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Abstract. In this paper we investigate the possibility of spontaneous segregation into

groups of traders that have to choose among several markets. Even in the simplest

case of two markets and Zero Intelligence traders, we are able to observe segregation

effects below a critical value Tc of the temperature T ; the latter regulates how strongly

traders bias their decisions towards choices with large accumulated scores. It is notable

that segregation occurs even though the traders are statistically homogeneous. Traders

can in principle change their loyalty to a market, but the relevant persistence times

become long below Tc.

1. Introduction

Adam Smith, in his The Wealth of Nations said that the concept of economic growth

is deeply rooted in the division of labour. This primarily relates to the specialization of

the labour force, where narrowing expertise allows better exploitation. Contemporary

examples of such specialization include, e.g., airline companies: some specialize in first

class and business flights, while others provide mainly low cost flights. The paper [8]

reports segmentation phenomena in the informal credit market in the Philippines, where

lenders who specialize in trading make loans mainly to large and asset-rich farmers, while

others lend more to small farmers and landless labourers.

It can be argued that the space of customers is already segmented, and that the

role of an efficient merchant is to find and adapt to niches in this customer space (see

for example [9]). However, here we want to explore the possibility of spontaneous

segregation of initially homogeneous traders. This work was motivated by observations

from the CAT Market Design Tournament [3] where competitors were invited to submit

market mechanisms for a population of traders provided by the tournament organizers.

It was observed that by co-adaptation of markets and traders the system evolved to a

segregated state signalled by persistent “loyalty” of certain groups of traders to certain

markets.

http://arxiv.org/abs/1708.09327v1
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In order to test our hypothesis that segregation can emerge spontaneously, we have

constructed a simple model of markets and traders. Markets are governed here by simple

static sets of rules — how to set the trading price and how to match traders. Traders are

taken as Zero Intelligence agents following Ref. [4]. Such traders act largely randomly.

This makes them a convenient tool for investigating the impact of market mechanisms

[7], by removing all of the complexity associated with the traders’ strategies. However,

we note that our agents are zero intelligence only with respect to price, i.e., they generate

bids and asks at random. On the other hand they do learn from past successes or failures

about the choice of market and whether to buy or sell.

Closely related work on segregation in [5] studies agents competing for parking spots

in a one way street. A learning process is again used, with rewards (the closer to the

city centre the better) and penalties (an agent is punished if s/he reaches the city centre

without parking). It is shown that the population splits into two groups, agents who

persistently choose parking spots close to the city centre on the one hand and agents

settling for spots further away on the other. Grouping of agents in an economic context

was studied in multi-resource minority games [6]. In this model, grouping emerges

when the probability that an agent will copy the strategy of a winning neighbour is

large enough. However, in contrast to our model, it was assumed in this scenario that

there is a considerable amount of structure in the connectivity among traders, as well

as perfect information about the actions of neighbours.

2. Model

We consider a simplified model of markets and decision-making traders with the aim

of investigating the segregation of traders. During each trading period agents are

confronted with a choice of actions: where to trade – choice of market – and how to

trade – whether to act as buyer or seller. Decisions are made based on the attractions,

which are accumulated scores an agent has received when taking actions in the past.

The attractions to the various actions are updated after every trading period using a

reinforcement learning rule of the form‡

Aγ(n+ 1) =

{

(1− r)Aγ(n) + rSγ(n), if agent has chosen action γ

(1− r)Aγ(n), if agent has chosen action β 6= γ

where Sγ(n) is the return gained by taking action γ during n-th trade; r is the parameter

that describes the agent’s memory. Its intuitive meaning is that each attraction is

effectively an average of the returns over a shifting time window covering the previous

‡ Ref. [5] uses the same rule with ω = 1 − r, while in Ref. [10] the prescription used was

A(n+1) = S(n)+(1−α)A(n). The second rule allows the attractions to increase to infinity, while in the

first case, they are constrained. However, up to a temperature rescaling, the two rules are equivalent.

The more important difference is that in the paper [10], the attractions of unplayed actions are updated

with fictitious scores an agent would have got had he played the action, while we effectively update

them with score S(n) = 0.
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1
r
trades. Finally, Aγ(n + 1) is attraction to the action γ after n trades, which will

determine the action chosen in the following (n + 1)-st trading period. The choice

of action is then calculated using the softmax§ function: the probability of taking an

action γ is Pγ ∝ exp (Aγ/T ). The temperature T regulates how strongly agents bias

their preferences towards the option that gathered them the highest score. For T → 0

agents strictly choose the option with the highest attraction, while for T → ∞ they

choose randomly among the options.

Orders to buy/sell at a certain price (bids and asks) are generated by traders

independently of previous success or any other information; the bids and asks are

independently identically distributed random variables (thus Zero Intelligence). We

assumed bids (b) and asks (a) are normally distributed (a ∼ N (µa, σ
2
a) and b ∼

N (µb, σ
2
b )), with means satisfying µb > µa. The assumption that the average bid is

higher than the average ask is not crucial; it mainly allows a larger number of successful

trades as the resulting trading price is typically below the average bid and above the

average ask. In the work of Gode and Sunder (Ref. [4]) various demand and supply

curves were used and thus both orderings of average bids and asks, 〈a〉 > 〈b〉 and

〈a〉 < 〈b〉, were investigated: they lead qualitatively to the same results. We similarly

explored the case µa > µb, and apart from the obvious quantitative consequence that a

smaller fraction of orders is valid for trade and consequently the number of successful

trades is smaller, the qualitative results remain the same. Once all traders have

submitted an order to the market of their choice, then at each market the average bid 〈b〉

and average ask 〈a〉 are calculated and the trading price is set as π = 〈a〉+ θ(〈b〉 − 〈a〉)

with θ being a parameter that describes the bias or the market towards buyers (for

θ < 1/2) or sellers (for θ > 1/2)‖. All buyers who bid less and all sellers who ask more

than the trading price are removed from the trading pool, as their orders cannot be

satisfied at the price that has been set. The remaining traders are matched in random

pairs of buyers and sellers, giving a total number of trades min (Nvalid bids, Nvalid asks).

For traders who manage to trade, the score is calculated as:

S(n) = π − an (sellers value getting more than they were asking for, i.e. an)

S(n) = bn − π (buyers value when they pay less then they intended, i.e. bn)

All traders who do not get to trade receive return S(n) = 0, and all orders are deleted

from the market after each trading period. Figure 1 illustrates this market mechanism.

The assignment of returns that we are using was introduced in Ref. [4], where it is

associated with budget constraints of ”Zero Intelligence-Constrained” traders. Exactly

these agents were shown to reproduce the efficiency of human traders in double auction

markets. In the original work, an are cost values assigned to sellers, while bn are

§ The softmax function is commonly used in models of learning agents, see for example [5], [10].

Another common formulation of the softmax function is Pγ ∝ exp (βAγ), where β = 1/T is sometimes

called the intensity of choice as in Ref. [2].
‖ Note that traders are not informed about these market biases, nor the market mechanism in general;

they learn only by means of the scores they receive.
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Figure 1. Illustration of market mechanism. (Left) Histogram of bids and asks

arriving at a given market. The inset shows how the trading price is set, with a bias

towards average bid or average ask regulated by the bias parameter θ of the market.

(Right) Once invalid orders are eliminated, i.e. bids below or asks above the trading

price, the distributions of valid bids and asks remain. Traders who have submitted

valid orders are matched in random buyer-seller pairs for trading.

redemption values assigned to buyers. Traders were allowed to trade only if the trading

price was lower than the redemption value or higher than the cost value, thus the name

constrained agents. Although the assignment of returns is the same in our model, we

do not use the term budget constrained in the description as our agents are allowed to

persistently buy (or sell), which is possible only if there is no overall wealth constraint¶.

In our model the bids and asks could similarly be interpreted as cost and redemption

values. We assume in addition that agents set orders based on these values, while the

actual trading price is a function of the population averages.

3. Results and Discussion

In this section we will present the results from the simulations of the trading system

described so far in this paper. Every system was defined in terms of the number of

agents N , the number of markets M = 2, the biases of the markets θ1, θ2, the means and

standard deviations of the distributions of bids and asks µa, σa, µb, σb, the temperature

T and the forgetting rate r. For every set of parameters simulations were run for 10, 000

trading periods; statistics are presented gathered from the last 100 trading periods of

100 independent runs of the stochastic dynamics.

In our system each agents has four preferences pB1, pB2, pS1, pS2 for the four possible

actions of buying and selling at market 1 or 2. In the figures below, to help visualization

we represent each agent by their total preference for buying (pB = pB1 + pB2) and for

¶ We note that also in Ref. [4], agents were preassigned the role of a buyer or a seller and were not

allowed to change this during trading, thus acting as if there was no overall constraint on the possession

of money/goods for trade.
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market 1 (p1 = pB1 + pS1). This is convenient as the corners in the (pB, p1) plane then

represent the four pure strategies – agents always buying at market 1, etc. Similarly, in

the space of attractions we use two coordinates (∆BS ,∆12), which are basically attraction

to buying as against selling and attraction to market 1 as against market 2.

(a) (b)

Figure 2. Steady state distributions at temperature T = 0.29, with other parameters

set to N = 200, M = 2, θ1 = 0.3, θ2 = 0.7, r = 0.1, µb −µa = 1, σa = 1, σb = 1. 2(a):

Distribution of attractions. 2(b): Distribution of preferences.

In Figure 2 we present steady state attraction and preference distributions for

temperature T = 0.29. An initially narrow, delta peaked distribution (all scores are

equal to 0) has been broadened due to diffusion arising from the random nature of

returns. This steady state represents unsegregated behaviour of a population of traders.

While the population does include some traders with moderately strong preferences for

one of the actions, preferences remain weak on average. The population as a whole

remains homogeneous in the sense that there is no split into discernible groups.

Figure 3 contrasts this scenario with the steady state of a system with exactly the

same set of parameters but at the lower temperature T = 0.14. The population of

traders now splits into four groups, with the agents persistently trading at one of the

markets, and thus we call this state segregated. The markets shown in this example

(Figs. 2, 3) are biased so that if an agent buys at market 1, or sells at market 2 (actions

B1 or S2) he is awarded with a higher score. The traders who prefer these actions

are “return-oriented traders”. However, if all traders were return-oriented, they would

have no partners for trading, and consequently they would received zero scores. To

enable trading, some traders have developed strong preferences for buying (selling) at

a market that gives them a lower average return (B2, S1). A larger fraction of these

traders will be removed from the market as their orders will be regarded as invalid

more frequently. Consequently, these traders will form a minority group and they will

always find a trading partner, hence we will call them “volume-oriented traders”. The

occurrence of segregation of an initially homogeneous population of traders into groups

of return-oriented and volume-oriented traders is the main qualitative result of this
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(a) (b)

Figure 3. Steady state distributions in the low temperature regime (T = 0.14,

all other parameters as in Fig. 2), showing clearly the segregation of traders into

groups. 3(a): Distribution of attractions. 3(b): Distribution of preferences.

paper.

When assessing stationarity of our system we measured population and time

averages for various observables (Aγ, ∆BS ...). Depending on parameters, a stationary

state was generally reached reasonably quickly, mostly within the first 1, 000 trading

periods. Apart from stationarity we also investigated to what extent our system is

ergodic, i.e. we wanted to exclude possibility that distributions in the low temperature

regime might be a consequence of some agents’ preferences becoming essentially frozen

after the first few trades. Quantitatively, we measured persistence times in one of four

quadrants – “prefer buying at market 1” (∆BS > 0 and ∆12 > 0), “prefer selling at

market 1” (∆BS < 0 and ∆12 > 0), etc. Figure 4 shows the average time an agent

spent in any one of these quadrant before leaving it for another quadrant, for various

temperatures. We present these plots for different values of the forgetting rate r, and

using the rescaled time t = rn, where n is the number of trading periods. (The use of

t rather than n ensures that the trivial effect on persistence times of agents updating

their attractions more slowly at smaller r is removed.) From the Figure one sees that at

small enough r, the onset of segregation is accompanied by a rapid increase in persistence

times, showing that in the segregated state agents do indeed remain ”loyal” to a given

market for long times. On the other hand, we see that when temperatures are not too

low (i.e. above the levelling off of the small-r curves in Fig. 4) then persistence times

are short compared to the overall length of our runs, so that the system is ergodic.

To quantify the observed change in the distributions of agent attractions or

preferences as we go from unsegregated to segregated states, we measured higher

cumulants of the distributions P (∆BS) and P (∆12). Specially we tracked the Binder

cumulant : B = 1 − 〈∆4〉
3〈∆2〉2

. Figure 5 shows values of this Binder cumulant for various

temperatures of the system, with all other parameters being same as in the previous

figures. For higher temperatures, the Binder cumulant of our distributions approaches
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Figure 4. Average time an agent persists in any one of the four preference quadrants,

plotted against temperature for different values of the forgetting rate, r = 0.1 (blue),

r = 0.05 (red) and r = 0.01 (green). Dashed lines are sketches of how the persistence

times would increase further if they were not limited by the length of our simulation

runs. Other parameters (as previously): N = 200, M = 2, θ1 = 0.3, θ2 = 0.7,

µb − µa = 1, σa = 1, σb = 1.

value characteristic of Gaussian distributions (B = 0) as expected. At the other extreme,

in the low temperature regime, the cumulant approaches a second characteristic value

B = 2/3, which is the Binder cumulant of a distribution consisting of two sharp peaks

with equal weight. The transition between these two regimes is sharper for smaller

values of r, making it possible to estimate the critical temperature for the onset of

segregation.

Our simulation results suggest that even our simplified trading system shows rich

and interesting behaviour. There exists a critical temperature Tc, such that for values

T < Tc the system segregates, i.e. the population of initially homogeneous traders splits

into groups that persistently choose to trade at a specific market. The persistence times

increase strongly with decreasing forgetting rate r (see Fig. 4) and we conjecture that

in the limit r → 0 there is a sharp transition at Tc in the sense that the persistence time

diverges there. The exact value of the critical temperature is a function of the market

parameters, and for the values of θ1,2 used above, we would estimate it from Figure 5

to be Tc ≈ 0.17.

To understand in more detail how segregation arises, and the nature of the transition

to the segregated state as T is lowered, a simple mathematical description would

evidently be useful. To obtain such a description, we can build on the approach of

Ref. [2]. This work studies the dynamics of agents who have to decide whether to

purchase a sophisticated price predictor, or use a freely available naive predictor of

price. This scenario differs from our model in a number of ways; apart from the more
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Figure 5. Binder cumulant for P (∆BS) and P (∆12) distributions, averaged over last

100 trading periods versus temperature for two different values of the forgetting rate,

r = 0.1 and r = 0.01. Other parameters as previously N = 200, M = 2, θ1 = 0.3,

θ2 = 0.7, µb − µa = 1, σa = 1, σb = 1.

sophisticated trading strategies of the agents, it assumes perfect information about

previous prices and about the performance of any price predictor. What is important

in the analysis of Ref. [2], however, is that the limit of a large population of agents is

implicitly taken, so that the system can be described entirely in terms of the fraction

of agents choosing a given action (price predictor) at any instant in time, with these

fractions evolving deterministically in time. The authors of Ref. [2] show that depending

on the temperature, or the ”intensity of choice” β = 1/T , these two fractions can exhibit

rich dynamics. The origin of this is that when all traders use sophisticated predictors,

the cost of this predictor leads some agents to start choosing the free predictors, while

there is a reverse effect from positive feedback when all traders use the simple predictor.

To adopt a similar approach for our model, we realize that mathematically our

dynamics is Markovian, provided that we keep track of the attractions Ai
γ to all actions

γ = B1,S1,B2,S2 of all agents i = 1, . . . , N . Working with this description in a

4N -dimensional continuous state space is, however, very difficult. As in Ref. [2] we

can therefore consider the large N -limit where the trading price at each market is no

longer affected by fluctuations in the number and value of orders submitted. We also

consider the limit of small r, using as time unit again the rescaled time t = rn so that

a unit time interval in t corresponds to 1/r trading periods. The fluctuations in each

individual agent’s attractions then also tend to zero because they are averaged over

many (∼ 1/r) returns each contributing a small (∼ r) change of attraction. As long as

the agent population remains homogeneous, all agents should in the limit have the same

attractions Aγ. In that case the system is described entirely in terms of the average
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values of these four attractions, or correspondingly the fraction of agents choosing each

of the four options γ. As these fractions add to unity it is enough to keep track of three of

them, and one can write down deterministic equations for their time evolution.(Details

are beyond the scope of this paper and will be given elsewhere.)

The results of the above approach for our model are still somewhat difficult to

visualize as we need to track fixed points and trajectories in a three-dimensional space.

We therefore switch to a simpler system that gives qualitatively similar results: a

population of traders consisting of two equal-sized groups with fixed preference for

buying p
(1)
B and p

(2)
B , respectively. The agents then only choose between two actions,

namely, whether to go to market 1 or 2 in each trading period. Although the system

where agents change their buy-sell preferences is more plausible behaviourally, the two-

group model still undergoes segregation and requires us (for N → ∞, r → 0 and

assuming an unsegregated state as above) to track only the fraction of agents choosing

market 1 in each of the two groups. We denote these fractions by f (1) and f (2). In

Figure 6 we present the flow diagrams that we find for the time evolution of these two

fractions, at high and low T . At high temperature, one observes a single fixed point

as expected (Fig 6 (a)). As T is lowered, this fixed point becomes unstable, and two

additional stable fixed points appear ((Fig 6 (b)). The temperature where the high-T

fixed point first becomes unstable thus identifies the critical temperature Tc for the onset

of segregation. We also find that the new stable fixed points evolve continuously from

the high-T fixed point as T is lowered through Tc, so the segregation transition has the

character of a bifurcation and is continuous.

It is worth emphasizing that the locations of the new fixed points that appear at

low temperature are not necessarily meaningful: as explained above, the simplifications

that have allowed us to consider deterministic time evolution in a simple two-dimensional

space require that the agent population remains homogeneous. By construction, this

simple picture can therefore not describe quantitatively the segregated populations of

agents that arise below Tc. Nevertheless, the instability of the high-T unsegregated fixed

point is enough to identify the temperature for the onset of segregation.

The analytical description sketched briefly above allows us to study, for example,

how the value of the critical temperature Tc depends on the parameters of the problem,

specifically for the two-group model on p
(1)
B and p

(2)
B and on the market biases θ1 and

θ2. As an example, Figure 7 shows how Tc varies with the market bias, still for the case

of symmetric markets θ1 = 1 − θ2 = θ. One sees that for every value θ there exists a

critical temperature Tc at which a bifurcation to a segregated steady state occurs. Note

that the temperature region where segregation occurs shrinks as the difference between

the market biases increases (smaller θ), showing that segregation is a collective effect

rather than being trivially driven by the differences between the markets. For θ = 0.3

as in Fig. 6, one finds Tc(θ) = 0.308. From simulations for a system with N = 100

traders and forgetting rate r = 0.1, we estimate a value of Tc ≈ 0.3. This is an excellent

agreement with the theoretical prediction, especially bearing in mind that the latter

applies directly only to the limit N → ∞ and r → 0.
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Figure 6. Flow diagrams that describe the large population dynamics of our two-

group model in the space of fractions of agents from each group who choose market

1. f (1) is the fraction going to market 1 in the group of agents who typically sell

(p
(1)
B

= 0.2), and f (2) the corresponding fraction in the group of “buyers” (p
(2)
B

= 0.8).

The markets have symmetric biases θ1 = 0.3 = 1 − θ2. 6(a) High temperature: the

dynamics has a single fixed point. 6(b) Low temperature: single fixed point has

become unstable.

In our original model where the agents can adapt their preferences both for the two

markets and for whether to buy or sell, the quantitative agreement is slightly less good.

E.g. for θ1 = 1− θ2 = 0.3 and bid and ask distributions parameters as in Figs. 2, 3 the

analytical description predicts Tc ≈ 0.127. Our simulations for a population of N = 200

traders with forgetting rate r = 0.1, on the other hand, lead to the estimate Tc ≈ 0.2.

This suggests that in the fully adaptive model the effects of nonzero forgetting rate and

finite population size are stronger than in the two-groups model.

4. Concluding remarks

With so much trade and commerce moving online over the last two decades, the study,

design, operation, and good governance of electronic marketplaces has become a major

area of computer science, both theoretical and applied. Much online economic activity

— for example, most trading in western financial markets — is now undertaken by

automated computer programs, which are software agents acting on behalf of human

principals or companies. A key research goal in the study of electronic marketplaces

is, therefore, to understand the long-run dynamics of these markets when populated by

automated software traders. This leads to questions such as: what long-run states are

possible in these marketplaces, what patterns in states occur or recur, what states may

be avoided and how, what states may be encouraged to occur and how, etc. The practical

economic and financial consequences of such understanding are immense. The so-called
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Figure 7. Segregation temperature Tc versus market bias θ1 = 1 − θ2 = θ. In this

diagram Tc(θ) separates segregated (light blue) and unsegregated (dark blue) steady

states. Results are shown for the two-group model with the two groups of agents

having fixed buying preferences of p
(1)
B

= 0.2 and p
(2)
B

= 0.8, respectively.

Flash Crash of US stock markets on 6 May 2010 showed the vulnerability of inter-linked

trading systems to a single large trade, for example, and has led to the implementation

of automated “circuit breakers” to eliminate or reduce the sector-wide impacts of rapid

market movements [1]. The importance of these issues is shown by the establishment of

a major research programme by the UK Government’s Department of Business, Industry

and Skills on computer trading in financial markets+. Our research in this same vein

focuses on a description of a specific characteristic of trading systems — segregation.

As argued in the introduction, specialized (segregated) traders might be better in terms

of exploitation of a market. However with specialization there comes an associated

vulnerability as agents become more exposed to losses if all their investments are focused

on a single market that might crash. Ultimately, we would like to describe and predict

the long-run dynamics of marketplaces comprising automated interacting traders and

to extract a set of regulations that might promote or suppress the segregation.

In this paper we introduced a simplified model of double auction mechanisms

with Zero Intelligence traders, with the goal of investigating the possibility of a

spontaneous segregation of traders. The use of ZI traders was motivated by the

hypothesis that segregation can emerge as a consequence of market mechanisms and

learning rules, neglecting complexity in trading strategies. We presented results form

+ See: http://www.bis.gov.uk/foresight/our-work/projects/published-projects/computer-trading

http://www.bis.gov.uk/foresight/our-work/projects/published-projects/computer-trading
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numerical simulations and outlined how analytical methods can be used to understand

the occurrence of segregation, giving quantitatively reasonable predictions even away

from the limits (infinite population of traders, infinitesimal forgetting rate) where the

analysis is derived. Although the relevance of our model with respect to real economies

might be questioned due to its simplicity, it is interesting to note that even in this

simple trading mechanism, learning agents who interact only via markets can end up

being segregated.
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