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Igor Franović,1,a) Serhiy Yanchuk,2,b) Sebastian Eydam,3,c) Iva Bačić,1,d) and Matthias Wolfrum3,e)
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ABSTRACT

We study an excitable active rotator with slowly adapting nonlinear feedback and noise. Depending on the adaptation and the noise level, this
system may display noise-induced spiking, noise-perturbed oscillations, or stochastic bursting. We show how the system exhibits transitions
between these dynamical regimes, as well as how one can enhance or suppress the coherence resonance or effectively control the features
of the stochastic bursting. The setup can be considered a paradigmatic model for a neuron with a slow recovery variable or, more generally,
as an excitable system under the influence of a nonlinear control mechanism. We employ a multiple timescale approach that combines the
classical adiabatic elimination with averaging of rapid oscillations and stochastic averaging of noise-induced fluctuations by a corresponding
stationary Fokker–Planck equation. This allows us to perform a numerical bifurcation analysis of a reduced slow system and to determine the
parameter regions associated with different types of dynamics. In particular, we demonstrate the existence of a region of bistability, where the
noise-induced switching between a stationary and an oscillatory regime gives rise to stochastic bursting.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5145176

Recent years have witnessed a rapid expansion of stochastic mod-
els for a wide variety of important physical and biological phe-
nomena, from sub-cellular processes and tissue dynamics, over
large-scale population dynamics and genetic switching to optical
devices, Josephson junctions, fluid mechanics, and climatology.
These studies have demonstrated that the effects of noise manifest
themselves on a broad range of scales but, nevertheless, display
certain universal features. In particular, the effects of noise may
generically be cast into two groups. On the one hand, the noise
may enhance or suppress the features of deterministic dynam-
ics, while on the other hand, it may give rise to novel forms of
behavior, associated with the crossing of thresholds and separa-
trices or with stabilization of deterministically unstable states.
The constructive role of noise has been evinced in diverse applica-
tions, from neural networks and chemical reactions to lasers and
electronic circuits. Classical examples of stochastic facilitation in

neuronal systems concern resonant phenomena, such as coher-
ence resonance, where an intermediate level of noise may trigger
coherent oscillations in excitable systems, as well as spontaneous
switching between the coexisting metastable states. In the present
study, we show how the interaction of noise and multiscale
dynamics, induced by slowly adapting feedback, may affect an
excitable system. It gives rise to a new mode of behavior based on
switching dynamics, namely, the stochastic bursting and allows
for an efficient control of the properties of coherence resonance.

I. INTRODUCTION

Multiscale dynamics is ubiquitous in real-world systems. In
neuron models, for instance, the evolution of recovery or gat-
ing variables is usually much slower than the changes of the
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membrane potential.1,2 At the level of neural networks, certain
mechanisms of synaptic adaptation, such as the spike timing-
dependent plasticity,3–5 are slower than the spiking dynamics of
individual neurons. When modeling the dynamics of semiconductor
lasers,6–8 one similarly encounters at least two different timescales,
one related to the carriers’ and the other to the photons’ lifetime,
whereby their ratio can span several orders of magnitude. Investi-
gating the dynamics of such multiscale systems has led to the devel-
opment of a number of useful asymptotic and geometric methods,
see Refs. 9–13, to name just a few.

Another ingredient inevitable in modeling real-world systems
is noise, which may describe the intrinsic randomness of the system
and the fluctuations in the embedding environment or may derive
from coarse-graining over the degrees of freedom associated with
small spatial or temporal scales.14,15 For instance, neuronal dynam-
ics is typically influenced by intrinsic sources of noise, such as the
random opening of ion channels, and by external sources, like the
synaptic noise.16 In chemical reactions, noise comprises finite-size
effects, while the stochasticity in laser dynamics reflects primarily
quantum fluctuations. In general, the impact of noise can manifest
itself by modification of the deterministic features of the system or
by the emergence of qualitatively novel types of behavior, induced
by the crossing of thresholds or separatrices.17

In the present paper, we study the effects of slowly adapting
feedback and noise on an excitable system. Excitability is a gen-
eral nonlinear phenomenon based on a threshold-like response of
a system to perturbation.1,15,18,19 An excitable system features a stable
“rest” state intermitted by excitation events (firing), elicited by per-
turbations. In the absence of a perturbation, such a system remains
in the rest state and a small perturbation induces a small-amplitude
linear response. If the perturbation is sufficiently strong, an excitable
system reacts by a large-amplitude nonlinear response, such as a
spike of a neuron. When an excitable system receives additional
feedback or a stochastic input or is coupled to other such systems,
new effects may appear due to the self- or noise-induced excita-
tions, as well as excitations from the neighboring systems. Such
mechanisms can give rise to different forms of oscillations, patterns,
propagating waves, and other phenomena.15,20–28

Our focus is on a stochastic excitable system subjected to a slow
control via a low-pass filtered feedback

v̇(t) = f(v(t), µ(t)) +
√

Dξ(t), (1)

µ̇(t) = ε(−µ(t) + ηg(v(t))), (2)

where ε & 0 is a small parameter that determines the timescale sep-
aration between the fast variable v(t) and the slow feedback variable
µ(t). The fast dynamics ˙v(t) = f(v(t), 0) is excitable and is influ-
enced by the Gaussian white noise ξ(t) of variance D. Moreover,
the slow feedback variable µ controls its excitability properties. The
parameter η is the control gain such that for η = 0, one recovers a
classical noise-driven excitable system.15 An important example of a
system conforming to (1) and (2) for η 6= 0 is the Izhikevich neu-
ron model,29 where the stochastic input to the fast variable would
describe the action of synaptic noise.

Here, we analyze a simple paradigmatic example from the
class of systems (1) and (2), where the excitable local dynamics is

represented by an active rotator

ϕ̇(t) = I − sin ϕ(t) with ϕ ∈ [0, 2π).

The latter undergoes a saddle-node infinite period (SNIPER, some-
times also called SNIC – saddle node on invariant circle) bifurcation
at |I| = 1, turning from excitable (|I| . 1) to oscillatory regime |I|
> 1, see Ref. 30. The adaptation is represented by a positive periodic
function g(ϕ) = 1 − sin ϕ such that the complete model reads

ϕ̇(t) = I0 + µ(t) − sin ϕ(t) +
√

Dξ(t), (3)

µ̇(t) = ε (−µ(t) + η (1 − sin ϕ(t))) . (4)

In the presence of feedback, the noiseless dynamics of the active
rotator depends now on I = I0 + µ(t) involving the control variable
µ(t), which can induce switching between the excitable equilibrium
and the oscillatory regime. This adaptation rule provides a posi-
tive feedback for the spikes and oscillations, since µ(t) increases
when ϕ(t) is oscillating and drives the system toward the oscilla-
tory regime, while in the vicinity of the equilibrium (sin ϕ ≈ 1) the
control signal effectively vanishes.

We examine how the behavior of (3) and (4) is influenced by
the noise level D and the control gain η, determining the phase dia-
gram of dynamical regimes in terms of these two parameters. The
first part of our results in Sec. II concerns the noise-free system
D = 0, where we employ a combination of two multiscale methods,
namely, adiabatic elimination in the regime where the fast subsys-
tem has stable equilibrium and the averaging approach when the fast
subsystem is oscillatory. As a result, we obtain a reduced slow system
that is capable of describing both the slowly changing fast oscilla-
tions and the slowly drifting equilibrium, as well as the transitions
between these regimes. The bifurcation analysis of this slow system
reveals the emergence of bistability between the fast oscillations and
the equilibrium for sufficiently large η.

The second part of our results, presented in Sec. III, addresses
the multiscale analysis of the dynamics in the presence of noise
(D 6= 0). Instead of deterministic averaging, we apply the method
of stochastic averaging,25,31–34 where the distribution density for the
fast variable obtained from a stationary Fokker–Plank equation is
used to determine the dynamics of the slow flow. In this way, we
obtain a deterministic slow dynamics for which one can perform a
complete numerical bifurcation analysis with respect to D and η. In
Sec. IV, we investigate the effects of stochastic fluctuations on the
slow dynamics, which vanish in the limit of infinite timescale sep-
aration ε → 0 employed in Sec. III. The effect of a slowly adapting
feedback on the coherence resonance is shown by extracting from
numerical simulations the coefficient of variation of the spike time
distribution in the excitable regime. In particular, we compare the
results for small positive ε with the case of infinite time scale sepa-
ration, where we use the stationary but noise dependent µ obtained
in Sec. III. The noise-induced switching dynamics in the bistabil-
ity region is demonstrated by numerical simulations showing an
Eyring–Kramers type of behavior.

In terms of the different dynamical regimes, our study of
stochastic dynamics reveals three characteristic (D, η) regions fea-
turing noise-induced spiking, noise-perturbed spiking, and stochas-
tic busting (see Fig. 1). We show that by varying the control gain
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FIG. 1. Different dynamical regimes in the stochastic excitable system subjected
to a slow control via a low-pass filtered feedback (3) and (4) with ε = 0.005,
D = 0.008 and different choices of the control gain η: noise-induced spiking (a),
stochastic bursting (b), and noise-perturbed spiking (c).

within the region of noise-induced spiking, one can enhance or sup-
press the coherence resonance, while within the bistability region,
one can efficiently control the properties of stochastic bursting.
Sections II–IV provide a detailed analysis of the described phenom-
ena.

II. SLOW–FAST ANALYSIS OF THE DETERMINISTIC

DYNAMICS

In this section, we analyze the systems (3) and (4) in the absence
of noise (D = 0)

ϕ̇(t) = I0 − sin ϕ(t) + µ(t), (5)

µ̇(t) = ε (−µ(t) + η (1 − sin ϕ(t))) , (6)

considering the limit ε → 0 within the framework of singular per-
turbation theory. The fast subsystem

ϕ̇(t) = I0 + µ − sin ϕ(t), (7)

often called a “layer equation” describes the dynamics on the fast
timescale and is obtained from (5) and (6) by setting ε = 0, whereby
µ acts as a parameter.

A. Dynamics for µ<1− I0: Adiabatic elimination

In the case µ < 1 − I0, the fast subsystem (7) possesses two
equilibria

ϕ+(µ) = arcsin(I0 + µ), ϕ−(µ) = π − ϕ+(µ), (8)

where ϕ+ is stable and ϕ− is unstable. Considering them as functions
of the parameter µ, the equilibria give rise to two branches, which

FIG. 2. Critical manifold and fast dynamics of systems (5) and (6). For
µ < 1 − I0, the fast dynamics converges to the stable branch of the critical
manifold, while for µ > 1 − I0, it is oscillatory with periodic rotation of the
phase ϕ.

merge in a fold at µ = 1 − I0 (see Fig. 2). Equivalently, the set of
equilibria of the fast subsystem

{(ϕ, µ) : sin ϕ = I0 + µ} (9)

comprises the critical manifold of (5) and (6), with the stable part
ϕ+(µ) and the unstable part ϕ−(µ).

Hence, for µ < 1 − I0, the trajectories are rapidly attracted
toward the stable branch of the critical manifold, along which for
positive ε they slowly drift. In order to describe this slow dynamics,
we rescale time T = εt and obtain

εϕ′(T) = I0 + µ(T) − sin ϕ(T), (10)

µ′(T) = −µ(T) + η(1 − sin ϕ(T)), (11)

where the prime denotes the derivative with respect to the slow time
T. Setting ε = 0, we can directly eliminate the term sin ϕ(T) = I0 +
µ(T) and obtain the equation for the slow dynamics on the critical
manifold

µ′(T) = −µ(T) + η(1 − I0 − µ(T)). (12)

B. Dynamics for µ>1− I0: Averaging fast oscillations

For µ > 1 − I0, there is no stable equilibrium of the fast sub-
system (7) (see Fig. 2). Instead, one finds periodic oscillations

ϕµ(t) = 2 arctan
1 + �(µ) tan t

2
�(µ)

I0 + µ
, (13)

with the µ-dependent frequency

�(µ) =
√

(I0 + µ)2 − 1.

In this case, the fast oscillations ϕµ(t) should be averaged in order
to obtain the dynamics of the slow variable µ(T), see Refs 35
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and 36. A rigorous formal derivation is provided in Appendix A,
finally arriving at

µ′(T) = −µ(T) + η(1 − I0 − µ(T) + �(µ(T))). (14)

Here, we give a simplified explanation of the averaging procedure.
First, we substitute the fast-oscillating solution ϕ = ϕµ(t) of the fast
subsystem into the equation for the slow variable (11),

µ′(T) = −µ(T) + η(1 − sin ϕµ(t)).

Since the term sin(·) is fast oscillating, the last equation can be
averaged over the fast timescale t, which leads to

µ′(T) = −µ(T) + η
(

1 −
〈

sin ϕµ(t)
〉

t

)

. (15)

The average
〈

sin ϕµ(t)
〉

t
can be found by integrating (7) over the

period, which gives

〈ϕ̇(t)〉t = �(µ) = I0 + µ − 〈sin ϕµ(t)〉t. (16)

Hence, by substituting

〈sin ϕµ(t)〉t = I0 + µ(T) − �(µ(T))

into (15), we obtain the slow averaged dynamics (14).

C. Combined dynamics of the slow variable

Summarizing the results so far, Eq. (12) describes the dynamics
of the slow variable for µ < 1 − I0, while Eq. (14) holds for µ >

1 − I0. These two equations can be conveniently combined into a
single equation of the form (14) by extending the definition of the
frequency �(µ) as follows:

�(µ) =
{

0, µ < 1 − I0,
√

(I0 + µ)2 − 1, µ > 1 − I0.
(17)

Hence, the slow dynamics is described by the scalar ordinary dif-
ferential equation on the real line (14), and, as a result, the only
possible attractors are fixed points, which are given by the zeros of
the right-hand side as

�(µ) = η + 1

η
µ + I0 − 1. (18)

Geometrically, they are points of intersection of the frequency pro-
file �(µ) with the line η+1

η
µ + I0 − 1 [see Fig. 3(a)]. In particular,

one can check that there is always one fixed point

µ1 = η(1 − I0)

1 + η
< 1 − I0, (19)

for which �(µ1) = 0 such that it corresponds to a pair of equilibria
on the critical manifold (9). Since µ1 is stable for the slow dynamics,
the point (ϕ+(µ1), µ1) is also a stable equilibrium for original sys-
tems (5) and (6) with small ε. The other two fixed points of the slow

FIG. 3. (a) Graphical solution of the fixed point Eq. (18): �(µ) according to (17)
(black) and the right-hand side of (18) for different choices of η. One finds from
one to three fixed points depending on η. (b) Scheme of the slow–fast dynamics of
systems (5) and (6) with parameters I0 = 0.95 and η = 0.38 and the numerical
sample trajectories for ε = 0.005 (red). Forµ < 1 − I0, trajectories are attracted
to the stable branch of the slow manifold (blue curve) and subsequently slowly
drift toward the stable fixed point (ϕ+(µ1),µ1) (black dot). For µ > 1 − I0, the
sample trajectories show fast oscillations in ϕ with a slow average drift inµ in the
direction indicated by the arrows.

equation

µ2,3 =
η

(

1 + η − I0 ∓
√

(η + I0)
2 − 1 − 2η

)

1 + 2η
, (20)

with �(µ2,3) > 0 appear in a saddle-node bifurcation at

ηsn = 1 − I0 +
√

2(1 − I0) (21)

and correspond to a pair of periodic orbits of fast subsystem (7).
In Fig. 3(b) we show schematically the results of our slow–fast

analysis for I0 = 0.95 and η = 0.38. For the chosen parameter values
there are two stable regimes: the fixed point (ϕ+(µ1), µ1) and a fast
oscillation with 〈µ(t)〉t ≈ µ3.

Finally, Fig. (4) presents the bifurcation diagram of the fixed
points of the slow dynamics with respect to the control gain η.
One observes that there is always one branch of stable fixed points
corresponding to the steady state and two stable fixed points corre-
sponding to fast oscillations for η > ηsn. For our choice of I0 = 0.95,
we obtain ηsn ≈ 0.3662.

III. SLOW–FAST ANALYSIS OF THE DYNAMICS WITH

NOISE

In this section, we consider the dynamics of systems (3) and (4)
in the presence of noise (D > 0). In analogy to the noise-free case,
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FIG. 4. Fixed points of the slow dynamics (14) for varying control gain η. The
valuesµ2,3 on the upper branch (black curve) correspond to periodic orbits of the
fast subsystem (7), while µ1 (blue curve) is the branch of fixed points; solid and
dashed lines indicate stable and unstable solutions, respectively. The direction
of the motion in µ(T) is indicated by the arrows. The dotted lines indicate the
onset of bistability for η = ηsn and the transition at µc = 1 − I0 from equilibria
to periodic orbits.

one can use the limit ε → 0 and employ the stochastic average

〈sin ϕ(t)〉t = lim
t−→∞

1

t

∫ t

0

sin ϕ(t)dt′,

for solutions of the stochastic fast equation

ϕ̇(t) = I0 + µ − sin ϕ(t) +
√

Dξ(t) (22)

to approximate the slow dynamics in (11) by

µ′(T) = −µ(T) + η(1 − 〈sin ϕ(t)〉t). (23)

To this end, we consider the stationary probability density distribu-
tion ρ(ϕ; µ, D) for the fast noisy dynamics (3), which for fixed con-
trol µ and noise intensity D is given as a solution to the stationary
Fokker–Planck equation

D

2
∂ϕϕρ − ∂ϕ [(I0 + µ − sin ϕ)ρ] = 0, (24)

together with the periodic boundary conditions ρ(0) = ρ(2π) and
the normalization

∫ 2π

0

ρ(ϕ; µ, D)dϕ = 1. (25)

From this, we can calculate the average

〈sin ϕ(t)〉t =
∫ 2π

0

ρ(ϕ; µ, D) sin ϕdϕ (26)

and obtain the mean frequency

�D(µ) = I0 + µ − 〈sin ϕ(t)〉t, (27)

which depends via (26) both on D and µ. Taking into account (23)
and (27), the equation for the slow dynamics of µ(T) reads

µ′(T) = −µ(T) + η(1 − I0 − µ + �D(µ(T))), (28)

FIG. 5. Average frequency of the fast dynamics (3) given by (26) and (27) using
numerical solutions of the stationary Fokker–Planck Eq. (24), where µ acts as a
time independent parameter and fixed I0 = 0.95.

i.e., it is of the same form as in the deterministic case (14). The cor-
responding fixed point equation for the stationary values of µ with
respect to the slow dynamics is given by (18).

The stationary Fokker–Planck Eq. (24) can be solved directly
by integral expressions [see Appendix B]. In particular, for D = 0,
we readily recover the results for periodic averaging from Sec. II.
However, for small non-vanishing D, the integrals become difficult
to evaluate numerically, and we preferred to solve (24) as a first-
order ODE boundary value problem with software AUTO,37 which
provides numerical solutions to boundary value problems by col-
location methods together with continuation tools for numerical
bifurcation analysis.

In Fig. 5 are shown the numerically obtained effective fre-
quencies �D(µ) for different noise levels D. Solving the stationary
Fokker–Planck Eq. (24) together with the fixed point equation for
µ(T) (18), we obtain for fixed values of D and varying control gain
η branches of stationary solutions (µ∗, ρ(ϕ; µ∗, D)) [see Fig. 6(a)].
For small noise intensities, these branches are folded, which indi-
cates the coexistence of up to three stationary solutions, similarly
as in the noise-free case. Alternatively, we can also fix η and obtain
branches for varying D [see Fig. 6(c)]. For small η they are mono-
tonically increasing, while for larger η they are folded. For ηsn < η

there are two separate branches, emanating from the three solutions
of (18) at D = 0.6

Numerical continuation of the folds in the (η, D) parameter
plane provides the curves outlining the boundaries of the bistabil-
ity region. Figure 6(b) shows that the two branches of folds meet at
a cusp point (ηcu, Dcu). One of the branches approaches for D → 0
the value η = ηsn, which we have calculated in (21), while the other
one diverges to infinite values of η. From our numerics for different
values of I0, we observe that closer to the critical value I0 = 1, the
cusp point shifts to a smaller noise intensity D such that the region
of bistability decreases.

Note that for D > 0, all the average frequencies satisfy �D > 0
such that a clear distinction between the stationary and the oscilla-
tory regime of the fast dynamics is no longer possible. However, one
can compare the critical value of the deterministic fast dynamics

µc = 1 − I0, (29)

Chaos 30, 083109 (2020); doi: 10.1063/1.5145176 30, 083109-5
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FIG. 6. Panels (a) and (c): Branches of fixed points µ∗ of the slow dynamics
(28) calculated at I0 = 0.95 from (18) together with the stationary Fokker–Planck
Eq. (24). (a) Branches µ∗(η) for noise values D = 0.005, 0.006, . . . , 0.019 and
(b) two-dimensional bifurcation diagrams in terms of η and D for three different
values of I0 show the curves of fold bifurcations, which meet at the cusp point.
Dashed curves indicate the case whereµ∗ = µc = 1 − I0. (c) Branchesµ∗(D)

for control gain values η ∈ {0.2, 0.3, 0.35, 0.4}.

with the corresponding stationary value µ∗ of the slow variable from
(28) to distinguish between the regime of µ∗ < µc, where the oscil-
lations are induced by the noisy fluctuations of µ(t) and have the
form of rare spikes [see Fig. 1(a)], and the regime µ∗ > µc where
the oscillatory behavior is already induced by the stationary value of
µ∗ [see Fig. 1(c)].

Our numerical bifurcation analysis shows that the curves where
the stationary values of µ satisfy the condition µ = µc, shown as
dashed line in Fig. 6(b), pass exactly through the corresponding cusp
points and inside the bistability region refer to the unstable solu-
tions given by the middle part of the S-shaped curves in Fig. 6(a).
From this, we conclude that changing the parameters across this line
outside the bistability region results in a gradual transition between
the regime of fluctuation-induced oscillations and the oscillations
induced by the stationary value of µ∗, while at the boundary of the

bistability region, a hysteretic transition between the two regimes
is obtained. Moreover, for finite timescale separation ε > 0, there
can also be transitions between the two stable regimes within the
bistability region, which are induced as well by the stochastic fluc-
tuations. In Sec. IV, we study in detail how the region of bistability
found for the singular limit ε → 0 also affects the dynamics of the
original system in the case of finite timescale separation.

IV. EFFECTS OF FLUCTUATIONS AND FINITE

TIMESCALE SEPARATION

The two basic deterministic regimes of the fast dynamics, which
are the excitable equilibrium, and the oscillations induce in a natural
way the two corresponding states of the system with noise and small
ε > 0, namely,

• noise-induced spiking, characterized by a Poisson-like distribu-
tion of inter-spike intervals (ISIs) [see Fig. 7(a)] and

• noisy oscillations, involving a Gaussian-like distribution of the
ISIs, centered around the deterministic oscillation period [see
Fig. 7(b)].

These states are found for sufficiently small or large values of
η, respectively, where only a corresponding single branch of the
deterministic system is available and the fluctuations of µ around
its average value have no substantial impact on the dynamics, cf. the
blue and orange distributions in Fig. 7. For sufficiently large noise
levels above the cusp (D > Dcu) and intermediate values of η, one
observes a gradual transition between these two regimes. However,
for smaller noise D < Dcu, allowing for the existence of the region

FIG. 7. Histograms of inter-spike intervals of the phase variable for control gain
η = 0.2 (top panel) and η = 0.5 (bottom panel) obtained from numerical sim-
ulations of full systems (3) and (4) with ε = 0.005 (orange) and in the limit of
infinite timescale separation (blue), using (22) with the stationary µ(T) ≡ µD

determined from the stationary Fokker–Planck Eq. (24). Solid red and dashed
blue curves represent fits to an exponential decay (a) and a Gaussian (b) for the
histograms concerning the full system and the limit of infinite scale separation,
respectively.
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of bistability [cf. Fig. 6(b)], new regimes of stochastic dynamics can
emerge, namely,

• enhanced coherence resonance, where a noise-induced dynamical
shift of the excitability parameter I0 + µD is self-adjusted close to
criticality and

• noise-induced switching between the two coexisting regimes in
the bistability region [see Fig. 1(b)].

A. Enhanced coherence resonance

The phenomenon of coherence resonance,20,38,39 where the reg-
ularity of noise-induced oscillations becomes maximal at an inter-
mediate noise level, is well-known for noisy excitable systems such as
the fast Eq. (22) without adaptation, i.e., for η = 0 and therefore also
µ = 0. For values of the control gain 0 < η < ηcu below the region
of bistability, the control leads to a substantially enhanced coherence
resonance. This effect can be quantified by studying the noise depen-
dence of the coefficient of variation of the inter-spike intervals. For
a given noisy trajectory of (22), the spiking times tk are defined as
the first passage times ϕ(tk) = 2πk, k ∈ N with corresponding inter-
spike intervals τk = tk − tk−1. The coefficient of variation of their
distribution is defined as

R(D) =

√

〈τ 2
k 〉 − 〈τk〉2

〈τk〉
. (30)

For (22) with a fixed µ, the latter can be determined from direct
numerical simulations. However, inserting for µ the corresponding
stochastic averages µ∗(D; η) obtained in the section shows a strong
nonlinear dependence both on η and D [see also Figs. 6(a) and 6(c)].
In particular, the strong nonlinear dependence on D for η slightly
below the cusp value ηcu has a substantial impact on the resonant
behavior reflected in the form of R(D). In Fig. 8, we show the R(D)

dependence for different values of the control gain η, comparing
the numerical results for the fast subsystem (22) with inserted sta-
tionary values µ∗(D; η) to numerical simulations of (3) and (4) for
ε = 0.005. For 0 < η < ηcu, one finds that the coherence resonance
can be substantially enhanced, cf., for example, the R(D) dependen-
cies for η = 0 and η = 0.3. On the other hand, introducing negative
values of the control gain η, the resonant effect can be readily sup-
pressed. This implies that the adaptive feedback we employ provides
an efficient control of coherence resonance. Such an effect has already
been demonstrated in Refs. 40, 41, and 42 by using a delayed feed-
back control of Pyragas type. However, this control method requires
the feedback delay time as an additional control parameter to be well
adapted to the maximum resonance frequency.

B. Bursting behavior due to noise-induced switching

For parameter values (η, D) within the bistable region and
finite timescale separation ε > 0, the coexisting states of excitable
equilibrium and fast oscillations turn into metastable states of full
systems (3) and (4). Based on our slow–fast analysis, the correspond-
ing dynamics can be understood as follows. The noisy fluctuations
of ϕ(t) around its average distribution, given by the stationary
Fokker–Planck Eq. (24), induces fluctuations of 〈sin ϕ(t)〉t, and
hence also of µ, around their stationary average values calculated

FIG. 8. Enhancement or suppression of coherence resonance by a slowly adapt-
ing feedback control. The connected lines with empty symbols refer to R(D)

dependencies for full systems (3) and (4) at different values of the control gain:
η = −0.2 (green hexagonals), η = 0 (black squares), η = 0.2 (red circles),
and η = 0.3 (blue diamonds), having fixed I0 = 0.95, ε = 0.005. The uncon-
nected filled symbols indicate the corresponding R(D) dependencies obtained
from numerical simulations of the fast subsystem 22 with stationary µ∗(D).

above. For small ε, the corresponding distribution of µ is centered in
narrow peaks at the stable stationary values. However, with increas-
ing ε, the nonlinear filtering induces a strong skewness of each
peak in the distribution, and their overlapping indicates the possi-
bility of noise-induced transitions between the two metastable states.
Figure 9 shows the distribution for ε = 0.005 and different values of
the η within the bistability region. These transitions can be under-
stood in analogy to the Eyring–Kramers process in a double well
potential. In the generic case of different energy levels for the two
potential wells, transitions in one of the directions occur at a higher
rate and the system stays preferably in the state associated with the
global minimum of the potential. Such behavior of biased switch-
ing is very pronounced closed to the boundaries of the bistability
region, where a switching to the state close to the fold has a much
lower probability than switching back.

In Fig. 10 are shown the numerical time averages 〈µ(T)〉 for
varying control gain η. One can see that for most values of η,
the long-time behavior is dominated by one of the two metastable
states, which indicates a biased switching process. Nevertheless, at
an intermediate value of η, we find a balanced switching, where
transitions in both directions occur at an almost equal rate. A cor-
responding time trace is shown in Figs. 11 and 1(b). For ε → 0,
the switching rate decreases to zero exponentially and the switching
bias in the unbalanced regime increases. This leads to the char-
acteristic steplike behavior of the averages observed in Fig. 10 for
smaller ε.

The noise-induced switching shown in Figs. 11 and 1(b) resem-
bles the regime of bursting in neuronal systems. Here, it emerges
by an interplay of slow adaptation and noise. In the present setup,
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FIG. 9. Stationary distributions P(µ), sam-
pled from numerical simulations of (3) and (4)
with ε = 0.005. Parameters η = 0.37 in (a),
η = 0.373 in (b) and η = 0.38 in (c) and fixed
noise level D = 0.009 lie inside the bistability
region from Fig. 6(b). Blue vertical lines indi-
cate the fixed points of µ from the stationary
Fokker–Planck Eq. (24) together with the fixed
point Eq. (18) of the slow dynamics. Red ver-
tical lines indicate the mean values of all µ in
P(µ) below and of all µ above the unstable
fixed point in the middle (dashed blue lines).

the bursts are triggered just by the stochastic fluctuations. However,
in regime η > ηcu, the system is also quite susceptible to external

inputs, which could initiate the bursts even without any intrinsic

noise.

FIG. 10. Long-time averages 〈µ〉T from numerical simulations of (3) and (4) with
fixed noise intensity D = 0.008 and varying control gain η at different values
of ε ∈ {0.002, 0.005, 0.01, 0.02}. The black curve represents the corresponding
result for the infinite timescale separation [cf. Fig. 6(a)].

V. DISCUSSION AND OUTLOOK

Our model provides a novel perspective on how the dynamics
of an excitable system is influenced by the interaction of a slowly
adapting feedback and noise. The feedback is taken from a low-pass

FIG. 11. Time series ϕ(t) (top panel) and µ(t) (bottom panel) illustrating
the regime of balanced switching. The system parameters are η = 0.38,
D = 0.008, I0 = 0.95, ε = 0.01.
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FIG. 12. Upper panel: parameter regions for different
dynamical regimes: noise-induced spiking (blue), noise-per-
turbed oscillations (red), and noise-induced bursting (vio-
let). Enhanced coherence resonance can be found in the
hatched region. Symbols indicate the parameter values asso-
ciated with the histograms P(µ) shown below. Lower panels:
sampled distributions of µ(T) from numerical solutions with
ε = 0.005, D = 0.008, and η ∈ 0.3, 0.38, 0.5.

filter of a function that gives a positive feedback to the oscillations
by pushing the excitability parameter toward the oscillatory regime.
Since excitability, feedback, and noise are typical ingredients of neu-
ral systems, we believe that the application of our results to a specific
neural model would be a next natural step, aiming to gain a deeper
understanding of the onset of different dynamical regimes, as well as
the means of controlling their properties and the emerging resonant
effects. In Fig. 12 are summarized our main results. In particular,
the multiple timescale analysis for the limit of infinite timescale
separation has allowed us to perform a numerical bifurcation anal-
ysis providing the parameter regions for the different dynamical
regimes illustrated in Fig. 1. Numerical simulations for finite values
of ε (lower panels in Fig. 12) show that the slowly varying con-
trol variable µ(T) is distributed around the stationary values from
the limiting problem ε = 0 [see also Fig. 9]. Moreover, we have
demonstrated that the filtered feedback in our model provides an
efficient control of the effect of coherence resonance, which can be
substantially enhanced or suppressed by a corresponding choice of
the feedback gain. In the regime where the limiting problem ε = 0
indicates bistability between the equilibrium and a fast oscillation,
the stochastic fluctuations at finite values of ε give rise to switch-
ing between the associated metastable states. However, our analysis
shows that for sufficiently high noise intensity, this bistability van-
ishes and the two different deterministic states can no longer be
distinguished.

From the point of view of the theory of multiscale systems,
the deterministic part of the presented model provides one of the
simplest examples combining the regimes of stable equilibrium and
oscillations within the fast subsystem. A rigorous mathematical
treatment of the dynamical transitions between the two regimes and
the corresponding reductions by the standard adiabatic elimination
and the averaging technique is still missing. Also, our approach to
analysis of stochastic dynamics in multiscale systems by introducing
a stationary Fokker–Planck equation for the fast dynamics leads to
important questions concerning the limiting properties of the trajec-
tories and the specific implications of the fluctuations. Nevertheless,
we have considered only the case when the noise acts in the fast
variable. An open problem is to study how the obtained results are
influenced by the noise in the slow variable, where interesting new
effects can be expected.43
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APPENDIX A: MULTISCALE AVERAGING IN THE

REGIME OF FAST OSCILLATIONS

In this appendix, we provide a rigorous formal derivation of the
slow averaged Eq. (14) for the case of periodic dynamics in the fast
layers.

We apply the following general multiscale ansatz:

ϕ = ϕ̄(t, εt) + εϕ̂(t, εt),

µ = µ̄(t, εt) + εµ̂(t, εt).

Substituting this ansatz into (3) and (4), one obtains up to the terms
of the order ε,

∂1ϕ̄ + ε∂2ϕ̄ + ε∂1ϕ̂ = I0 − sin
(

ϕ̄ + εϕ̂
)

+ µ̄ + εµ̂,

∂1µ̄ + ε∂2µ̄ + ε∂1µ̂ = ε
(

−µ̄ − εµ̂ + η
(

1 − sin
(

ϕ̄ + εϕ̂
)))

,

where subscripts 1 and 2 refer to partial derivatives with respect to t
and εt, respectively. Collecting the terms of order O(1), one finds

∂1ϕ̄ = I0 − sin ϕ̄ + µ̄, (A1)

∂1µ̄ = 0. (A2)

Equation (A2) implies that µ̄ = µ̄(εt) depends only on the slow
time and acts as a parameter in (A1). For µ̄ > 1 − I0, Eq. (A1)
has the oscillating solution ϕ̄ = ϕµ̄(t) given by (13). Note that the
parameters of this solution can depend on the slow time.

As a next step, we consider the terms of order ε,

∂2ϕ̄ + ∂1ϕ̂ = −ϕ̂ cos ϕ̄ + µ̂,

∂2µ̄ + ∂1µ̂ = −µ̄ + η (1 − sin ϕ̄) .
(A3)

We rewrite Eq. (A3) as

∂2µ̄ + µ̄ = −∂1µ̂ + η (1 − sin ϕ̄) , (A4)

where the left-hand side depends only on the slow time. Hence, the
solvability condition for (A4) is the requirement that its right-hand
side is independent on the fast time t, i.e.,

− ∂1µ̂ + η (1 − sin ϕ̄) = u(T), (A5)

with some function u(T), where T = εt is the slow time. By integrat-
ing (A5) with respect to the fast time, we obtain

µ̂(t) = µ̂(0) + η

(

t −
∫ t

0

sin ϕ̄ dt

)

− tu(T). (A6)

The integral in (A6) can be computed using (A1),

∫ t

0

sin ϕ̄dt = tI0 + tµ̄ − ϕ̄(t) + ϕ̄(0),

such that

µ̂(t) = µ̂(0) + t

[

η

(

1 − I0 − µ̄ + ϕ̄(t) − ϕ̄(0)

t

)

− u(T)

]

.

Taking into account that

ϕ̄(t) − ϕ̄(0)

t
= �(µ̄) + O

(

1

t

)

,

we obtain the expression for µ̂,

µ̂(t) = µ̂(0) + t [η (1 − I0 − µ̄ + �(µ̄)) − u(T)] + O(1),

where the linearly growing term must vanish for µ̂(t) to be bounded.
Setting such a secular term to zero (even without computing explic-
itly µ̂), we have

u(T) = η (1 − I0 − µ̄ + �(µ̄))

and, hence, taking into account (A4) and (A5), the equation for the
leading order approximation of the slow variable reads

∂2µ̄ + µ̄ = η (1 − I0 − µ̄ + �(µ̄)) .

Since µ̄ is the function of the slow time only, we have ∂2µ̄ = µ̄′,
which results in the required averaged Eq. (14).

APPENDIX B: EXPLICIT SOLUTION OF THE

STATIONARY FOKKER–PLANCK EQUATION

Here, we present the analytic solution of the stationary
Fokker–Planck Eqs. (24) and (25). By integrating Eq. (24) once, one
obtains

D

2
∂ϕρ − (I0 + µ − sin ϕ) ρ = C, (B1)

with a constant C to be determined. Solving (B1), and taking into
account the normalization (25) and the boundary condition ρ(0) =
ρ(2π), we arrive at

ρ(ϕ; µ, D) = 1

g3

3(ϕ),

where

3(ϕ) =
∫ 2π

0

9(ϕ)

9(ϕ + ξ)
dξ ,

g3 =
∫ 2π

0

3(ϕ)dξ ,

9(ϕ) = exp

{

2

D
[(I0 + µ)ϕ + cos ϕ − 1]

}

.
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24I. Franović, O. E. Omel’chenko, and M. Wolfrum, Chaos 28, 071105 (2018).
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