not depend on the lateral shift
�x0 at G3 and the contrast is zero. However, if the transferred momentum spans the interval
[0, ki], the displacement of the wavefunction spans half the grating constant and, therefore,
the number of detected atoms will depend on the lateral shift at G3, then the contrast being
greater than zero. On the other hand, when dp/λi = 1, �x0 lies within the intervals [0, 2dg],
[0, dg] and [dg, 2dg] for Pc, P1 and P2, respectively. In these three cases the displacements thus
span an integer number of grating periods. Therefore, in any of these cases, the total number
of detected atoms will not depend on the lateral shift at G3 and the contrast will vanish (see
figures 4(a) and (b)).

It is insightful to analyze the experimental outcomes in light of the constant distributions.
One could therefore state that the contrast regain found in the experiment, compared with
the Mandel distribution, arises from the change of the momentum transfer distribution of the
detected atoms, which is an objective effect. Furthermore, the loss and revival of coherence in
the case of the Mandel distribution are also objective effects, which are related to the properties
of the atomic wavefunction incident onto G3.

5. Conclusions

In spite of the details involved in entanglement-based models aimed at describing
complementarity in experiments like the one analyzed here, appealing to simpler models
is also of interest in order to understand the underlying physics, even if they are not fully
complete. In the case dealt with here, we have considered a description based on the recoil
of the wavefunction describing the diffracted beam when a photon impinges on it within the
interferometer. This model not only allows us to obtain a nice description of the evolution
of the wavefunction throughout the matter-wave Mach–Zehnder interferometer, but also to
explain the losses (e.g. the total loss at dp = 0.5λi), subsequent revivals (for dp/λi > 0.5) and
regains (for all values of dp of experimental interest) undergone by the (atom) fringe contrast
in a very simple manner. In particular, we have presented here how such effects arise when
the outgoing atomic probability density is sampled by a certain momentum distribution, either
Mandel’s bare momentum transfer distribution or the corresponding post-selection ones. In
other words, these three effects can be attributed to the smearing out of the interference pattern
induced by the distribution of transverse momentum that the photon or the post-selection
process cause on the atomic beam.

In order to obtain some extra information, other momentum transfer distributions of
theoretical interest have also been considered. In this regard, it was shown that, if the atoms
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passing through G3 could be selected in such a way that only those with a chosen value of
transferred momentum would be detected, then the contrast measured would be constant,
i.e. independent of dp/λi (see figure 4(a) for Pδ). In contrast, if the statistical momentum
distribution is constant along the interval [0, 2ki], the interference contrast will be a simple
periodic function of dp/λi (see figure 4(a) for Pc). These distributions allow us to understand
the more complex situations that take place in real experiments, where the momentum transfer
distribution is given by the Mandel distribution. In this case, in light of the results obtained
from the theoretical momentum transfer distribution (in particular for Pc, which is roughly
similar; see figures 2(a) and (b)), we find how the losses and regains with dp/λi are associated
with the symmetry of this function with respect to �kx = ki (compare the gray curve for P0

with the blue dash–dotted one for Pc in figure 4(a)).
We would like to stress that the conclusions obtained here are also in agreement with

those found from post-selection experiments [23, 24] in neutron interferometry [9, 23, 25].
In this case, interference and coherence phenomena can be completely hidden due to general
averaging effects, but they can be recovered even behind the interferometer if a proper post-
selection measurement procedure is used. This indicates that interference in phase space has
to be considered [24] rather than the simple wavefunction overlap criterion described by the
coherence function.
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Appendix A.

The approximations (19) and (20) in the far field have been obtained through the following
series of transformations [13, 26]. First, the wavefunction is expressed in terms of the initial
wavefunction behind the grating, which is done by substituting (7) and (8) into (18),

ψ tr
�kx

(x, y) = 1√
2π

ei�kx(x+�x0 )−i�k2
x y/k

×
∫ ∞

−∞
dk′

x

1√
2π

∫ ∞

−∞
dx′ψ tr(x′, 0+) e−ik′

xx′
e−ik′2

x y/2k eik′
x(x+�x0−�kxy/k), (A.1)

keeping in mind that the linear relation t = my/�k between t and y always holds. Next, the
integration over k′

x in (A.1) is carried out taking into account the integral [27]∫ ∞

−∞
e−ux2−vx dx =

√
π

u
ev2/4u, (A.2)

if Re(u) > 0, Re(v) > 0 or Re(u) = 0, Im(u) 	= 0 and Re(v) = 0, Im(v) 	= 0. In doing so,
we obtain the result

ψ tr
�kx

(x, y) = 1

2π
ei�kx(x+�x0 )−i�k2

x y/k
∫ ∞

−∞
dx′ψ(x′, 0+)

√
k

iy

√
2π ei[k(x−x′+�x0 )−�kxy]2/2ky.

(A.3)
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In the far-field approximation, the quadratic terms, x′2, in the exponent under the integral can
be neglected, which yields

ψ tr
�kx

(x, y) = 1√
2π

√
k

y
e−iπ/4+i�kx(x+�x0 )−i�k2

x y/k ei[k(x+�x0 )−�kxy]2/2ky

×
∫ ∞

−∞
dx′ψ(x′, 0+) ei[k(x+�x0 )−�kxy]x′/y. (A.4)

After recognizing in the latter equation the expression from (8), we find the form (20) of the
wavefunction valid in the far field,

ψ tr
�kx

(x, y) =
√

k

iy
eik(x+�x0 )2/2y−i�k2

x y/2kc[k(x + �x0)/y − �kx]. (A.5)

Appendix B.

The analysis of Gaussian-shaped distributions (e.g. PI and PII) can be tackled in a general
fashion as follows. Consider the distribution is centered at kg = ηki, such that 0 � η � 2, i.e.

Pg(�kx) = γg e−[(�kx−kg)/Nki]2
. (B.1)

Here, N is some constant determining the width of the distribution and γg is the normalizing
prefactor,

γg = 2√
πNki

[erf(φ+) + erf(φ−)]−1, (B.2)

with erf(z) being the error function and

φ+ = 2ki − kg

Nki
= 2 − η

N
, φ− = kg

Nki
= η

N
. (B.3)

Taking into account (B.1), the integral (31) can be expressed as

Ig =
[

erf(u+) + erf(u−)

erf(φ+) + erf(φ−)

]
e−α2/4+iηkidp, (B.4)

where α = Nkidp. Note in the numerator of (B.4) that the error functions are complex, since
their arguments,

u+ = 2ki − kg

Nki
− iα

2
= 2 − η

N
− iα

2
,

(B.5)
u− = kg

Nki
+ iα

2
= η

N
+ iα

2
,

are also complex numbers. Therefore, they will satisfy the properties erf(−z) = −erf(z) and
erf(z) = erf(z̄). From (B.4), the visibility and phase shift induced by Pg are

Vg = |erf (u+) + erf (u−)|
erf (φ+) + erf (φ−)

e−α2/4, (B.6)

ϕg = ηkidp + 1

2i
ln

[
erf (u+) + erf (u−)

erf (ū+) + erf (ū−)

]
. (B.7)

These two expressions can be evaluated for the half-Gaussian and displaced Gaussian
distributions considered in section 3 by simply setting η = 0 or η = 3/2, respectively.
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