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Abstract
Using the resolution of identity spanned by coherent states of the harmonic
oscillator, any entire function of the creation and the annihilation operators and
its action on a vector in Hilbert space can be defined directly and simply. We
show that such a direct approach applied to non-entire functions ln â and ln â†,
present in the literature, may lead to errors and contradictions. We elucidate
their roots and propose a way to avoid them. We discuss the obtained results.

PACS numbers: 03.65.Ca, 03.65.Ta

1. Introduction

Spectral theorem generalizes the representation of the self-adjoint operator in terms of the
complete orthonormal system of eigenvectors to include the continuous spectrum. Such a
possibility is obtained by introducing the concept of a resolution of the identity, a nondecreasing
family Êλ of projection operators that interpolates between 0̂ for λ → −∞ and Î for λ → ∞.
Spectral theorem guarantees that for every self-adjoint operator Â there is a unique resolution
of identity in terms of which Â can be expressed as

Â =
∫

λ dÊλ. (1)

The spectral theorem together with functional calculus rules allow one to define the function
of the operator Â in the form

f (Â) =
∫

f (λ) dÊλ. (2)
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The annihilation operator of the harmonic oscillator is a non-Hermitian operator. Its eigenstates
are coherent states |α〉 which form an overcomplete and non-orthogonal set, which spans the
resolution of identity. In formal analogy with the spectral theorem one can write

f (â) = 1

π

∫
f (α)|α〉〈α| d2α. (3)

It can be checked easily that, when f is an entire function, this representation is correct and
consistent in a sense that

f (â)|α0〉 = f (α0)|α0〉 = 1

π

∫
f (α)|α〉〈α|α0〉 d2α. (4)

In the spectral theorem for Hermitian operators no special requirements about the function f

were needed for validity of the representation (2). It seems that, by analogy, the representation
(3) was uncritically overtaken for the definition of the logarithmic function of â so that this
function was defined in the literature as [1–3]

ln â = 1

π

∫
ln α|α〉〈α| d2α, (5)

with an implicit or explicit assumption that at the same time

ln â|α〉 = ln α|α〉, ∀ α. (6)

So in [1], as an operator of phase, the operator

ϕ̂ = 1

2i
(ln â − ln â†) (7)

was proposed and its matrix elements expressed in the coherent states basis assuming that
∀ α ln â|α〉 = ln α|α〉 and 〈α| ln â† = 〈α| ln α∗. Some results of [1] were contested in [2].
Using the resolution of unity Î = 1

π

∫ |α〉〈α| d2α the authors of [2] claimed that the operator
ϕ̂ may be represented in the form

ϕ̂ = (2πi)−1
∫

ln(α/α∗)|α〉〈α| d2α (8)

and identified the last operator with an operator already well known in the literature [4]. We
feel that some steps in arguments of the two disputing sides may contain subtle errors. Namely,
unlike (3) and (4), conditions (5) and (6) define different operators simply because

ln â|α〉 = ln α|α〉 �= 1

π

∫
ln α′|α′〉〈α′|α〉 d2α′, (9)

as it will be shown in the next section. Due to this, conditions (5) and (6), when assumed to
represent the same operator, are inconsistent and may lead to errors when used together and
in the same context. We will also prove in the same section that if one accepts by definition
that ln â|α〉 = ln α|α〉 ∀α, and this definition may be considered as a correct definition, then
(ln â)† is not defined on any |α〉 so that in this case the domain of definition of the operator
formally defined in (7), strictly speaking, is empty.

It seems that both of the mentioned disputed sides were unaware of these facts related
to the operators ln â and ln â†. We believe that these questions, especially in respect to the
problem of the phase operator, deserve appropriate attention. In section 3 using and adapting
the results of Perelomov [5] we show that on the discrete set |αi〉 defined on the von Neumann
lattice from which, to avoid overcompleteness, one vector must be excluded; the domains of
definition for both ln â and (ln â)† coincide, and that this set is a maximal set of coherent states
with such a property. We also define the phase operator ϕ̂ = 1

2i (ln â − ln â†) with the von
Neumann lattice from which the vector |0〉 is excluded, as its natural domain of definition, and
analyze its main characteristics. In the last section we discuss the obtained results.
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2. Some consequences of a definition ln â|α〉 = ln α|α〉, ∀α

As already mentioned, the operators defined by equalities (5) and (6) are different operators.
To prove this, let us suppose the opposite, namely that

ln α0|α0〉 = 1

π

∫
ln α|α〉〈α|α0〉 d2α. (10)

After the scalar multiplication by 〈α0| we would have

ln α0 = 1

π

∫
ln α〈α0|α〉〈α|α0〉 d2α. (11)

In the general case this equality is not valid. For example if we take a cut in the complex plane
along the negative x-axis, denoting by ϑ the phase of the complex number α, we would have
ϑ ∈ [−π, π). Taking α0 = e−iπ we would have ln α0 = −iπ while on the right-hand side
apart from some real constant one would get for the imaginary part

1

π

∫ ∞

0

∫ +π

−π

ϑ |〈α0|α〉|2 dϑ� d�, (12)

which is obviously zero. This terminates the proof.
At first sight the obtained result seems a bit paradoxical. Namely, one is accustomed to

interchange operators and sign of integration, so that one may uncritically accept as natural
the equality

ln â = ln â
1

π

∫
|α〉〈α| d2α = 1

π

∫
ln α|α〉〈α| d2α. (13)

However, the operator ln â defined according to (6) is discontinuous on coherent states which
approach the cut, so that it is not surprising that one cannot interchange its place with the
integration sign. The operators which are the entire functions of the operator â are continuous
on every |α〉 and due to this such an interchange for them is allowed.

In respect to possible applications there is still a more serious drawback in the definition
of the operator ln â in a way that ln â|α〉 = ln α|α〉,∀ α. Namely, physically more interesting
is the combination of operators ln â − ln â†, which may be considered as a candidate for a
phase operator of the harmonic oscillator, in an analogy to the phase (argument) of the ordinary
complex number. We shall now prove that if we define ln â|α〉 = ln α|α〉∀ α, then there exists
none |α〉 on which (ln â)† is defined.

Proof. Suppose that at least one |α1〉 exists, on which f (â†) is defined so that f (â†)|α1〉 =
|ψα1〉 ∈ L2. By definition of the adjoint operator we would have the following relation

(|α〉, f (â†)|α1〉) def= (f (â)|α〉, |α1〉) (14)

where by ( , ) we denote the scalar product of vectors |α〉 in Hilbert space. The right-hand
side of this equality gives

f ∗(α)〈α|α1〉 = f ∗(α) e− |α|2
2 − |α1 |2

2 +α∗α1 . (15)

The left-hand side of (14) equals

(|α〉, f (â†)|α1〉) = (|α〉, |ψα1〉) = 〈α|ψα1〉. (16)

Writing |ψα1〉 = ∑
n cn|n〉, we can write

〈α|ψα1〉 = e− |α|2
2

∑
n

cn√
n!

α∗n
. (17)
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Since (15) and (17) should be equal, it would follow that

f ∗(α) = e
|α1 |2

2 −α∗α1
∑

n

cn√
n!

α∗n
. (18)

This equality could be satisfied if and only if f (α) were an entire function. No other class of
functions can satisfy such an equality. Since ln α is not an entire function this terminates the
proof. Evidently, the analogous result applies also to the other nonentire functions. �

This result shows that the definition ln â|α〉 = ln α|α〉,∀ α, although formally correct,
is useless in all situations in which ln â and (ln â)† come together, as is the case for a phase
operator (7). The root of this difficulty is the overcompleteness of the set of coherent states
|α〉. To avoid it, the domain of definitions of ln â must be restricted to a discrete set of coherent
states |αi〉, which is complete but not overcomplete. One way to achieve this is given in the
next section.

3. A maximal set of |αi〉 on which both ln â, (ln â)† and a phase operator
ϕ̂ = 1

2i (ln â − (ln â)†) may be defined

A discrete subset of coherent states was for the first time introduced by von Neumann 1932
[6], by partitioning of phase space in rectangular cells of the size of the Planck constant
h and taking from each cell a single coherent state. He used this construction in order to
obtain quantum mechanical operators for most accurate simultaneous unsharp measurements
of coordinate and momentum allowed by quantum mechanical laws [4, 7]. Without proof,
von Neumann claimed that it was easy to see that the set |αi〉 so obtained is complete but not
overcomplete. von Neumann’s claim about completeness, considered as obvious by himself,
was for the first time rigorously proved almost 40 years later by Perelomov [5], who was
obliged to consider many related mathematical subtleties. His final results, which will be
needed for our further analysis, are the following.

Consider two complex numbers ω1 and ω2 which in complex plane represent sides of a
parallelogram with an area S. Then the system of coherent states

|αkl〉 = |kω1 + lω2〉, (19)

where k and l are integers, depending of the value of S, fulfil the following conditions

(a) If S < π , the system |αkl〉 is overcomplete.
(b) If S > π , the system is incomplete.
(c) If S = π , after exclusion of the one, and only one whichever vector from the system, the

system becomes complete.

For the discretized set {|αkl〉} there exists a biorthogonal set {|wkl〉} with properties:

〈wkl|αk′l′ 〉 = δkk′δll′ (20)

and

Î =
∑
kl

|wkl〉〈αkl| =
∑
kl

|αkl〉〈wkl|. (21)

This biorthogonal set is unique. Namely, if another biorthogonal set {|w′
kl〉} existed, then the

scalar product of the difference of corresponding vectors from the two sets, |w′
kl〉 − |wkl〉,

with every vector from the set {αkl〉} would be equal to zero. This fact, together with the fact
that the set {|αkl〉} is complete, implies that |w′

kl〉 = |wkl〉. In our considerations we found
convenient to choose the square elementary cell so that we have

|αkl〉 = |√π(k − il)〉. (22)

We excluded the vector |α = 0〉 since the logarithmic function is not defined there.
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Now using this discretized resolution of unity, we can define

ln â =
∑
kl

ln αkl|αkl〉〈wkl| (ln â)† =
∑
kl

ln α∗
kl|wkl〉〈αkl|. (23)

It is obvious that both ln â and (ln â)† are defined on the same set of coherent states |αkl〉
and that with these definitions all the above analyzed difficulties are avoided. We also see
that (ln â)† = ln â†. For a phase operator ϕ̂ = 1

2i (ln â − (ln â)†) we have now a domain of
definition |αkl〉 which is a complete set, and we can write

ϕ̂ = 1

2i

∑
kl

(ln αkl|αkl〉〈wkl| − ln α∗
kl|wkl〉〈αkl|). (24)

Every candidate for a phase operator to be physically acceptable, must fulfil at least the
two following conditions: (i) The average value for this operator in coherent states |r ei�〉
for high r should approach �. (ii) For states |n〉 the phase should be distributed completely
randomly, so that accepting ϑ ∈ [−π, π) the average value 〈n|ϕ̂|n〉 should be equal to zero.
Condition (i) for coherent states {|αkl〉} is fulfilled exactly. For the other coherent states, as
our preliminary numerical results show [8], 〈α|ϕ̂|α〉 differs from arg α for a couple percents.
Condition (ii) is fulfilled exactly, as we will now show.

First, we have

〈n|ϕ̂|n〉 = 1

2i

∑
kl

〈n|[ln αkl|αkl〉〈wkl| − ln α∗
kl|wkl〉〈αkl|

]|n〉. (25)

We choose ω1 = √
π, ω2 = −i

√
π so that αk,−l = α∗

k,l . We have

〈n|αkl〉〈wkl|n〉 = 1

π

∫
d2α〈n|αkl〉〈wkl|α〉〈α|n〉 = Akl. (26)

Introducing the notations βmn = mω∗
1 + nω∗

2, αkl = kω1 + lω2 α∗
kl = βkl and the function

σ(α) = α
∏
m,n

(
1 − α

βmn

)
e

α
βmn

+ 1
2

(
α

βmn

)2

, (27)

according to the results of Perelomov [5] we have

〈α|wkl〉 = (−1)k+l+kl e− |α|2
2 α∗

kl

σ (α∗)
α∗(α∗ − α∗

kl)
, (28)

It is straightforward to verify that

Ak,l = A∗
k,−l . (29)

The first part of the sum in (25), the one with ln αkl , can be split into sum of conjugate pairs
ln αklAkl + ln αk,−lAk,−l . Each of them is a real number 2Re(ln αklAkl). The other part of the
sum, the one with ln α∗

kl is conjugate to the first, i.e. it is the same real number. Therefore
subtraction in (25) gives zero as a result.

4. Conclusions and discussion

From our results we can conclude that

(1) Starting from coherent states as a domain of definition for ln â and ln â†, in order to obtain
a common domain for both these operators, one must restrict the domain of definition to
a discrete set of coherent states which is complete but not overcomplete.
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(2) The results of Perelomov show that the partitioning of the α-plane in congruent
parallelogram cells with the area equal to π—what in the phase space corresponds to
the Planck constant h—choosing a single coherent state from each but whichever one
cell, one obtains a complete set. Excluding the vector |0〉 one obtains a natural domain of
definition for the phase operator ϕ̂ = 1

2i
(ln â − ln â†).

(3) We are not aware of any analogous result, which would guarantee for some other set |αi〉
that it is complete but not overcomplete.

(4) We used square cells to make calculations simpler, which even in this geometrically
simplest case are very complicated. For different choice of cells one would get a different
domain of definition and consequently a different phase operator ϕ̂. However, these
operators would not differ qualitatively and even quantitatively, as our numerical results
for coherent states show [8], would be close to each other.

(5) The operator 1
2π i

∫
d2α ln(α/α∗)|α〉〈α|, having very interesting physical features [9],

although in this form correctly defined, can in no rigorous sense be considered to represent
the operator function 1

2i (ln â − ln â†).

Various approaches to the ‘quantum phase’ have been proposed but different approaches
give predictions, which differ not only quantitatively but also even qualitatively. In this sense
the question ‘what quantum phase really is’ does not have a generally accepted answer [10].
In a very rich and insightful paper [11] it was argued that as ‘phase’ is an essentially classical
notion, and a classical phase can be assigned unambiguously to a quantum state only if in
phase space it may be represented as a large amplitude localized state, infinitely many different
Hermitian operators qualify as ‘phase operators’. They only have to describe the phase in
such a case correctly, and all are expressible as

�̂ = [tan−1(p̂/q̂)]�, (30)

where � specified an ordering rule [11]. The ‘canonical’ ordering is Weyl ordering
[12, 13]. Although our operator defined by equations (24), for the first time announced
in [14], satisfies the condition regarding the phase of the mentioned states, it is not of the form
(30), and the problem of phase ordering does not arise in it. As it fulfils physical conditions
for the mean value of phase for states for which this value is evident a priori, and represents
the closest correct operator analogon of the argument (phase) of the ordinary complex number,
it may be considered as a one more reasonable candidate for the phase operator. It also may
be expected that its further investigation may contribute to some elucidation of the ‘quantum
phase problem’ in an analogous way as in various respects did all the other phase operators
introduced so far.

Finally, a couple of remarks of the mathematical character. The operators ln â and (ln â)†,
as defined in equation (23), have some ‘family resemblance’ with their originators â and â†,
but also some different and at the first sight unexpected features. So, ln â inherits in a sense
the property of â, to have as its eigenvectors all coherent states on which it is defined, namely
the coherent states on the lattice |αik〉. On the other hand the operator â† has no eigenvectors.
However, all the vectors of the biorthogonal set {|wik〉} are the eigenvectors of the operator
(ln a)†, as it is evident from the orthogonality relation (20), and definition (23). This new
feature is a direct consequence of the new discrete domain of definition of this operator and
the existence of the corresponding biorthogonal set {|wik〉}.

All our mathematical considerations in this work were on a somewhat intuitive physical
level of rigor. It would be desirable to have a mathematically more rigorous foundation of the
introduced operators. We feel, by historical analogy with rigorous mathematical foundation
of the celebrated von Neumann lattice, that such results are not at hand.
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