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Abstract

We look at the equivalence of the massive Thirring and sine-Gordon
models. Previously, this equivalence was derived perturbatively in
mass (though to all orders). Our calculation goes beyond that and
uncovers an underlying conformal symmetry.



1 Introduction

Field theories in two dimensions display many interesting properties that
have no direct analogy in higher dimensions. The most characteristic such
property is related to the spin of a particle. In two dimensions the rotation
group is Abelian and spin is a continuous parameter. For this reason there
can exist an equivalence between a bosonic and a fermionic theory. The re-
alization of this idea is called bosonization. The roots of bosonization can
be traced to the work of Klaiber [1] who looked at the massive Thirring
model [2], as well as of Lowenstein and Swieca [3] and Schwinger [4] who
looked at the massless Schwinger model. They analysed certain non-trivial
aspects of the corresponding theories, but stoped short of bosonizing them.
Bosonization was first carried through by Coleman [6] and Mandelstam [7].
They both worked in the operator formalism, as did a host of authors that
followed them and that focused on equalities of the corresponding current
algebras and energy momentum tensors. Derivations in the functional for-
malism followed after the seminal paper by Fujikawa [5]. All the derivations
follow through for the massless Thirring model. However, in the case of the
massive Thirring model the best results so far have given a perturbative (in
powers of mass) derivation of the equivalence (although to all orders).

In this paper we work with the massive Thirring model in the functional
formalism. With the help of standard Wess-Zumino techniques we construct
an equivalent gauge theory, and analyze two possible gauge fixings. One
gauge fixing, by construction, leads to the massive Thiring model. The other
gives us the sine-Gordon model. In its general outlines, this idea is related to
the so-called continuous bosonization of Damgaard, et al. [12]. Unlike them,
we use the Wess-Zumino technique to construct our wider gauge theory. The
central point of our derivation lies in the location of a conformal symmetry
and in its gauge fixing.

2 (Gauge Anomalies

In this section we give a brief review of how to deal with theories with gauge
anomalies. Let us look at a quantum field theory with matter fields & and
gauge fields A. The partition function equals

7 = /Dd) DAe w2 = /DAeéWW . (1)



The above theory has a gauge anomaly if the action is invariant under a given
local transformation while the measure is not. To be specific, we assume that

I[AY, dY] = I[A, @]
DOV = DoAY
DAY = DA. (2)

Using the above we easily see that the anomaly « satisfies
W[AY] = W[A] = ha[A; U] . (3)

By executing two gauge transformations U and U’ one after the other we
find that the anomaly satisfies the cocycle condition

a[AY; U] — a[A;UU] +a[A; U] =0 . (4)

We can now modify our starting theory in a way that gets rid of the gauge
anomaly. To do this we change the measure according to

D® — D = DO DH eAH] (5)

where H is a new field that takes its values in the gauge group, and DH
is the the appropriate Haar measure satisfying DH = DHY. The modified
theory is gauge invariant if we have

a[AY; HY] — a[A; H] + a[A; U] =0 . (6)

Because of the cocycle condition (4) the above equation is satisfied if the
auxilliary field H transforms according to

HY =U'H . (7)

In this way we have obtained a new theory
e iV = / DO DH e~ w4 (8)

given in terms of the new action

T[A, @, H] = I|A, @] — halA; H] . (9)

As we can see, I and I are classically equivalent. Note that I corresponds
to an effective theory — it has explicit h dependence, and is in general non-
local because of the Wess-Zumino term «[A; H|. This is the price we pay for
getting rid of the anomaly. Note also that by gauge fixing the new theory
with H = 1 we recover our starting model. In the rest of the paper we will
set h = 1.



3 The Massive Thirring Model

The massive Thirring model is a model of fermions in d = 2 dimensions with
Lagrangian

Lyrrv = V(P + m)y + %9]2 ; (10)

where j, = @Z_WM@/). The quartic interaction can be simplified by introducing
an additional vector field A, so that

Ly = (P +m)y — %Ai . (11)

The covariant derivative is defined to be D, = d,+A,. We write the partition
function as

R
ZntM = /Dli@_ ko (12)
where Lo = 1D ¢, while the measure is given by
R 7, 2
Dy = DYDYDAe~ “(miv—5;43) (13)

Lo is invariant under local vector transformations

N
b oo e
Ay — Al =A,—i0w . (14)

The measure Dy is not invariant. Because of the additional exponential term
in (13) we find

R .
D,u _ D/j,w _ D/IAE_ dm(% (8w)2+éA~8w) . (15)
At the same time, L is invariant under local axial vector transformations

v = P =1y
b= P = e
Ay — A=A, +end). (16)

Again, Dy is not invariant. The non invariance comes from the exponential
term in (13), but also from the well known axial anomaly of DyDy. Taken
together we find

Dy — Dp* =

— Due da (% (8)\)2-&-%5u,,AM8,,)\—m&w(COSQA—l)—imJJ%wsin2>\) )

R
e % dx ((‘9)\)2+25uvAuav)‘) . (17)



The first term comes about from the exponential term in the definition of
Dy, the second from the anomaly of DyD.

Using the perscription of the previos section we obtain a new, anomaly
free theory

— _ R _
Zymi = [ DUDIDADDG E, (18)
where
L= 0piti Ao

+m 1) cos 2¢ + im Y51 sin 20 —
1/1 1 1 1

-3 (5 + %) (0)? — (5 + }> e Aud, o . (19)

Note that ¢ represents the auxilliary field coming from the vector symmetry
i.e. Hy = €. Similarly, ¢ is the auxilliary field due to the axial vector sym-
metry, so H4 = €"5?. Because of this, under vector transformations we have
Y — p —w, @ — ¢. On the other hand, under axial vector transformations
© — p, ¢ — ¢ — \. Integrating out the vector field and rescaling ¢ — §¢,

] .
Az—l——(agp)z%—lA-@go—l—
29 g

2
1
where - = ; T We find

T = Gpu-+ 5 ai +micos 5o+ im st sin 56 +

2 2

1

Gauge fixing this with ¢ = ¢ = 0 gets us back to the massive Thirring model.

As has been recently shown [8], by integrating out the fermions we obtain,
in the functional formalism, the well known result that the massive Thirring
model is equivalent to the sine-Gordon model through the bosonization re-

lations
Yr = \/% enR
v = \/% et (21)
VR

where ¢ = < W ) In the above bosonization relations ¢ = ¢ and ~ is the
L

Euler constant v = lim,,— (ZZ:1 % —1In n) ~ 0.577, and p — 0 is an infra
red regulator. In terms of fermi bilinears this gives



Yy = gl cos fBo :
0
VY5 = —i% > sin (o -
T
, p
Ju = o Ew0,0 . (22)

Our aim in this paper is not to integrate out the fermions in (20), but rather
to find a different gauge fixing that leads to the sine-Gordon model. To do
this, let us first look at some simple consequences of bosonization. First of
all (20) is consistent with the above bosonization relations. Using them the
Lagrangian in (20) is transformed into

L=5 @6 —0)" == Fcos (6 —o0). (23)

1
2
which is indeed the sine-Gordon Lagrangian. We see that it is trivialy in-
variant under

¢ — o—A
g — o—\. (24)

Compare this to our axial symmetry. We can gauge fix this symmetry by
choosing o = 0 and obtain

o=
-
vysp = 0

Ju = 0. (25)

We are ready to gauge fix (20) directly without using the bosonization
relations. It is convenient to write the U(1)y x U(1)4 symmetry as U(1)g X
U(1)r. We find

Vr — ePRiyp

YL — Y, (26)
as well as

Yr — Ygr

v, — €%y, (27)



Where Or = )\ +w, 8 = A —w. We thus choose to fix the gauge by imposing
wR VR, wL = 1. Using this we get the gauge fixed Lagrangian

= 2010.%r + 2¢YrO:YR + 5 ( $)? + 2imYriy cos B . (28)

We have introduced complex coordinates z = xg + ixy, Z = x¢ — tx1. Things
have indeed simplified. As before in (25), we again have 1y5¢» = 0 and j,, = 0.
Now, however, we seem to have no further symmetries at our disposal whose
gauge fixing would make 110 = 2i1p1;, equal to a constant, as was the case
n (25), and this is precisely what we do need in order for (28) to give the
sine-Gordon Lagrangian.

The resolution of this problem is simple, though rather interesting. We
must give a more precise treatment of the field ¢ coming from the Wess-
Zumino term for the axial anomaly. It is well known that there are problems
with massless scalar fields in d = 2 dimensions. The way around these
problems is to introduce an infra red regulator p through the free correlator

(6(2)d(y)) = g n 2z — y)? | (29)

This is the source of 1 and ¢ in the bosonization relations. At the end of
all calculations we take the p — 0 limit. From (29) we see that we are not
dealing with one field ¢(z), but rather with a family of fields ¢(x|u) — one
for each choice of p. Written in the operator formalism, the piece of the
Lagrangian (28) that seems to be causing problems is

mA(a)(e) - cos Bo(el) 1= T D{a)i(w) u cos Bolalu) - . (30)

Note that ¥
dimension (

f(2), 2= 7' =

(x) and pu : cos Bé(x|u) are both conformal fields of scaling
A field ¢ has conformal dimension (a,b) if under z — 2/
(%) it transforms as

D)y
503):
]

.- = (D) () e @1

The whole Lagrangian is, therefore, of scaling dimension (1,1). This just
compensates the transformation of dzdz. The only remaining constant in
the theory is m/u, which is dimensionless. As a consequence we find that £
is invariant under a further symmetry — conformal symmetry. It is percisely
this symmetry that allows us to fix ¥ to be a constant. Under a conformal
transformation we have

st — (D) () e 32

6



. df 1/2 A (df 1/2 - .
By taking v = 0 (E) and ¢, =0 (£> we find that 11 indeed becomes

a constant. Note that # and @ are Grassmann constants, while 60 is an
ordinary commuting number.

4 Conclusion

In conclusion, we have re-derived the Abelian bosonization results of Coleman
[6], Mandelstam [7] and others [9]-[12] concerning the equivalence between
the massive Thirring and sine-Gordon models. Unlike our derivation of the
equivalence, all the previous ones were perturbative (to all orders) in the mass
m. As we have shown, the central point in our derivation is the existence of
two mass scales m and pu, and the fact that they enter solely through their
ratio ™.
1
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