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Abstract
Loyal buyer-seller relationships can arise by design, e.g. when a seller tailors a product to a

specific market niche to accomplish the best possible returns, and buyers respond to the

dedicated efforts the seller makes to meet their needs. We ask whether it is possible,

instead, for loyalty to arise spontaneously, and in particular as a consequence of repeated

interaction and co-adaptation among the agents in a market. We devise a stylized model of

double auction markets and adaptive traders that incorporates these features. Traders

choose where to trade (which market) and how to trade (to buy or to sell) based on their pre-

vious experience. We find that when the typical scale of market returns (or, at fixed scale of

returns, the intensity of choice) become higher than some threshold, the preferred state of

the system is segregated: both buyers and sellers are segmented into subgroups that are

persistently loyal to one market over another. We characterize the segregated state analyti-

cally in the limit of large markets: it is stabilized by some agents acting cooperatively to

enable trade, and provides higher rewards than its unsegregated counterpart both for indi-

vidual traders and the population as a whole.

Introduction
When customers develop a persistent loyalty to one group of competing suppliers, or when
suppliers target a specific segment of their potential customer base, we regard this as an
instance of segregation of traders. In each case the interaction is between fixed (or largely
fixed) groups of buyers and sellers and each group is segregated into subgroups: buyers have
specific needs and these are met by specific products or suppliers. Such segregation can confer
benefits, e.g. shorter exploration time when buying, but it may also add vulnerability to a sys-
tem, for example by reducing market liquidity.

Segregation-like phenomena have been observed in a number of studies; examples we are
aware of include emergent loyalty in a fish market [1], segmentation in credit markets in the
Philippines [2], persistence in customer visitation patterns [3] and specialization and herding
in financial markets [4]. Some of the previous work has focused on the buyer side, and has
studied how segmentation can be identified in the space of customers, and how suppliers may
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respond to it adequately once it is detected [5, 6]. This branch of work can be thought of as a
continuation of Adam Smith’s idea that specialization of production leads to better exploitation
of the market [7]. Apparent paradoxes have also emerged, such asHotelling’s law [8]: contrary
to popular belief rational trading strategies may lead to minimal differentiation. In Hotelling’s
original example sellers that minimise their total distance from all potential customers, who are
uniformly positioned along the beach, end up positioning themselves all in the same place—in
the middle of the beach.

Much less work has been done to explore the conditions under which segregation occurs in
markets, and what factors promote or suppress it. When the buyer and seller populations are
heterogeneous due to external factors such as geographical location or individual wealth, this
can be a natural trigger for segregation. Here, our aim is to investigate whether and when segre-
gation can emerge spontaneously in initially homogeneous populations. In an in silico experi-
ment based on CATMarket Design tournaments [9] such segregated states were observed in
the co-adaptation of markets and traders. Some markets ended up focusing on attracting spe-
cific traders, and some traders preferred to trade at a specific market although no such fixed
propensities were imposed from the beginning.

Outside the context of double auction markets, an effect similar to segregation was noticed
in multi-asset minority games [10]. Specifically, in a system of agents who have the option of
copying a winning (minority) strategy from their neighbourhood with some probability p, a
self-organized grouping of strategies arises when the probability p is large enough. Grouping
was only found when the underlying interaction network is well connected, and when agents
have perfect information about the success of their neighbours. In another study based on the
minority game [11] it was noted that “. . .a population of competing agents with similar capa-
bilities and knowledge will tend to self-segregate into opposing groups characterized by
extreme behaviour”. The variant of the minority game used in this study supposes that agents
can choose to follow a global strategy based on collective memory—this is the primary driver
of segregation. Our approach is simpler in that the agents learn entirely from their own market
returns and the only interaction between agents is via the market.

While the CAT tournament results referred to above provide a clear impetus to study spon-
taneous segregation, they are difficult to analyse theoretically due to the complexity of both the
agents’ trading strategies and the market mechanisms of the competing markets. We therefore
devise and analyse a stylized individual-based model of a double auction. We focus on agents
using experience-weighted attraction learning (EWA) [12] to learn from the payoffs received
for past actions and thus optimise future trading. This general framework is similar to the one
employed by Hanaki et al [13], though in a rather different context. Hanaki et al show that
when agents are repeatedly given a choice of parking spots, some learn to be lucky by focussing
their search on to the spots very close to the city center, while the others end up with the oppo-
site strategy.

By developing a stylized model we aim to obtain an intuitive and analytically tractable tool
for understanding whether and when segregation can emerge spontaneously in a system of
competing double auction markets. In the Results section we first describe the Model and then
provide Numerical Results, summarizing the main findings from our numerical simulations.
In the following subsection we develop an Analytical Description in the large market limit,
using a Fokker-Planck approach to investigate the steady states of the system mathematically
and in particular to develop insights into the properties of the segregated state. In the Discus-
sion section we summarize our main findings, discuss their robustness to e.g. variations in the
model and set out possible directions for future research. To the best of our knowledge, there is
no other research that models spontaneous segregation in the context of double auction
markets.
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Results

Model of Learning at Double-Auction Markets
To address the question of spontaneous segregation, we study a stylized model of a popula-
tion of adaptive traders and two double auction markets. We hypothesize that segregation
can arise as a product of co-adaptation of traders, and construct on this basis a minimal
model for both traders and markets. We investigate this in detail by numerical simulation,
and provide a full theoretical understanding and characterisation of the observed segregation
effects. A brief summary of the basic features of the model and initial simulation results can
be found in [14].

Traders. Following the works of Gode and Sunder [15] and Ladlay [16], we populate our
system with agents without sophisticated trading strategies, essentially zero-intelligence trad-
ers. This is done because our aim is to investigate whether market loyalty can arise as an intrin-
sic property of a system of interacting agents without reliance on complex trading strategies.
Trading operates in discrete rounds, where at each turn the prices of buy and sell orders (bids
and asks) that the traders submit to a market are independent identically distributed random
variables (thus Zero-Intelligence agents). Agents learn whether to buy or to sell from previous
experience (see below). The numerical values of bids and asks (i.e their magnitudes), however,
are assumed to be unrelated to previous trading success or any other information. We assume
that bids, b, and asks, a, are normally distributed (a � N ðma; s

2
aÞ and b � N ðmb; s

2
bÞ), and that

their means satisfy μb > μa. In the spirit of the work of Gode and Sunder [15], a, b can be
thought of as cost and redemption values for each trader. These values are private to each
trader but correspond to order prices if submitted bids and asks are truthful and reflect the
actual valuation of goods by the agents. Traders will not accept any price from the market: sell-
ers will trade only if the trading price π is no less than their asking price (π� a), and buyers
require that the trading price is no greater than what they bid (π� b). (This is in line with
Gode and Sunder [15] where the traders that turned out to be more similar to human traders
were the zero-intelligence ones with budget constraint, i.e. traders who were not allowed to
trade at loss—higher than the redemption value for buyers and lower than the cost value for
sellers.) After each round of trading each agent receives a score, reflecting their payoff in the
trade. The scores of agents who do trade are assigned as follows: buyers value paying less than
they offered (b), and so their score is S = b − π. Sellers value trading for more than their ask (a),
and so S = π − a is a reasonable model for their payoff. We note that these scores are based on a
linear model and do not reflect effects such as diminishing returns. Traders who do not get to
trade in a given round receive return S = 0.

Markets. The role of a market is to facilitate trades so we define markets in terms of their
price-setting and order matching mechanisms; for an in-depth review of possible double auc-
tion market mechanisms see [17]. We consider a single-unit discrete time double auction mar-
ket where all orders arrive simultaneously and market clearing happens once every period after
the orders are collected. (Note that each period consist of one round only, which is why we will
talk only in terms of periods.)

We also assume that a uniform price is set by the market—once all orders have arrived,
these are used to determine demand and supply (see Fig 1). The price at which demand equals
supply is the equilibrium price. To make the model more flexible, we consider more generally
uniform prices of the type

p ¼ peq þ yðhbi � haiÞ ð1Þ

where πeq is the equilibrium trading price, from which the market price can deviate towards
the average bid (hbi) or the average ask (hai); the parameter θ thus represents the bias of the
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market towards buyers or sellers. In a setup like ours where the bids and asks are Gaussian ran-
dom variables, the equilibrium trading price is πeq = (hbi + hai)/2 when the variances σa and σb
are equal as we assume here and below. Once the trading price has been set, all bids below this
price, and all asks above it, are marked as invalid orders as they cannot be executed at the cur-
rent trading price. The remaining orders are executed by randomly pairing buyers and sellers;
the execution price is π. Note that we assume here that each order is for a single unit of the
good traded.

An example of a discrete time double auction market is the Opening Auction of New York
Stock Exchange which is used to determine the opening prices on the market. At the opening
auction, once all the orders are submitted, the trade occurs at the single price set by the market
that maximises the volume of trades. In the terminology of our model, this price corresponds
to θ = 0 as that setting is the one that maximises the number of possible trades.

Fig 1 shows graphically how the trading price is set and how the return distributions look
after invalid bids and asks are eliminated. If, as in the example in the figure, the trading price is
closer to the average bid (θ> 0) there will be an excess of supply: only a fraction of the sellers
who submitted valid asks gets to trade, but with the higher trading price—so those that do
trade receive higher returns. The buyers who submitted valid bids are in a minority compared
to the sellers and so determine the number of trades. They can all trade, but receive relatively
low returns on account of the high trading price.

Reinforcement Learning Rule. So far we have described how agents interact at a given
market. We next define how they decide how to trade (to buy or to sell), and where to trade (at
which market). Agents trade repeatedly in our model, and they adapt their preferences for the
various choices from one trading period to the next. We focus on the case of two markets,
though the model can easily be extended to an arbitrary number of markets.

We assume that each agent decides on an action at the beginning of each trading period,
only based on his or her past experience. To formalize this we introduce a set of attractions Aγ

for each player, one for each action γ: buy at market 1, sell at market 1, buy at market 2, sell at
market 2. The attractions will generally differ from player to player, but we suppress this in the
notation for now. The attractions are updated after every trading period, n, using the following

Fig 1. Illustration of the market mechanism. Left: example distributions of orders received in one trading
period (orange—orders to buy, blue—orders to sell). Middle: the corresponding demand and supply curves,
showing the number of orders to buy above (resp. sell below) a certain price. The vertical black line marks the
equilibrium trading price, i.e. the price at which demand equals supply, while the arrows show how the trading
price changes for nonzero θ; the dashed line is the trading price for θ = 0.3. Right: example distributions of
returns from validated orders at θ = 0.3. In the situation shown, where buyers are in the minority after
validation of orders, all buyers find a trading partner (red). If all sellers could trade they would achieve the
“desired” return distribution (light blue). But only a randomly selected fraction finds a trading partner, leading
to the “realized” return distribution (dark blue); the other sellers receive a return of zero. The realized sellers’
return distribution has the same total area as the buyers’ return distribution as both represent the total number
of trades.

doi:10.1371/journal.pone.0154606.g001
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reinforcement rule:

Agðnþ 1Þ ¼
ð1� rÞAgðnÞ þ rSgðnÞ; if the agent chose action g in round n

ð1� rÞAgðnÞ; if the agent chose an action d 6¼ g in round n:
ð2Þ

8<
:

The quantity Sγ(n) is the score gained by taking action γ in the n-th trading period. The
length of the agents’memory is set by r: agents weight returns obtained Δn time steps ago with
exponentially decaying factors (1 − r)Δn, effectively corresponding to a sliding window of length
of order 1/r for the weighted averaging of past returns.

The update rule above is a special instance of a more general experience-weighted attraction
rule [12, 18], which has been shown to be in reasonable agreement with experimental data on
human learning in repeated games. Many special cases of this rule are in common use in evolu-
tionary biology and in the game-theoretic literature. One important variant of EWA is a case in
which all actions are updated with their returns, no matter whether that action was actually
taken or not. This assumes that an agent can calculate or at least estimate the return (s)he
would have obtained from actions γ that (s)he did not choose to play [19, 20]. We argue that
an agent would not normally have sufficient information to do this in the context of a double
auction market: (s)he would need access to the current price, and to the numbers of valid bids
and asks submitted. This is unrealistic, which is why we posit that scores of unplayed actions
are updated with an effective payoff of zero. One plausible alternative that does not rely on esti-
mation of returns from unplayed actions would be an update rule where the attractions to
unplayed actions are forgotten with a different rate (or not forgotten at all); we return to this in
the Discussion at the end.

It only remains to specify how agents choose their actions based on the attractions. This is
done in line with the experience-weighted attraction literature [12, 18], simply by converting
the attractions to probabilities using the so-called softmax or logit function. Explicitly, each
agent takes action γ in trading period n with probability P(γ|A(n)) = exp(βAγ(n))/∑γ0 exp
(βAγ0(n))/ exp(βAγ(n)), where β is the intensity of choice [20] and regulates how strongly the
agents bias their preferences towards actions with high attractions. For β!1 the agents
choose the option with the highest attraction, while for β! 0 they choose randomly with
equal probabilities among all options. One way to interpret β is as parameterizing the degree of
human rationality, where β!1 corresponds to the limit of unboundedly rational players
who always choose the optimal course of action [21]. Another interpretation is that 1/β sets a
scale of return differences below which traders no longer significantly differentiate between the
options available to them. Indeed, if all Aγ(n) are within 1/β of each other then the exponents
in the softmax function differ by less than unity and so the resulting probabilities are close to
uniform. The existence of such a threshold is not implausible: higher return differences should
drive a trader towards optimizing his or her actions more, e.g. by following the historically
most rewarding options, while the choice between actions giving nearly the same return will be
largely random. The intensity of choice β is sometimes denoted λ and has also been referred to
as response sensitivity [12, 13, 18] or learning sensitivity [19].

Numerical Results
Emergence of loyalty—return-oriented and volume-oriented traders. We begin our explora-
tion of the two-market setup defined above with results from numerical simulations. Unless
specified otherwise, parameters were set as detailed in Table 1 in the Methods section. All
agents start with equal preferences for all four choices, i.e. Ag ¼ 0 8g 2 fB1;S1;B2;S2g
where B = buy and S = sell. To aid visualization we project the four-dimensional space of
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attractions Aγ down to two coordinates, the overall attraction to buying as against selling,
defined as DBS ¼ ðAB1 þ AB2Þ � ðAS1 þ AS2Þ, and the attraction to market 1 as against market
2, D12 ¼ ðAB1 þ AA1Þ � ðAB2 þ AS2Þ. Due to the nonlinearity of the softmax function, a single-
peaked distribution of attractions with a non-zero spread will, for large enough intensity of
choice β, become a multimodal distribution in the space of preferences. This effect cannot be
regarded as genuine segregation. For this reason we will avoid representing agents in the space
of their preferences Pγ, and use the underlying attractions instead.

In Fig 2 (left) we present the steady state attraction distribution for a population of traders
with intensity of choice β = 3.45. The initially narrow, delta-peaked distribution of attractions
(all initialized at 0) has been broadened due to diffusion arising from the random nature of
returns and from the stochasticity of the agents’ actions. The steady state shown in the left

Table 1. List of parameters defining the system; unless otherwise stated, the typical values are used.

System definition in terms of parameters

Parameter Description Typical Value

M Number of markets 2

(θ1, θ2) Market biases—usually assumed to be symmetric, θ1 = −θ2 (−0.2, 0.2)

N Number of traders 200

(μa, σa) Mean and standard deviation of the ask distribution (sellers) (9.5, 1)

(μb, σb) Mean and standard deviation of the bid distribution (buyers) (10.5, 1)

r Forgetting rate; range r 2 [0, 1] r = 0.1

β Intensity of choice; simulation range β 2 [1, 50] –

ðpð1Þ
B ;pð2Þ

B Þ Preferences for buying of the two types of agents of the toy model (0.8, 0.2)

doi:10.1371/journal.pone.0154606.t001

Fig 2. Steady states in numerical simulations. Steady state distributions of attractions for buying vs selling and for market 1 vs 2, respectively, for
forgetting rate r = 0.1. The colour scale in the central scatter plots shows the probability density of agents [22]. For low enough intensity of choice (left, β =
3.45), an unsegregated steady state arises, while higher β (right, β = 7.14) causes traders to segregate into four discernible groups. The histograms along the
axes show the marginal distributions of DBS and Δ12, respectively. From the marginals we note that in the segregated state roughly half of the population
specialize in buying (similarly half prefers market 1), although the fractions of buyers (sellers) at different markets are not the same. Other system parameters
are given in Table 1. The data shown are taken from 100 trading periods of 100 independent runs.

doi:10.1371/journal.pone.0154606.g002
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panel of Fig 2 represents an unsegregated population of traders. While this population does
include some traders with moderately strong preferences for one of the actions, preferences
remain weak on average. The population as a whole remains homogeneous in the sense that
there is no split into discernible groups.

Fig 2 (right) contrasts this scenario with the steady state of a system with exactly the same
set of parameters but at the higher intensity of choice β = 7.14. The population of traders now
splits into four groups, with the agents persistently trading preferentially at one of the markets
and with a preferred buy or sell action. We refer to this state as segregated. The markets shown
in this example (Fig 2) are biased symmetrically (θ1, 2 =�0.2): if an agent buys at market 1, or
sells at market 2 (actions B1 or S2), and if they manage to trade, they are awarded with a
higher score on average than if they were to choose one of the other two actions (cf. Fig 1,
where sellers are the group with the higher average return). In this symmetric market setup
there are therefore two different kinds of behaviour among the four segregated groups. The
agents in two of the groups (B1 and S2) specialize in actions that award them higher average
return, we call those traders “return-oriented”. We will refer to the agents in the other two
groups (B2 or S1) as “volume-oriented” for reasons which we explain shortly. If all traders
were return-oriented, they would have no partners to trade as there would be no agents playing
B2 or S1. Consequently everyone would receive zero returns. The fact that some traders have
developed persistent preferences for placing orders that give them a lower average return (here
B2, S1) can thus be interpreted as cooperative, trade-enabling behaviour. Due to the market
mechanism, the agents who choose one of B2 or S1 will have their orders rejected as invalid
more often (see the group of buyers in Fig 1). However, those whose orders are accepted will
form a minority group in the market and will always find a trading partner. Hence, when sub-
mitting valid orders, these traders trade more often so we will call them “volume-oriented”.

There is a tendency for agents to cluster around the diagonal and anti-diagonal in the two-
dimensional projection shown in Fig 2. Inspection of the underlying attractions Aγ shows that
this arises because many agents have one large attraction, for their preferred action, while their
other attractions are close to zero. For example if a return-oriented agent, say a buyer at market
1, has attractionsA � ðAB1; 0; 0; 0Þ, then this projects to the diagonal DBS ¼ D12 ¼ AB1. Simi-
larly a volume-oriented trader who prefers to sell at market 1 is projected to the anti-diagonal
�DBS ¼ D12 ¼ AS1 if his/her other three attractions are close to zero. The fact that the attrac-
tions of non-preferred actions are often small comes from the fact that, within our reinforce-
ment learning dynamics, agents gradually forget the scores of actions they only use rarely.

Persistence and time correlation. The above results indicate that segregation is seen above
a critical intensity of choice, β> βs; we defer a discussion of how βs depends on the parameters
of the model to the section Analytical Description below. One has to bear in mind though that
the data shown in Fig 2 represents the state of the system at a given time. It therefore does not
tell us whether agents really develop loyalty in the sense that they stay in one of the segregated
groups for a long time, or whether they switch frequently between groups.

To understand which of these two alternatives applies, and to characterise the dynamics of
group switching events, one can analyse the persistence times of agents within each of the four
peaks in Fig 2. Consistent with the intuitive meaning of a segregated state one finds (as shown
in [14]) that at high enough intensity of choice β the agents develop “loyalty” to a certain mar-
ket and a choice of buying and selling: their persistence times are much longer than the time-
scale of the small short-term fluctuations in preferences that every agent experiences. These
short-term fluctuations occur on the time scale of the memory-loss, 1/r. On the other hand the
agents are not frozen, i.e. the persistence times are finite and the agents change loyalties on lon-
ger timescales. Therefore the steady state we observe is well defined rather than a consequence
of agent preferences frozen-in from early fluctuations in their trading history.

Cooperative Long-Term Loyalty
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What emerges from the above discussion is that a key feature of a segregated state is a sepa-
ration of timescales in the dynamics of the agents. To quantify this further we consider the
autocovariance function

CgdðtÞ ¼ hðAgðt0 þ tÞ � Agðt0ÞÞðAdðt0 þ tÞ � Adðt0ÞÞiPðAÞ; ð3Þ

where h. . .iP(A) indicates an average over the attractions of players in the population, and over
the time t0 in the stationary state. This is a matrix capturing cross-correlations in time between
the attractions to the various actions an agent can take; here as a summary statistic we look at
the trace C(τ)� ∑γ Cγγ(τ), i.e. the sum of the autocovariances. In Fig 3 we show how this auto-
correlation function depends on time for various forgetting rates r at fixed β = 20. We observe
two separate decays, which is consistent with the intuition described above: first a fast decay of
correlations occurs as an agent moves around one of the peaks of the distribution P(A), caused
by randomness in returns at a given market and the fact that the decisions of each agent remain
stochastic. This fast decay does not lead to full decorrelation but rather to a plateau in the auto-
correlation function: the attractions of an agent stay in the same “loyalty group” (i.e. within the
same peak of P(A)), and the agent’s actions remain correlated. The decay from this plateau
defines the slow timescale, and it is a measure of how long agents typically stay in one loyalty
group before moving to another peak of P(A).

Because the slow timescale increases very rapidly as r is decreased—the theoretical descrip-
tion below suggests exponential growth with 1/r—we show a rather smaller range of r in the
figure than elsewhere in the paper. Comparing the curves for different r we note the increase of
the initial value of the autocorrelation function with r, which makes sense as the variance of the
fluctuations within each peak of P(A) grows roughly proportional to r. We also see that the fast
time scale is of the order of unity in the rescaled time units, t = nr, used in the figure. This
reflects the fact that the effective memory of each agent is 1/r trading periods.

Summary and characterisation of segregated state. Summarizing so far, the existence of a
plateau in the autocorrelation function is clear evidence of the segregation of agents into groups
that remain loyal over extended periods of time to a certain set of preferences defining a group
of agents, while at the same time exhibiting small and much faster fluctuations around these
typical preferences. This represents the most intuitive definition of segregation that we can
think of. However, the existence of a plateau—quantitatively, a turning point in a plot of auto-
correlation versus log time—would not be easy to utilize in practice to detect segretation. This
is because already for r< 0.1 the amplitude of the initial fast decay becomes so small that it
merges into the plateau, while at the same time the slow timescale for switching between loyalty
groups outgrows the range of times that can easily be explored computationally. For practical
purposes we therefore stick to multimodality of P(A) as our criterion for segregation.

Fig 3. Decay of the attraction autocovariance with time. The intensity of choice β and forgetting rate r are
different from the standard values in Table 1: here β = 20, r as shown in the legend. This is to highlight the
separation of timescales in the segregated state. A larger than usual initial number of trading periods was
simulated (�20,000 trading periods) to ensure the systems reached steady state at such high β.

doi:10.1371/journal.pone.0154606.g003
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Our simulation results suggest that even our simplified trading system shows rich and inter-
esting behaviour. A more detailed analysis (discussed below) reveals a threshold intensity of
choice βs such that for values β> βs the system segregates, i.e. the initially homogeneous popu-
lation of traders splits into groups that persistently choose to trade at a specific market. The
pattern of these market loyalties is co-operative, in that some traders—the volume-oriented
ones—forego potentially higher returns and instead choose actions that enable trade for every-
one. We will see below that this behaviour has clear payback, in giving average returns across
all traders that exceed those for the obvious Nash equilibrium. An obvious question that
remains open at this point is how robust the observed segregation behaviour is to variation in
our model parameters and setup; we defer this issue to the discussion section.

Analytical Description
Fokker-Planck description. To understand in more detail how segregation arises, and to

characterise the nature of the transition to the segregated state, a theoretical analysis of the
model dynamics would evidently be useful. Mathematically our model is Markovian. To cap-
ture the full dynamics one needs to keep track of the attractions Ai

g to all actions g 2
fB1;S1;B2;S2g of all agents i = 1, . . ., N, or equivalently the attraction vectorsAi ¼
ðAi

B1;A
i
S1;A

i
B2;A

i
S2Þ for all agents. One can write down a master equation for the evolution of

the joint distribution of these 4N variables. This equation is however difficult to work with and
not easily analysed further. In order to make progress it is useful to realise that the payoff an
agent receives when they take a particular action only depends on aggregated quantities, but
not on the detailed actions of individual other agents. More specifically the return for a given
action is determined by (i) the bid or ask the agent places; (ii) the validity of the bid or ask
placed and (iii) whether or not a suitable trading partner is found. All quantities (i)-(iii) are
random objects and so the return received for a given action at any one time will be a random
variable itself. Properties (ii) and (iii) only depend on the macroscopic statistics of bids and
asks placed by the population of traders in its entirety. We now focus on the limit of large (for-
mally infinite) populations, that is we take the limit N!1. The distribution of bids and asks
submitted in any trading round will then follow Gaussian distributions with mean μa and stan-
dard deviation σa for asks, and analogously for bids (N ðmb; sbÞ). By definition in our model the
returns that flow from these bids or asks are non-negative, implying a truncation at zero of the
return distributions. These distributions can then be written as

PðSjm;BÞ ¼ QBmTBm

1

QBmsb

ffiffiffiffiffiffi
2p

p exp �ðS� pmÞ2
2s2

b

� �
yðSÞ þ dðSÞð1� QBmTBmÞ

PðSjm;SÞ ¼ QSmTSm|fflfflfflffl{zfflfflfflffl}
agent trades

1

QSmsa

ffiffiffiffiffiffi
2p

p exp �ðS� pmÞ2
2s2

a

� �
yðSÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
non�negative return

þ dðSÞð1� QSmTSmÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
agent does not trade

:
ð4Þ

The return an agent receives depends on the action γ the agent chooses, i.e. on the market,m,
they trade in, and whether they chose to buy, B, or sell, S. This is reflected in our notation above.

The first term in each of the above expressions describes the case of a non-zero return. This
occurs with probability Qγ Tγ, where Qγ denotes the probability that an agent’s order is valid;
once validated, it is executed with probability Tγ, which is the probability of finding a suitable
trading partner. If the order is executed an agent receives a return S drawn from a Gaussian dis-
tribution, truncated to allow only non-negative payoffs; if the order was invalid, or was valid
but not executed, the agent receives S = 0. This occurs with probability 1 − QγTγ.
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To complete the above description of the single agent dynamics for large N one needs
expressions for the market price πm as well as the probabilities Qγ and Tγ. In the deterministic
limit, N!1, the expression in Eq (1) reduces to

pm ¼ peq þ ymðmb � maÞ with peq ¼ ma þ mb

2
;

as the means of the bids and asks submitted in any one round become the population means μb
and μa by virtue of the law of large numbers. In the case when σa = σb, the bid and ask distribu-
tions are mirror images of each other around (μa + μb)/2 and so the quantity π

eq introduce
above is the equilibrium price where demand equals supply. (For σa 6¼ σb, and in general when
the number of buyers is not equal to the number of sellers at a given market, the real equilib-
rium trading price is not given by this simplified formula, but in our model the market price is
still calculated from average bids and asks and we retain the symbol πeq for the average of the
two means.)

The probabilities that an order is valid, Qγ, are calculated from

QBm ¼ 1

sb

ffiffiffiffiffiffi
2p

p
Z 1

pm

db exp �ðb� pmÞ2
2s2

b

� �

QSm ¼ 1

sa

ffiffiffiffiffiffi
2p

p
Z pm

�1
da exp �ða� pmÞ2

2s2
a

� �
:

ð5Þ

These expressions reflect the requirement for a bid or ask to be on the correct side of the
market price, and are based on our assumption of Gaussian bid and ask distributions. The inte-
grals can be carried out in closed form and expressed in terms of error functions.

The trading probabilities Tγ, finally, can be written as

TBm ¼ min N Bm;N Sm

� �
N Bm

TSm ¼ min N Bm;N Sm

� �
N Sm

ð6Þ

where N g is the total number of agents taking an action γ and submitting a valid order,

N g ¼ NQg PðgjAÞh i: ð7Þ

In this expression P(γ|A) / exp(βAγ) is given by the appropriate softmax function applied

to an agent’s vector of attractions A. The average h. . .i is over the distribution PðAÞ ¼
1
N

PN
i¼1 dðA�AiÞ of attraction vectors across all agents. The expressions Eq (6) can be

understood as follows: if a trader submits an order that is valid, (s)he will always be able to
trade if (s)he is in the minority group, otherwise his/her probability of being able to trade is
the ratio of the number of traders in the minority and majority groups.

We can now write an evolution equation for the distribution P(A) of attraction vectors
across the population of traders. Writing Pn(A) for the distribution at the end of trading period
n, we have

Pnþ1ðA0Þ ¼
Z

dAKðA0jAÞPnðAÞ ð8Þ

with K(A
0
|A) a transition kernel that encodes the dynamics of the system. It is of the form

KðA0jAÞ ¼
Z

dS
X
g

PðSjgÞPðgjAÞdðA0 � egrS� ð1� rÞAÞ; ð9Þ
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where eγ is a four-dimensional vector with an entry of 1 for action γ and entries 0 otherwise.
The learning rule of Eq (2) is enforced through the delta function. It is worth noting that Eq (8)
is not a standard linear Chapman-Kolmogorov equation as the right-hand side is nonlinear in
the distribution Pn(A). This arises because the kernel K depends on the trading probabilities Tγ
as given in Eq (6), which in turn depend on Pn(A). The nonlinearity arises because we have
effectively projected from a description in terms of all 4N attractions to one involving only four
single-agent attractions.

From our reasoning so far, Eq (8) should constitute an exact description of the model in the
limit N!1. It can, at least in principle, be solved numerically starting from our chosen initial
condition P0(A) = δ(A). The presence of the δ-peaks at zero returns S = 0 makes the kernel
awkward to deal with numerically, however. We therefore make one further simplification and
transform to a Fokker-Planck description. This is appropriate for small r, i.e. agents with long
memory. Note to this end that the change in attraction A0 − A in any one trading period is
directly proportional to r, see Eq (9). The Kramers-Moyal expansion (see e.g. [23]) of Eq (8) is
of the form

Pnþ1ðAÞ � PnðAÞ ¼ �r@A M1ðAÞPðAÞ½ 	 þ r2

2
@2

A M2ðAÞPðAÞ½ 	 þ . . . ; ð10Þ

where the scaled jump moments

M‘ðAÞ ¼ 1

r‘

Z
dA0ðA0 �AÞ‘KðA0jAÞ

are of order r0. The generic ℓ-th order term on the RHS of Eq (10) comes with a factor rℓ so for
small r one can proceed by neglecting higher-order terms beyond the first two. Next, it is useful
to introduce a re-scaled time t = rn. A unit time interval in t then corresponds to 1/r trading
periods and hence the memory length of the agents. With this replacement, Eq (10) reduces to
a Fokker-Planck equation in the limit r! 0. Specifically we have in this limit

@tPðAÞ ¼ �@A M1ðAÞPðAÞ½ 	 þ r
2
@2
A M2ðAÞPðAÞ½ 	: ð11Þ

As before and to keep the notation compact, we have not written out the various compo-
nents of the derivatives and jump moments; e.g. @A[M1P] is to be read as ∑γ@Aγ

[M1, γP].
Segregation behaviour can in principle be characterised by studying the steady-state solu-

tion of the above Fokker-Planck Eq (11). Specifically one would investigate the conditions
under which this distribution is multimodal, i.e. has several peaks.

Iterative procedure for solving the Fokker-Planck equation. Similar to the kernel K, the
drift and diffusion coefficientsM1 andM2 depend on the trading probabilities Tγ. So finding
the steady state requires an iterative approach:

(i) initialize P(A), e.g. with delta peaked distributions, corresponding to agents without
preferences;

(ii) calculate the number of traders taking the various actions [Eq (7)] and thus the trading
probabilities Tγ [Eq (6)];

(iii) find the steady state solution of the Fokker-Planck Eq (11) for these Tγ. Steps (ii) and
(iii) are then repeated until a self-consistent solution is obtained, i.e. until the Tγ no longer
change. We note that finding the stationary distribution of the Fokker-Planck equation (step
(iii)) is non-trivial in general. This is true particularly because the drift and diffusion coeffi-
cientsM1 andM2 do not define a time-reversible single agent-dynamics, for which determining
the steady state would be much simpler (see for example [24]). In the limit of small r, where
the stationary distribution takes a large deviation form P(A)/ exp(−f(A)/r) analogous to
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Eq (13) below, it can in principle be found by a Freidlin-Wentzel construction [25] but imple-
menting this numerically is still challenging (see e.g. [26]). This is why for analytical work we
focus on a slightly simplified model, details of which are given below. Once we have the steady-
state values of the trading probabilities Tγ, we can also think of the Fokker-Planck Eq (11) as
describing the dynamics of individual agents within a large population with fixed average prop-
erties. As we argue that our system is ergodic, the steady state distribution of attractions can
then be re-interpreted as the distribution of a single agent’s attraction sampled over a long
enough time interval. Zeros of the drift velocityM1(A) are fixed points of the single agent
dynamics, and for small amounts of diffusive noise r the single agent will spend most of its
time near (stable) fixed points, causing local maxima of P(A). To detect segregation we there-
fore look for multiple stable fixed points of the single agent-dynamics in the steady state
population.

Agents with fixed preferences for buying. As finding the steady state solution of the Fok-
ker-Planck equation even with given trading probabilities is a non-trivial task in the four-
dimensional space of attraction vectors A, we proceed with one more simplification to produce
a theoretical description directly comparable to simulations. We fix the agents’ preferences for
buying or selling, i.e. each agent now carries a fixed probability pB with which they buy. They
sell with probability 1� pB . This probability may vary from agent to agent, but crucially it
remains fixed in time for each trader. Agents thus have a single decision left to make, namely,
where to trade. In the case of two markets the single variable that we then need to track for

every agent is the difference or relative attraction Di ¼ Ai
1 � Ai

2. This makes a full numerical
analysis possible. The resulting Fokker-Planck equation is one-dimensional and so one can
find the steady state solution in closed form, while locating all single agent fixed points can be
achieved e.g. by a bisection method. We do find segregation in this way as shown below so the
reduced model is useful in its own right, and provides evidence of the robustness of segregation
behaviour. Hence we focus on this simplified model in the following, enabling us to compare
numerical predictions for nonzero r directly to simulations. Wherever possible we will relate
the results back to the original, fully adaptive model.

In the limit of large population size, the analogue of P(A) in the simplified model is the
probability distribution PðD; pBÞ ¼ PðDjpBÞPðpBÞ. The quantity PðDjpBÞ is the distribution of
attraction differences, Δ, among agents with buying preference pB . The distribution over prefer-
ences for buying PðpBÞ is fixed as part of the specification of the model. As a simple case, we

investigate a population with PðpBÞ ¼ 1
2
dðpB � pð1ÞB Þ þ 1

2
dðpB � pð2ÞB Þ, consisting of equal num-

bers of two types of agents with buying preference pB ¼ pð1ÞB and pB ¼ pð2ÞB , respectively. Agent i
chooses market 1 with probability 1/[1 + exp(−βΔi)] and independently chooses to buy with

probability pð1ÞB or pð2ÞB depending on his/her type.
As in the case of fully adaptive agents we can formulate the master equation for the process,

and derive a Fokker-Planck equation in the limit of small memory-loss rates r. We obtain:

@tPðDjpðgÞB Þ ¼ �@D M1ðDjpðgÞB ;TgÞPðDjpðgÞB Þ
h i

þ r
2
@2

D M2ðDjpðgÞB ;TgÞPðDjpðgÞB Þ
h i

ð12Þ

where g 2 {1, 2} (for type or “group”) labels the agent type. The jump momentsM1 andM2

couple the two types of agents via the set of trading probabilities {Tγ}. The generic steady state
solution of the Fokker-Planck Eq (12) reads (see for example [23]):

PðDjpðgÞB Þ / 1

M2ðDjpðgÞB ;TgÞ
exp

2

r

Z D

0

dD0 M1ðD0jpðgÞB ;TgÞ
M2ðD0jpðgÞB ;TgÞ

 !
: ð13Þ
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As the notation emphasizes, the stationary probability distribution is dependent on the
trading probabilities, and these are themselves function(al)s of the probability distributions

PðDjpðgÞB Þ; g ¼ 1; 2. Accordingly we use the iterative procedure described above to find a
solution, repeating steps (ii) and (iii) until the trading probabilities Tγ remain stable to an
accuracy of 10−6.

Fig 4 compares the steady state distributions PðDjpð1ÞB Þ obtained from direct numerical simu-
lations and from the Fokker-Planck theory described above. The buying preferences

ðpð1ÞB ; pð2ÞB Þ ¼ ð0:8; 0:2Þ are symmetric about 1/2 and so we do not show PðDjpð2ÞB Þ, which would
be the mirror image about Δ = 0. The distribution obtained for low β (Fig 4 left) shows the
behaviour expected for an unsegregated population, with a single-peaked distribution of rela-
tive attraction Δ for each agent type; the mean of the distribution essentially coincides with the
fixed point of the single agent dynamics, i.e. the solution ofM1(Δ) = 0. In the high-β regime,
the agents of each type segregate into two groups corresponding to the two peaks of the distri-
bution of the attraction differences Δ. As in the case of fully adaptive agents, one group is
return-driven, i.e. prefers the market that awards them with higher returns, although they are
not always able to trade there. The agents in the other group are volume-driven; they settle for
the market where returns are lower on average but where they can trade more regularly.

The Fokker-Planck theory successfully reproduces the qualitative transition from unsegre-
gated behaviour at low values of the intensity of choice to segregated steady states at higher val-
ues of β. The quantitative agreement with numerical simulations is good, remarkably so given
that the latter were obtained for relatively small systems (N = 200 agents) and for moderate
r = 0.1 while we developed the theory for the combined limits of large N and small r. The agree-
ment between theory and numerical experiment also suggests that segregation is not a finite-
size effect.

Characterising the phase transition. To track the change in the shape of the relative
attraction distributions from unimodal to bimodal as β is changed we consider the so-called
Binder cumulant (see for example [27]). This quantity is defined as

B ¼ 1�
hD4i

PðDjpðgÞ
B

Þ

3hD2i2
PðDjpðgÞ

B
Þ
; ð14Þ

and is a good indicator of segregation as it has different limiting values for unimodal and
bimodal distributions. In principle B is dependent on the type of agent considered, g; but in the

Fig 4. Steady states of the reducedmodel. The distributions PðDjpð1Þ
B ¼ 0:8Þ from simulation and Fokker-

Planck theory; the corresponding distributions for the second type of agents PðDjpð2Þ
B ¼ 0:2Þ are mirror images

with respect to the y-axis. Left: β = 1/0.45, Right: β = 1/0.15. Forgetting rate is r = 0.1, other system
parameters as specified in Table 1.

doi:10.1371/journal.pone.0154606.g004
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situations we consider where the two types have distributions of score differences Δ that are
mirror images of each other, this dependence disappears. For numerical simulation data we
show (B(1) + B(2))/2. The Binder cumulant takes the value B = 0 for a Gaussian distribution,
while B� 2/3 for a distribution consisting of two sharp peaks (the precise value depends on the
relative weight of the peaks). For small r, where the Δ-distributions become sharp around their
peak(s) according to Eq (13) these are therefore the values of B we expect for β below and
above the segregation threshold βs, respectively. For finite values of the learning rate r this will
become a smooth transition between the two limiting values.

In Fig 5 we show the predictions of our Fokker-Planck theory for the Binder cumulant of
the reduced model with fixed buy/sell-preferences as a function of β, and for different values of
r. These confirm the expectations set out above, with the segregation transition become
increasingly sharp as r decreases. The limit r! 0 of the theory can be worked out by a separate
procedure and gives a sharp transition at a well-defined segregation threshold βs (for the sys-
tem presented in Fig 5, βs = 3.55). The inset of the Fig 5 compares numerical simulations and
theory for r = 0.1 and again shows very good agreement. We attribute the remaining deviations
to finite-size effects and to the fact that simulations necessarily operate at nonzero r while the
Fokker-Planck theory is derived in the limit of small r. The qualitative behaviour of the Binder
cumulant, i.e. a transition between the expected theoretical values for small and large values of
β that becomes sharper with decreasing r, is exactly the same in the fully adaptive model; see
[14]. There are of course quantitative differences; e.g. the threshold value βs � 5.9 (for r! 0) is
somewhat higher [14].

Further characterisation of segregation dynamics. So far we have successfully con-
structed a mathematical description that reproduces the segregation effects seen in simulations.
We now use the theory to look more closely at the emergence of segregation and the properties
of the segregated state. To this end we consider average returns across the population of agents.
These allow us detect whether segregation brings population-level benefits even though all
agents make decisions on a purely individual basis. Given that persistence times are finite, the
population-averaged returns also give the long-time average returns for any agent and so they
tell us about the benefits of segregation for single agents.

In Fig 6 we plot the average return obtained by agents in the steady state against intensity of
choice β for populations with different forgetting rates r. The data shown are from the Fokker-

Fig 5. Binder cumulant. (as defined in Eq (14)) of the relative attraction distribution for different values of r as
shown in the legend (large to small r from bottom to top on the right of the plot). Inset: Numerical simulations
(blue) versus Fokker-Planck theory (orange) for r = 0.1. Simulated system sizeN = 200 traders, with Δ
distributions obtained from the last 1/r trading periods of 100 independent simulation runs.

doi:10.1371/journal.pone.0154606.g005
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Planck analysis of the reduced two-strategy model described above. Remarkably, the average
return is a non-monotonic function of β: it has a minimum close to the segregation threshold
βs, at a level that decreases as r is reduced. The qualitative non-monotonic trend is also found
in numerical simulations (see inset). It is harder to detect there as the absolute changes in
returns are fairly small, but appears in both the reduced and the fully adaptive model.

To put the returns for our segregated steady states into context, we compare them to two
benchmark values. The dashed line in Fig 6 indicates the first of these, which is the average
return of an unsegregated population (in the limit r! 0 limit, to be discussed in more detail
shortly). While this homogeneous population return decreases monotonically with β, segrega-
tion avoids this decrease for intensities of choice β> βs and in fact converts it to an increase.

As a second baseline we show in Fig 6 the average return in an envy-free Nash equilibrium.
A Nash equilibrium in general is a state in which no agent can increase their payoff by unilater-
ally changing strategy. In our system, a state would be specified by the probability pi1 for each
agent i to choose market 1—as the set of actions is {Market 1, Market 2}. The strategy of an
agent is defined by (p1, 1 − p1)—and a Nash equilibrium is reached when no agent i can achieve
higher average return by changing pi1, at fixed strategies of all other players. This still leaves
potentially many different Nash equilibria [26] and so we focus on what we will refer to as the
envy-freeNash equilibrium. This is an equilibrium in which no agent is envious of any other
agent’s return because they all achieve the same payoff on average over time. This is realized in
our system when the average returns for all four distinct actions (buy or sell, at market 1 or 2)
are the same. This condition allows us to identify a unique set of trading probabilities and from
these the envy-free Nash equilibrium return. As Fig 6 shows, this is always lower than the aver-
age return of a segregated population (both in theory and simulations, see the inset). A segre-
gated steady state is thus better in terms of returns than both the homogeneous steady state at
the same β and the envy-free Nash equilibrium. What is notable here is that the segregated state
is not envy-free over short time horizons: an agent in the volume driven group obtains a lower
return than one from the return driven group. However, as emphasized above, on very long
time scales agents can change their loyalties, i.e. change group, so that in a long-time average all
achieve the same return. This again emphasizes the co-operative nature of the segregated state.

Fig 6. Returns. Average steady state population returns against β for different values of r (see legend; r
decreases from top to bottom), as predicted by Fokker-Planck theory (circles denote βs for the given value of
r). Black dashed line: average return of an unsegregated population for r! 0. Horizontal dotted line: envy-
free Nash equilibrium (see text). The segregated solution achieves higher returns than either the
unsegregated population at the same β, or the Nash equilibrium. Insert: comparison between numerical
simulations and Fokker-Planck theory for r = 0.1 and population sizeN = 200.

doi:10.1371/journal.pone.0154606.g006
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Estimating the segregation threshold βs: the r! 0 limit. We now proceed to study the
segregation threshold βs of the intensity of choices and how it depends on the parameters of the
model. This is easiest in the limit r! 0 where the segregation transition is sharp, see Fig 5
above. We first focus on the regime β< βs, i.e. the unsegregated phase, in which the distributions

PðDjpðgÞB Þ will be single-peaked. In the limit r! 0, Eq (13) indicates that (i) this peak becomes

infinitely sharp, so that the distributions are of the form PðDjpðgÞB Þ ¼ dðD� DðgÞÞ; and (ii) the
location Δ(g) of the peak for each group of players is determined by the zero-drift condition

M1ðDðgÞjpðgÞB ;TgÞ ¼ 0: ð15Þ

The next step is to solve these two equations for Δ(1) and Δ(2), which is the r! 0 analogue
of finding the steady state of the FP equation for general r > 0. As before one needs to make
the solution self-consistent so that the trading probabilities Tγ appearing in Eq (15) are those

calculated from the distributions PðDjpðgÞB Þ ¼ dðD� DðgÞÞ themselves. The iterative
approach explained above can again be used to find such a self-consistent solution, starting
from (Δ(1), Δ(2)) = (0, 0).

We briefly explore the properties of this homogeneous steady state before considering how
to detect the onset of segregation. We focus on agent types with symmetric biases toward buying

and selling, pð1ÞB ¼ 1� pð2ÞB . For this choice we find non-zero (Δ(1), Δ(2)) even in the limit β! 0.
This indicates that agents recognize the more rewarding option: agents that are more likely to
buy have a preference for the market that is good for buyers, and similarly for sellers. Of course
β! 0 means that agents nevertheless choose randomly between the markets. As β increases, the
relative attractions (Δ(1), Δ(2)) become more pronounced, i.e. they move away from zero, and
agents start to choose the “better”market more frequently. This is the reason for the decay of
the average return in the homogeneous steady state with β, as shown in Fig 6: as agents of each
type increasingly focus on “their”market, buyers congregate in one market and sellers in the
other; trading opportunities are reduced and thus the average return (which includes zero
returns for trading periods where an agent cannot trade) decreases. The more definitive choices
agents make are the consequence of the two effects: (1) the fixed points (Δ(1), Δ(2)) increase in
absolute value (and they correspond to the difference in the average score an agent receives in
the two markets); (2) the increase of βmakes the choices more definitive. Quantitatively, we
find that (2) is the stronger effect. As the intensity of choice β is increased further, we expect a
transition to a segregated steady state. To detect this transition we can follow the general logic
explained in the beginning of Analytical Description: a segregated state must have more than
one fixed point of the single-agent dynamics. The peak position Δ(1) is always a fixed point for
agent type 1 from Eq (15), and similarly for type 2. To detect the onset of segregation we there-
fore need to check when additional fixed points appear, i.e. additional solutions of the zero-drift

conditionM1ðDjpðgÞB ;TgÞ ¼ 0. In looking for these alternative fixed points we need to keep the

trading probabilities Tγ fixed at their values calculated for the homogeneous steady state,
because we are considering the single-agent fixed points. Note that in general one needs to
search for alternative fixed points globally, i.e. across all possible Δ. This is because for most
parameter settings the new fixed points appear far from Δ(1) or Δ(2), respectively, as pairs of sta-
ble and unstable fixed points.

In Figs 7 and 8 we present the segregation thresholds obtained by the method above, for var-
ious parameter settings. In Fig 7 specifically we show how βs changes with pB for various sym-
metric markets. One observes that βs does not depend very strongly on the exact preferences
for buying of the agents, except for the region of parameters where both agent types have
almost even preferences for buying and selling. A full analysis of the change in monotonicity in

Cooperative Long-Term Loyalty

PLOS ONE | DOI:10.1371/journal.pone.0154606 April 27, 2016 16 / 26



that region exceeds the scope of this publication and will be presented elsewhere. In contrast,
the effect of the market biases follows a simple trend: the region of segregation shrinks as the
difference between the two markets increases, suggesting that segregation is not a trivial effect
of market biases.

In the Fig 8 we show two contour plots to compare the trends in βs when the two agent
types’ buying preferences are varied independently, for two different choices of market param-
eters. On the left is the symmetric markets setup (θ1, θ2) = (−0.2, 0.2) that we have already used
several times. From the plot we observe that the segregation threshold βs is lowest when the

subgroups are symmetric with respect to buy-sell preferences, i.e. pð1ÞB þ pð2ÞB ¼ 1; the variation
of βs along that line is presented in Fig 7. We also note that when the two agent types have simi-
lar preferences (e.g. both prefer buying over selling) then βs is on average higher than in the
case where the types have opposite preferences. This qualitative behavior we see also in the case
of two fair markets that set the trading price at the equilibrium price, as shown in Fig 8 (right).
We do not show similar plots for asymmetrically biased markets; the qualitative behaviour is

similar there, but the line of minimal βs is no longer p
ð1Þ
B þ pð2ÞB ¼ 1 but pð1ÞB þ pð2ÞB ¼ c, where c

is a constant that depends on the market parameters.

Fig 7. Segregation thresholds for different symmetric agent types, at different markets. Segregation
threshold as a function of the first agent type’s preference for buying pB ¼ pð1Þ

B , assuming the other agent type
has the opposite preference pð2Þ

B ¼ 1� pB. Different sets of symmetric market parameters are compared; non-
trivially, the region of segregation is largest when both markets are fair.

doi:10.1371/journal.pone.0154606.g007

Fig 8. Segregation threshold for various agent types.Contour plots of the segregation threshold βswhen
preferences for buying pð1Þ

B and pð2Þ
B of both agent types are varied independently. Left: symmetric markets (θ1,

θ2) = (−0.2, 0.2); Right: two fair markets (θ1 = θ2 = 0). Contours are presented in terms of 1/β for visual clarity.

doi:10.1371/journal.pone.0154606.g008
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Finally, we can adapt the above method of calculating the segregation threshold to the origi-
nal model of fully adaptive agents choosing among all four possible actions (e.g.
g 2 fB1;S1;B2;S2g). Because of the difficulties of finding the steady state solution numeri-
cally for finite r, this analysis is carried out only in the limit r! 0. Here it is feasible because we
only need to find zeros of the driftM1, rather than solve for a full distribution P(A) that is a sta-
tionary solution of the Fokker-Planck equation. As argued before, the first moment (M1) is a
function of the whole distribution, but in the r! 0 limit and for β< βs this distribution is a
delta distribution, which simplifies the calculation.

In Fig 9 we show a contour plot of the segregation threshold against the two market biases.
As in Fig 7, for agents with fixed buy-sell preferences, we notice that the segregation threshold
βs decreases when the difference in the symmetric market biases decreases; this can be seen spe-
cifically by looking at the symmetric markets diagonal of Figs 9 and 7. Additionally in the sys-
tem of fully adaptive agents we notice that this conclusion extends to the case when at least one
market is fair, i.e. segregation then also arises for smaller values of β. In Fig 9 we note also a
four fold symmetry, which we conjecture is a consequence of the fact that agents have more
choices: a fully adaptive agent does not have a preferred market initially, so all four action
choices are equal. This is not the case for an agent with a fixed preference for buying and selling
because returns are buyer/seller-specific. The four fold symmetry in the Fig 9 also tells us that
the absolute value of θ is enough to describe the market. This further means that the commonly
investigated choice of two symmetric markets is analogous to the case of two identical markets
and we note that the segregation threshold is lowest when both markets are fair. This is in
agreement with the results of the model with agents with fixed buy-sell preferences, see specifi-

cally in Fig 8 where for every choice of ðpð2ÞB ; pð2ÞB Þ the segregation threshold βs is smaller when
the markets are fair.

Multiple steady states. When iteratively finding a self-consistent steady state of the Fok-
ker-Planck equation as discussed around Eq (11), we always used as initial condition a

Fig 9. Segregation threshold for fully adaptive traders.Contour plots of the segregation threshold βs in a
system of fully adaptive agents, against the market bias parameters (θ1, θ2). Along the lines where at least
one market is fair, βs is lowest so that segregation occurs for the widest possible range of intensities of choice
β.

doi:10.1371/journal.pone.0154606.g009

Cooperative Long-Term Loyalty

PLOS ONE | DOI:10.1371/journal.pone.0154606 April 27, 2016 18 / 26



distribution of all agents having zero attractions. While the dynamics of the iterative solution is
not identical to the real dynamics, this choice was sensible to obtain steady states that match
the ones from simulations of the real dynamics as closely as possible. After further analysis we
found that in the numerical simulations for small values of r one can obtain two qualitatively
different classes of segregated states. To investigate this notion further, we now explore whether
there can be more than one self-consistent solution of the Fokker-Planck equation. Such addi-
tional solutions could be accessible for example by using our iterative procedure, but starting
from other initial conditions.

The simplest way to perform this exploration systematically is to realize that the trading
probabilities Tγ from Eq (6) only depend on the demand-to-supply ratios D1 and D2 at the two
markets; we define Dm for each marketm as the ratio of the number of buy and sell orders that
arrive at the market. Specifying (D1, D2) thus tells us all trading probabilities, and hence deter-
mines a unique steady state solution of the Fokker-Planck equation. From this steady state
solution we can recalculate D1 and D2, and plot in the (D1, D2)-plane the two lines where the
new and old D1 (D2, respectively) coincide. The intersections of these two lines are then the
self-consistent steady states we are after. We find numerically, in the range of parameter values
that we have explored, that there is either one such state or there are three.

In Fig 10 we show the resulting phase diagram in the (r, β)-plane and indicate the number
and nature of self-consistent steady state solutions. Where solutions are segregated we differen-
tiate between two possibilities, strong and weak segregation. By strong segregation we mean a
solution branch where the two peaks in PðDjpBÞ remain of comparable height as r! 0. We call
a solution branch weakly segregated when one peak weight becomes exponentially small for r
! 0, so that the solution effectively reduces to an unsegregated one. In the limit, all agents then
typically prefer the same market. The empty circles in the figure are results from a separate
analysis of the deterministic (r! 0) theory, and are consistent with the extrapolation of the
results for nonzero r. Numerical simulations confirm the existence of all three solution types
(U, S, W) in the relevant regions of the phase space, where necessary starting from appropri-
ately tuned initial conditions. Where the strongly segregated solution competes with others it
appears to become unstable but long lived in small system simulations. (Details are beyond the
scope of this paper and will be given elsewhere.)

The blue line in Fig 10 is the segregation threshold βs discussed previously. It is nearly con-
stant, increasing only very slowly with r; this shows that the βs values obtained via the r! 0

Fig 10. Regions of different steady states in the space of parameters r and β. Number and nature of the
steady state solutions of the Fokker-Planck equations in the (r, 1/β)-plane (U: unsegregated state, S: strongly
segregated state, W: weakly segregated state). Other system parameters are set to their default values (see
Table 1). To the left (small r) of the orange line there are three steady state solutions, while to the right there is
only one. The blue line separates the region where at least one of the solutions is segregated, i.e. bimodal.
Empty circles represent r! 0 endpoints of the two lines, calculated independently.

doi:10.1371/journal.pone.0154606.g010
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analysis will be good estimates also for larger r. A second interesting feature of Fig 10 is that
there is a threshold value of r� 0.054 above which the strongly segregated solution is the only
possible option, for any β large enough for a segregated state to exist at all: this state is then the
genuine steady state. Where agents have only moderate memory, with 1/r of the order of 10
trading periods, steady states where one market comes to attract most agents thus disappear,
and the emergence of persistent market loyalties becomes the norm. For the fully adaptive
model we have preliminary evidence for a similar phase diagram as in Fig 10 and in particular
for the existence of weakly segregated states, but defer further analysis of their behaviour to a
separate publication.

Discussion
The increasing fraction of global trades that now takes place online in the form of high-fre-
quency algorithmic trading (around 30% of equity trading in the UK and around 60% in the
USA [28]) raises many challenges for market regulations. To make such regulation as informed
as possible, research is needed to understand the possible long-run states of such systems. We
have focused on one particular long-run state—the segregation of traders. As argued in the
introduction, it is easy to imagine that such a state can bring benefits to the system, but also dis-
advantages; both make it important to investigate and understand the phenomenon and its
consequences. We have developed a stylized model of double-auction markets serving a large
number of adaptive traders; this has helped us to shed light on the benefits of segregation for
the population as a whole.

We have considered two variants of our model, one populated with agents who can adap-
tively tune their preferences for buying and selling along with their preferences for the two
markets; in the other model agents have fixed preferences for buying and hence also selling.
The two models share our main qualitative result: above a threshold value βs of the intensity of
choice β the agents segregate, i.e. develop a long lasting loyalty to one action, or one market.
The onset of segregation is signalled both in simulations and in the analytical description by
the emergence of multiple peaks in the distribution of agent preferences, as summarized e.g. in
the Binder cumulant. These peaks are accompanied by long persistence times for the agents to
remain within each peak [14].

In the model with fixed buying preferences we have shown that one can develop an analyti-
cal description of segregation to a significant level of detail. We find that even though individ-
ual agents do not explicitly try to maximise the well-being of the entire population, the strongly
segregated state is in effect cooperative: it is more beneficial for every individual player, and the
population as a whole, compared to possible unsegregated and envy-free Nash equilibrium
states. The segregated state is neither envy-free—the traders that specialize to what we called
volume-driven behaviour have lower returns in the short term than the return-driven ones—
nor a Nash equilibrium. In this sense the segregated state is stabilized by incomplete informa-
tion, of each agent about the precise returns to be expected from each action and about the
average returns achieved by others.

The transition from the homogeneous to the segregated state is caused by increasing the
intensity of choice parameter β. There are two ways of interpreting this. One is that as β grows,
agents optimize against return differences on smaller and smaller scales 1/β: our results then
show that the more stringently agents optimize their behaviour, the higher the likelihood of
segregation. Alternatively, as β affects the agents’ preferences only via products with the attrac-
tions, which themselves are proportional to the returns, an increase in β has the same effect as
an increase in the scale of returns at fixed β. When the possible returns are small an agent then
plays randomly, while if the stakes are high an agent will try to take into account information
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from previous trades as much as possible. In this interpretation our main result states that
there is a critical scale for single transaction returns above which the preferred state of the
agent population is the segregated one.

We studied in some detail the dependence of the segregation threshold βs on model parame-
ters. One intriguing finding is that the threshold is generally lowest when the two markets are
similar, demonstrating that segregation is not trivially driven by market differences. The pre-
cise value of βs is determined by collective behaviour, with agents continually adjusting to trad-
ing conditions the population itself creates. This rules out simple intuitive estimates of βs. It is
reassuring, however, that the quantitative variations in βs are small for the different models we
investigated, with values lying in the range 0.1. . .0.3 across most of the parameter space of our
models.

Finally, it is important to discuss simplifications in our analysis and the way they might
have affected our main results. We have made a number of assumptions about the bid and the
ask distributions. It turns out that when these are relaxed, our main results change only quanti-
tatively but not qualitatively. For example, we have shown all data for the case where the mean
bid is greater than the mean ask, which enables more trades at the markets. However, qualita-
tively identical results are obtained in the opposite case, with the only change being in the spe-
cific value of the threshold βs. The specific assumptions we made on the shape of bid/ask
distribution can also be relaxed. In fact, within the Fokker-Planck description only the first and
the second moment of the truncated bid/ask distribution appear and the precise shape of the
distribution is otherwise immaterial.

Another important assumption about the agents is their learning rule. As we discussed
when first setting out the model, in the literature there are several variants of the rule we used.
There is broad agreement on the existence of an intensity of choice-like parameter in the learn-
ing dynamics, see e.g. [12, 13, 18–21, 29] for applications and experimental confirmations of
this. As regards score updating, in many cases agents are assumed to update the score for
unplayed actions with the corresponding fictitious score. We have argued that this is not realis-
tic in our set up; however, changing the way an agent forgets the score of the unplayed actions
might be reasonable. This suggests a generalized reinforcement rule that is still in the class of
EWA [12, 18] approaches:

Agðnþ 1Þ ¼
ð1� rÞAgðnÞ þ rSgðnÞ; if the agent chose action g in round n

ð1� arÞAgðnÞ; if the agent chose an action d 6¼ g in round n
ð16Þ

8<
:

Here the parameter α can be tuned between two extremes: α = 1 is the case we have dis-
cussed so far, where an agent forgets the score of the unplayed actions with the same rate as the
scores of the played action, effectively imputing a score of 0 for actions that were not taken. On
the other hand, α = 0 corresponds to the case where an agent does not forget the attractions of
the unplayed actions, which effectively means imputing a score equal to the average score up to
that time. Without going into the details, our analytical methods can be extended to cover the
entire range of α for both variants of our model (fully adaptive and fixed buy-sell preference).
We find generally that the segregation threshold βs increases as α decreases towards zero. It
remains finite for any α> 0, so that segregation continues to take place, in a manner qualita-
tively similar to our vanilla model (α = 1). The case α = 0, which presupposes that agents have
effectively infinite memory to scores of unplayed action, is special and will be explored further
elsewhere.

We have also made the simplifying assumption that budget constraints on the agents can be
ignored. Above the segregation threshold our results show substantial persistence times for
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agents in a particular role (e.g. persistent buying, at one of the two markets). While this may be
in apparent conflict with budget or stock constraints, it is worth remembering that agents do
change their loyalty eventually so they just need a large enough budget to sustain a long period
of buying that is then followed by a long period of selling. Also, while persistence times do get
exponentially large for very small r, our results show (cf. Fig 10) that segregation can occur up
to fairly large values of r. In this regime persistence times—while longer than in homogeneous
states—are only moderately large so that budget constraints should be relatively easy to satisfy.
We also note that in Tóth et al. [30] the authors show that the well documented persistence in
orders of the same sign (i.e. an order to buy tends to be followed by more orders to buy and
similar for an order to sell) at the shorter time scales is dominated by a single trader splitting
his/her order; also the tendency to buy or sell persistently was shown to be stronger than collec-
tive effects such as order herding. Finally, segregation also occurs in models with explicit bud-
get constraints, as discussed in the Outlook below.

One question that remains, and which is not easy to address in full generality, is whether the
emergence of segregation is an intrinsic property of systems with adaptive agents, or a conse-
quence of our specific stylized model. The simplicity of the model itself argues for the former,
as we did not need to make exotic assumptions to find segregation. But clearly there is still
much to do from here to reach a detailed understanding of segregation in real markets, at a
level that can directly influence policies. An initial step in this direction is described in the fol-
lowing section.

Outlook. Our work was motivated by the presence of segregation noticed in CAT tourna-
ments [6, 9] where both the trading strategies and market mechanisms were far more complex
and realistic. To understand how segregation can emerge we did not analyse a system popu-
lated with the same complex parts, but instead hypothesized that segregation is a consequence
of mutual co-adaptation of traders and markets. Having established that segregation arises
generically when agents adapt their preferences according to a well studied reinforcement
learning scheme, an obvious direction for future work is to investigate whether removing vari-
ous restrictions in our modelling approach might affect the occurrence of segregation. As an
initial signpost along this route we report briefly on results we have obtained for a well-studied
model of markets and traders [31–34] that has more realistic assumptions than ours in a num-
ber of respects (see Methods section for details). The market is a continuous double auction
with an open limit order book, the agents have budget constraints and trading strategies take
account of fundamentals like dividend returns. We extend this model minimally by assuming
there are two markets rather than one, and by allowing traders to choose between markets
adaptively using the reinforcement rule Eq (2) with a natural definition of the relevant score. In
Fig 11 we show the resulting distribution of attractions towards each of the two markets after
100 trading periods. The key observation is that segregation still emerges, in a model that dif-
fers from ours in having (1) budget constraints, (2) complex trading strategies and (3) continu-
ous double auctions. This supports our view that segregation should be relatively generic when
agents can choose between multiple markets and do so adaptively.

In other future work it will be interesting to link to work [29] that draws on evidence from
Behavioural Game Theory and suggests that values of β are consistent across games but
increase in more informative environments. The authors argue that a parameter closely analo-
gous to r also increases with the trustworthiness of information in the system. Bearing in mind
the results shown in Fig 10, where for large r and large β the only steady state is the segregated
one, this suggests that more informative environments, or ones where information is more
trustworthy because e.g. of stability over long timescales, might naturally lead to segregated
states. It would be exciting to study this effect explicitly in a suitably extended model, or possi-
bly in experiments with market games. Further directions for investigation might include
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agents with heterogeneous learning parameters [26], a feature that will clearly be present in
markets that are used both by individual investors and e.g. large funds. Additionally, the mar-
kets themselves could be made adaptive, with the aim of understanding whether the resulting
competition between markets will suppress or promote segregation. There is clearly also scope
for capturing more complex trading strategies in models like ours, something we have post-
poned as we were motivated by the simplicity of high-frequency trading algorithms and more
broadly by the aim to develop a baseline model on which further extensions can be built.

Methods

Numerical Simulations
The parameters of the system are summarized in Table 1 with their definitions and the stan-
dard values that are used in the main text unless otherwise specified. For all numerical simula-
tions (adaptive) agents were initialized with Ag ¼ 0 8g 2 fB1;S1;B2;S2g and the trading
dynamics was run until a stationary state was reached. Similarly in the simplified model with

fixed preferences for buying, AðgÞ
1;2 ¼ 0 for all agents initially. The time required to reach a steady

state was highly dependent on the chosen parameters (longer for low r and high β), but for the
results presented in this paper was in the range between 1,000 and 10,000 trading periods. To
be sure that the system reached the steady state we measured average returns, attractions and
higher cumulants of the attraction distributions; when the averages of these observables
became independent of time we assumed stationarity and started collecting the data for the
analysis. Statistics presented in the paper are gathered for each parameter setting from 100
independent runs of the stochastic dynamics. Time averages are usually taken over 10/r trading
periods at the end of each simulation run.

Continuous double auction markets. For the preliminary results presented in the Out-
look, we consider a system of market and traders introduced by Tóth et al. [33]. The market is
a continuous double auction market with an open order book. Each trading period consists of
an open call, during which every trader submits an order to populate the limit order book, fol-
lowed by rounds during which a random trader can inspect the limit order book and then
decides whether to execute an already existing order or to submit a new one. This decision pro-
cess is governed by a fundamentalist trading strategy as follows. In the model, there is an
underlying dividend process that determines the value of a stock. Different traders have

Fig 11. Distribution of attractions to markets in a continuous double auction setting.We show
distributions P(Δ12) after 100 trading periods, each consisting of an initial call to populate the limit order book
and then 2000 trading steps in which a random agent is selected to consider the limit order book and decide
whether to execute an existing order or submit a new one. The distribution is an average over 10 independent
runs of a system with N = 2000 traders, whose learning parameters are 1/β = 0.07 and r = 0.05.

doi:10.1371/journal.pone.0154606.g011
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different numbers of future dividend values accessible to them, starting from no information
(thus, close to our Zero Intelligence traders) to information about L future dividend values. (In
previous studies L ranged from 3 to 10; we use L = 4, giving a total of five different types of
agents including the uninformed ones). Based on their knowledge of future dividends, agents
evaluate their stock holding using a dividend discount model, e.g. Gordon’s growth model
[35]. This valuation is used as a private value based on which an agent decides whether to buy
(when the best ask is lower than his/her private value), sell (when the best bid is higher than
the private value) or submit a new order. These details of the trading strategy are the same as in
[33]; generally and unless mentioned otherwise, we follow exactly the existing model. The pri-
vate value of an uninformed trader is a normally distributed random variable centred at the
most recent trading price. Agents also have initial endowments in terms of number of stocks
and available cash: in previous studies each agent had 40 shares and the equivalent value in
cash to start with, but as we look at much longer simulations, of 100 to 1000 trading periods as
opposed to 10–30, we increase the initial wealth to 100 shares plus the equivalent value in cash.

When we introduce the second market, agents choose not only whether to buy or sell, based
on dividend information as above, but also where they will trade; we assume they use the rein-
forcement rule Eq (2). As before this relies on scores the agents assign after each trade. Because
of the existence of a limit order book we need to differentiate between the Aggressor (the trader
who executes an order from the limit order book) and the Quoter (the trader whose order was
waiting in the limit order book) in assigning scores. As the trade happens at the price of the
order existing in the limit order book, then for the aggressor we have his/her private value and
the trading price, so the scores are as before: S(t) = pv(t) − π(t) if the agent buys (as the s/he val-
ues the stock more) and S(t) = π(t) − pv(t) if the agent sells (as s/he believes the stock is worth
less). On the other hand, the quoter’s order was waiting in the limit order book, so his/her pri-
vate value may have changed from the moment the order was submitted. We therefore calcu-
late the returns as S(t) = π(t − 1) − π(t) if the quoter buys and S(t) = π(t) − π(t − 1) if s/he sells:
buyers value a price decrease while sellers value a price increase. We ran large systems
(N = 2000 as opposed to N = 100 in the original works) and took the number of trading rounds
within a period as N, so that on average every trader is chosen once to observe the order book
and make a trading decision.
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