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Classical behaviour of various variables

in an open Bose Hubbard system∗

Nikola Burić†
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Quantum dispersions of various sets of dynamical variables of an open Bose–Hubbard system in a classical limit

are studied. To this end, an open system is described in terms of stochastic evolution of its quantum pure states. It is

shown that the class of variables that display classical behaviour crucially depends on the type of noise. This is relevant

in the mean-field approximation of open Bose–Hubbard dynamics.
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1. Introduction

The dynamics of a Bose–Einstein condensate
(BEC)[1,2] in optical lattices has been extensively
studied recently,[3−9] mainly because the system is an
experimentally realizable representation of model sys-
tems from many fields like condensed matter physics
and nonlinear dynamics. In particular, it enables
the experimental investigation of quantum-to-classical
transition. In this respect, the Bose–Hubbard (BH)
model,[10] which strongly correlated with many parti-
cle bosonic systems, has played a prominent role. The
primary theoretical approach to the problem of the
quantum-to-classical transition in the BH model is the
mean-field approximation of many particle dynamics
in the limit of a large particle number.[11]

BEC in realistic experimental conditions must be
considered as an open quantum system exposed to
several types of perturbations that can be treated as
environmental noise,[12−14] and the noise might influ-
ence in a crucial way the mean-field approximation.
Furthermore, the influence of environment is expected
to play a fundamental role in the full explanation of
the quantum-to-classical transition.[15] Evolution of
an open system is commonly described by the dynam-
ics of mixed states represented by the density matrix
ρ(t) and the corresponding master equation.[16] Ap-
pearance of the classical behaviour of an observable A

is usually analysed using the ratio ∆ρA/ Tr[ ρA] where

∆ρA is the dispersion of A in the state ρ. In general,
if this ratio is small for all times the expectation 〈A〉
can be considered as a classical variable. However, the
density matrix ρ(t) represents a classical ensemble of
pure quantum states {|ψi〉〈ψi|}, and the influence of
the environment is crucial in the choice of the most
appropriate ensemble. ∆ρA combines the purely clas-
sical dispersion over the classical ensemble and the
dispersion in each of the pure quantum states |ψi〉.
In other words, ∆ρA could be quite large because the
dispersion of quantum expectations 〈ψi|A|ψi〉 over the
ensemble {|ψi〉〈ψi|} is large even if the dispersion in
each single quantum pure state is small. This compli-
cates the analyses of the appearance of classical be-
haviour in an open quantum system, in particular, in
open BEC.

However, there is an alternative description of the
evolution of an open quantum system in terms of pure
states only,[16−18] often used in quantum optics.[19]

The price that has to be paid in order to have the open
system evolution described in terms of pure states is
that the corresponding dynamical equation contains
stochastic terms, and if the norm of the stochastic
pure state is to be preserved the stochastic evolution
equation must be nonlinear. Thus, the evolution of
the open system is described by a nonlinear stochas-
tic Schrödinger equation, and subsequent average over
the ensemble of stochastic orbits in the pure state
space of the system. In this description the roles of
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purely quantum and classical dispersions are clearly
separated.[16,20−23] As pointed out, this is crucial in
the study of classical behaviour of an open quantum
system.

Our goal is to use the stochastic pure state de-
scription of the evolution as provided by quantum
state diffusion (QSD) theory,[17] to study the mean-
field approximation and the appearance of classical
behaviour of different variables in the open Bose–
Hubbard model with realistic types of noise. In or-
der to study a classical limit of a quantum system one
needs to select a set of physical observables, according
to some classical model, which depend on a classi-
cality parameter β such that in the limit of small β

the expectations of the chosen set of observables be-
have like variables of the classical model. Parameter
β should have a natural physical interpretation within
the physical model corresponding to the chosen vari-
ables. For example, suppose that the natural dynami-
cal variables for the classical model are the coordinate
and momentum of an oscillator, that is, operators q

and p satisfying [q, p] = i ~. Rescaling q and p by a
parameter β as q → βq and p → βp and taking the
units such that ~ = 1 enable one to study the classical
limit as the condition β → 0. This implies large ratios
of dynamical variations in 〈q〉 and 〈p〉 to the phase
space cell of fixed size ~ = 1. Physically, the same
effect as that of the limit β → 0 is in the oscillator
model achieved by taking the mass of the oscillator to
be very large and its frequency to be very small, cor-
responding to a macroscopic oscillator. On the other
hand, if the observables of the classical model sat-
isfy SU(2) commutation relations [Jx, Jy] = Jz then
rescaling Jx,y,z by a small positive parameter denoted
β2 corresponds to the classical limit of large angular
momentum J2 = J2

z + J2
x + J2

y . As we shall see, dif-
ferent environments suggest variables that belong to
different classical models as the candidates for clas-
sical behaviour. The classical limits in different cases
will be modeled by the same formal small parameter β

that will be used to rescale the creation operator and
the annihilation operator of the two modes ai → βai

and a†
i → βa†

i (i = 1, 2) that appear in the formulation
of the BH model.

Also, behaviour of the selected variables might de-
pend on the type of the initial state. It is natural to
use as the initial states those that minimize the dis-
persions of the basic variables of the classical model,

i.e. the appropriate (generalized) coherent states de-
termined by the dynamical group of system.[24−26]

However, the set of coherent states is seldom invari-
ant on the full unitary dynamics, and furthermore the
noise might favour other asymptotic states. Similar
arguments and techniques of analyses have been used
recently to suggest an efficient way of simulating quan-
tum evolution of a restricted set of observables singled
out by weak measurement.[27]

In the next section we recapitulate the BH model
with typical noise and provide a summary of the QSD
theory of an open system. In Section 3 we study the
QSD description of the open BH system in the classi-
cal limit with various environments. We see that the
class of observables that behaves classically, in what
can be considered as the classical limit, crucially de-
pends on the type of noise. The numerical results are
given in Section 4. In Section 5 we present a short
summary of our analyses.

2. Open Bose Hubbard system

A two-mode BH model is given by the following
Hamiltonian with ~ = 1:

H = ε1a
†
1a1 + ε2a

†
2a2 + α(a†

1a2 + a†
2a1)

+ c(a†2
1 a2

1 + a†2
2 a2

2), (1)

where ai and a†
i (i = 1, 2) are both bosonic operators.

The physical model with Hamiltonian (1) could be re-
alized by confining a BEC into a double well trap ob-
tained by e.g. superimposing an optical lattice on an
optical dipole trap[3,4] or by other means.[28] Hamilto-
nian (1) corresponds to the case where only one mode
in each of the two traps is significantly populated. All
other modes are to be considered as a heat bath. α

is the tunnelling parameter and c is the coupling con-
stant of the nonlinear local interaction between the
atoms. εj (j = 1, 2) are the site energies in each trap.

There are two types of noise and dissipation
that might be important in experiments with trapped
BEC.[12] The most important source of noise is consid-
ered to be elastic scattering on the atoms of the back-
ground gas. This causes only phase noise and heats
the condensate but leaves the total number of atoms
N conserved. The second type of noise and dissipa-
tion is due to inelastic scattering and induces growth
and depletion of the BEC. In modelling the two types
of environmental influences it is assumed that the
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Markov approximation is applicable.[12,29] Then, the
corresponding master equation is in the Lindblad–
Kossakowski–Gorini–Sudarshan form[30,31,16] with the
four independent Lindblad operators corresponding to
the two types of noise and two degrees of freedom:
L1,2

p = γpn1,2 ≡ γpa†
1,2a1,2, La = γaa1,2:[19,29]

dρ

dt
= − i[H, ρ] − γp

2

∑
j=1,2

([n2
j , ρ]+ − 2njρnj)

+
∑

j=1,2

γa

2

(
[a†

j , ρ]+ − 2ajρa†
j

)
. (2)

The term proportional to γp describes the phase noise
and the term proportional to γa models inelastic scat-
tering. Sometimes[29] the values of local site dumping
rate γa are assumed to be different in different wells,
which can produce interesting effects like stochastic
coherence, but we always consider that the values of
γa in different wells are equal. In general, in the cur-
rent experimental conditions the phase noise is much
more effective than the amplitude noise.[29,14]

QSD theory[17] provides an alternative descrip-
tion of an open quantum system with continuous evo-
lution in a Markov environment. The evolution equa-
tion is a nonlinear stochastic Schrödinger equation in
the following form:

|dψ〉 = − iH|ψ〉dt +
1
2

∑
i

(2〈L†
i 〉Li

−L†
iLi − 〈L†

i 〉〈Li〉)|ψ〉dt

+
∑

i

(Li − 〈Li〉)|ψ〉dWi(t), (3)

where H and Li are the same Hamiltonian and Lind-
blad operators as those in Lindblad master equation
(2), and dWi represents a differential increment of
complex Winer process, i.e.

dWidW k = δik dt, dWidWk = 0, E[dWi] = 0, (4)

where E[ ] denotes the expectation over realizations of
the stochastic process (3), dW k is the complex con-
jugate of dWk, and δi,j is the Kronecker delta. Equa-
tion (4) is an Ito–Langevin equation of diffusion in the
Hilbert space of pure states. The drift term, propor-
tional to dt, describes unitary evolution generated by
Hamiltonian H and the dissipation given by Li. Fluc-
tuation is described by the term proportional to dWi.
The basic relation between the solutions of Eqs. (2)
and (3) is given by

ρ(t) = E[|ψ(t)〉〈|ψ(t)|]. (5)

There are other forms of stochastic Schrödinger
equation for pure state evolution that satisfies the un-
ravelling property (5), but the QSD equation (3) is
the only one with the same symmetries as the Lind-
blad master equation. As pointed out in the intro-
duction, the QSD equation enables one to separate
purely quantum dispersions ∆qA from those due to
averaging over the classical ensemble in Eq. (5). QSD
theory and other stochastic unravellings of an open
quantum system dynamics have often been used to
study the quantum-to-classical transition.[32−40] The
quantum, classical and total dispersions are calculated
using stochastic pure states as follows:[16,22,23]

∆2
qA = E[〈ψ(t)|A2|ψ(t)〉

− 〈ψ(t)|A|ψ(t)〉2] = E[∆2
ψA], (6)

∆2
cA = E[〈ψ(t)|A|ψ(t)〉2]

− (E[〈ψ(t)|A|ψ(t)〉])2 , (7)

∆2A = ∆2
qA + ∆2

cA. (8)

Notice that ∆qA and ∆cA cannot be de-
fined using only ρ(t), but can be experimentally
determined.[16] ∆2

qA represents the average variance
in pure states that appear in the unravelling of ρ.
Thus, it is a measure of average intrinsic quantum
variance. On the other hand, ∆2

cA is the variance of
the c-number 〈ψ|A|ψ〉 and represents statistical fluc-
tuation of this classical quantity. ∆qA(t) and ∆cA(t)
can be computed separately using Eq. (3), while mas-
ter equation (2) enables one to calculate only the total
dispersion ∆2A = Tr[ ρ(t)A2]− (Tr[ ρ(t)A])2. It is the
behaviour of ∆ψA(t) along typical sample paths |ψ(t)〉
that is important for the classical appearance of the
variable 〈ψ|A|ψ〉.

Besides the fundamental insight provided by the
pure state description of the open system evolu-
tion, equation (3) is a very powerful computational
tool.[17,41] The master equation (2) is an equation of
d2 variable, where d is the effective dimension of the
Hilbert space of the system. On the other hand, the
QSD equation involves only d variable. Furthermore,
due to the localization properties of the open system
dynamics, the number of effective dimensions d′ that
are needed to solve Eq. (3) numerically can be explic-
itly and significantly reduced using a moving bases
technique.[41] Thus, the effective dimension d′ is much
smaller than d: d′ ¿ d ¿ d2.

In the next section we use the QSD equation to
study the pure state mean-field approximation and the
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quantum pure state dispersion ∆ψA of the open BH
model with the Lindblad operator as in Eq. (2).

3. Pure state dynamics of an

open BH system

Our objective is to obtain relevant conclusions
about the classical limit from a comparison of the evo-
lution between expectation 〈A〉 and dispersion ∆2

ψ =
〈A2〉 − 〈A〉2 in the pure state |ψ〉 that describes the
stochastic evolution of a single BH system for different
types of noises and different observables. We are espe-
cially interested in the dynamics of the open BH that
can be considered as a small variant of some classical
mechanical model under the influence of the appropri-
ate noise.

Our main conclusions are obtained from numeri-
cal solutions of the QSD equation and are presented
in the second part of this section. First we consider
the stochastic evolution equations for expectations of
the basic set of dynamical observables. The equation
of motion for the expectation of an arbitrary operator
A in the state that satisfies Eq. (4) is given by

d〈A〉 = i〈[H,A]〉dt − 1
2
〈L†[L,A] + [A,L†]L〉dt

+σ(A†, L)dW + σ(L,A)dW, (9)

where σ(A,B) = 〈A†B〉 − 〈A〉〈B〉 and we abbreviate∑
i Li ≡ L.

The Hamiltonian and the Lindblad operators of
the open BH system are defined in terms of bosonic
operators ai and a†

i . So we first consider the evolution
of the expectation (10) for the operators ai and a†

i and
introduce formally the classical limit by rescaling the
basic operators with common positive parameter β so
that the relevant commutator is proportional to β2.
Thus, formally when β is small the system is close to
its classical limit.

Expectation values of the basic variables satisfy
stochastic differential equation

d〈a1〉 = iβ2(−ε1〈a1〉 + α〈a2〉)dt

− 2β4c〈a†
1a

2
1〉dt

+(β2γp + γa)β2〈a1〉dt + fluctuations,

d〈a2〉 = iβ2(−ε1〈a2〉 + α〈a1〉)dt

− 2β4c〈a†
2a

2
2〉dt

+(β2γp + γa)β2〈a2〉dt + fluctuations,

d〈a†
1〉 = iβ2(ε1〈a†

1〉 − α〈a†
2〉)dt

+2β4c〈a†2
1 a1〉dt

+(β2γp + γa)β2〈a†
1〉dt + fluctuations,

d〈a†
2〉 = iβ2(ε2〈a†

2〉 − α〈a†
1〉)dt

+2β4c〈a†2
2 a2〉dt

+(β2γp + γa)β2〈a†
2〉dt + fluctuations. (10)

The fluctuation terms are in the following form: In
d〈a1〉 fluctuations are

= σ(a†
1, Lp)dW1 + σ(Lp, a1)dW 1

+σ(a†
1, La)dW2 + σ(La, a1)dW 2

= β2γp[〈a1a
†
1a1〉 + 〈a1a

†
2a2〉

− 〈a1〉〈a†
1a1 + a†

2a2〉]dW1

+β2γp[〈a†
1a1a1〉 + 〈a†

2a2a1〉

− 〈a1〉〈a†
1a1 + a†

2a2〉]dW 1

+βγa[〈a1a1〉 + 〈a1a2〉 − 〈a1〉〈a1 + a2〉]dW2

+βγa[〈a†
1a1〉 + 〈a1a

†
2〉 − 〈a1〉〈a1 + a2〉]dW 2, (11)

and similarly for other variables.
A couple of observations about Eqs. (10) and

(11) are obvious. First, the non-unitary drifts due
to both the phase and the amplitude noises have the
same form. Thus, in the purely quantum regime, i.e.
when β = 1, the drift, in terms of the basic variables
a1, a2, a

†
1, a

†
2, due to the amplitude noise is smaller

than due to the phase noise since γa < γp for BEC in
current experimental conditions. On the other hand,
the drift due to the phase noise is multiplied by β4 and
due to the amplitude noise by β2, so that as the sys-
tem becomes more classical, i.e. for small β, the am-
plitude noise becomes more important than the phase
noise. A similar conclusion is true about the fluctua-
tion terms. Secondly, both the unitary part of the drift
due to the on-site atomic interactions (proportional to
cβ4), and the fluctuation terms involve higher order
moments of the dynamical variables. If the expecta-
tions of the products are approximated by products
of expectations, like in the mean-field approximation,
the fluctuation terms completely disappear.

The classical limit of the isolated BH system (1) is
commonly studied using the mean-field approximation
for the dynamics of a special set of variables suggested
by the symmetries of the system.[26,11] The Hamilto-
nian can be written entirely in terms of the angular
momentum operators Jx, Jy, Jz, defined, respectively,
as

Jx =
1
2
(a†

1a2 + a†
2a1),
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Jy =
i

2
(a†

1a2 − a†
2a1),

Jz =
1
2
(a†

2a2 − a†
1a1)), (12)

which satisfy SU(2) commutation relations. The to-
tal particle number N = n1 + n2 is related to SU(2)
Casimir operator: J2 = N(N/2 + 1)/2 and is con-
served. The SU(2) symmetry also suggests a special
set of initial states, that is, the SU(2) coherent states.
The Hamiltonian in terms of Jx,y,z with explicit clas-
sicality parameter β reads

H = −2β2αJx + 2β2(ε2 − ε1)Jz + cβ4J2
z . (13)

Thus, SU(2) is the dynamical group of the BH model.
The classical limit obtained for small β corresponds
here to large values of the angular momentum and
the total particle number.

Angular momentum variables 〈Jx,y,z〉 play a cru-
cial role in the mean-field approximation for the iso-
lated BH model.[11] However, notice that the Hamilto-
nian is a nonlinear expression of the group generator,
so that the set of SU(2) coherent states is not invari-
ant during the evolution of the isolated BH system.
Nevertheless, asymptotically as β → 0 the dispersions
of all basic variables 〈Jx,y,z〉 during the unitary evo-
lution are negligible compared with the averages, so
that the mean-field approximation is valid. However,
different noise can influence the mean-field dynamics
in different ways. Notice that although the Linblad
operators L1,2

p and L1,2
a cannot be written in terms of

angular variables, the Linblad operators for the phase
noise L1,2

p = γpa†
1,2a1,2 commute with Jz and N . This

suggests that the Jz variable has a special status in
the BH system with the phase noise. The phase noise
can significantly speed up evolution away from the set
of the SU(2) coherent states towards the eigenstate of
Jz, which crucially affects the ratio of the dispersions
to the averages of the basic variables.

We also analyse the evolution of dynamical vari-
ables that appear when the BH model is considered
as a pair of coupled nonlinear oscillators. The basic
dynamical variables are given by qj = (a†

j + aj)/
√

2,
and pj = i(a†

j − aj)/
√

2, (j = 1, 2). The Hamiltonian
and the Lindblad operators with the explicit scaling
parameter β, respectively, read

H = β2ε1(p2
1 + q2

1)/2 + cβ4(p2
1 + q2

1)2/4

+β2ε1(p2
1 + q2

1)/2 + cβ4(p2
1 + q2

1)2/4

+β2∆(p1p2 + q1q2), (14)

L1,2
p = β2γp(p2

1,2 + q2
1,2),

L1,2
a = βγp[(q1,2 + i p1,2)/

√
2. (15)

The classical limit, obtained for small β, corre-
sponds to large values of basic variables 〈qi〉 and 〈pi〉
as compared with the unit cell in the phase space, or
with the large masses and low frequencies of the two
oscillators. From various well-known studies of deco-
herence in model systems it is expected that the domi-
nant amplitude noise acting independently on the two
oscillators’ degrees of freedom will favour the oscillator
coherent states as the asymptotic states.

The dynamical equations of expression (9) can be
written for the averages of the dynamical variables
q1,2, p1,2 or Jx,y,z, but, as is illustrated in Eqs. (10) and
(11), involve moments of higher orders. Also, in the
case of Jx,y,z the equations cannot be written solely in
terms of 〈Jx,y,z〉. We do not write down these equa-
tions since they have not been used in our numerical
computations, which are based on the solutions of ba-
sic QSD equation (3).

4. Numerical results

Evolution of the quantum dispersion, i.e. disper-
sion in pure states, of various observables is studied
using the numerical solution of the QSD equation (3).
We are interested in the connection between different
environments on one hand and the behaviour along
stochastic orbits of the pure state dispersions ∆ψA(t)
for various observables on the other. We study the de-
pendence of this relation on (i) the value of the classi-
cality parameter β, (ii) on the nonlinearity parameter
c, and (iii) on the type of the initial state.

Small values of the parameter β slow down evo-
lution, that is, rescale the time variable, besides their
primary role which is to distinguish different terms in
the evolution equation multiplied by different powers
of β. However, since there exists no non-autonomous
term, i.e. an explicitly time-dependent term in the
Hamiltonian, there is no need to rescale the time.

Our conclusions are presented in Figs. 1–4, which
illustrate typical results of numerical computation.

Dynamics of the averages 〈A〉 and the correspond-
ing dispersions ∆ψA for the isolated BH model are
illustrated in Fig. 1 for different values of the classi-
cality parameter β. The purpose of these figures is to
illustrate the conclusion that the ratio ∆ψA/〈A〉 in-
creases during evolution irrespective of the values of
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classicality β (or nonlinearity c). Of course, smaller
β implies slower evolution, but ∆ψA increases for any
nonzero β. Similarly, other nonzero values of c compa-
rable to ε1,2 and α (c = α = ε1,2 = 1) or much smaller
(c = 0.01ε1,2) always imply growth of the amplitude
of quantum dispersion with time. This is true for ob-
servables of either of the two kinds of classical models,
that is for q1, q2, p1, p2 or Jx,y,z. This conclusion is il-
lustrated in Fig. 1 using as the initial states the direct
product of coherent states for the two oscillators q1, p1

and q2, p2 but the behaviour of the dispersions is qual-

itatively the same for a generic initial state. However,

the class of SU(2) coherent states displays a different

behaviour (not illustrated). With these initial states,

the ratio ∆ψJx,y,z/〈Jx,y,z〉 is proportional to β so that

〈Jx,y,z〉 asymptotically as β → 0 displays classical be-

haviour. This is the basic assumption underlying the

mean-field approximation and the derivation of the

Gross–Pitaevsky equation.[11]

Fig. 1. Evolution of the averages 〈q1〉 ((a) and (b), black line) and 〈Jz〉 ((c) and (d), black line) and pure state

dispersions ∆ψq1 (Figs. 1(a) and 1(b), grey line) and ∆Jz ((c) and (d) grey line) for the classicality parameter

β = 0.01 ((a) and (c)) and β = 1 ((b) and (d)). Other parameters are ε1 = ε2 = 1, α = 1, c = 0.01, and t is

dimensionless time t ≡ tε1.

Thus, we conclude that in an isolated BH system
small values of β and/or small values of c are not suf-
ficient to imply classical behaviour for all initial states
of any of the interesting observables with potentially
classical interpretation.

The influence of the phase noise L1,2
p is illustrated

in Fig. 2. The asymptotic states with such a noise are
the number states. The initial states in Figs. 2 are
products of oscillators coherent states in Figs. 2(a),
2(c), 2(d) and the number states in Fig. 2(b). Dis-
persions of q1 (and of other variables of the two-
oscillator model) become and stay larger than the
corresponding averages. On the other hand, we see
that the dispersion of the variable Jz (and similarly of
n1, n2) becomes small irrespective of the type of initial
state. Thus, 〈Jz〉 behaves as a classical variable, but
the other two components Jx,y have large dispersions.
Qualitatively the same behaviour is observed for all

sufficiently large γp and sufficiently small classicality
parameter β. Then the conclusion is the same even
when nonlinearity is not small, say c = ε1,2. However,
in the purely quantum case β = 1, classical behaviour
of the ∆ψJz induced by phase noise does not occur.
There is no special behaviour of the angular momen-
tum dispersion for the SU(2) coherent initial states
(not illustrated), i.e. only ∆Jz quickly becomes very
small while the other two are large, which is contrary
to the case of the isolated BH model.

Now, we consider the effects of the amplitude
noise La = γp(a1 + a2) illustrated in Fig. 3. Here,
we choose to illustrate the dynamics from the generic
initial state using the number of initial states. Thus,
initially ∆ψJz = 0 = 〈qj〉 = 〈pj〉 and ∆ψq1 À 1,
which cannot be seen clearly in the figure. The pa-
rameter γa is chosen to be much smaller than γp in
the previous figure. We see that the variables 〈q1〉, 〈p1〉
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(and 〈q2〉, 〈p2〉) can be considered to be classical, since
the dispersions of all these variables quickly become
small and do not increase. On the other hand, the dis-
persions of ∆ψJz,x,y and the corresponding averages
〈Jz,x,y〉 simultaneously converge to zero, due to dissi-
pation, but the dispersions are always larger than the
averages [∆ψJz,x,y/〈Jz,x,y〉] À 1. These qualitative

conclusions are obtained with other values of γp and

c. However, like in the case of phase noise, when β is

not small, β ≈ 1 no classical behaviour of dispersions

of any of the observables qi, pi or Jx,y,z is observed.

The dynamics from SU(2) coherent initial states is

illustrated in Fig. 4.

Fig. 2. Influence of phase noise with γp = 0.075. Evolution of the averages 〈q1〉 (panels (a) and (b) black line) and 〈Jz〉
((c), black line), 〈Jy〉 ((d), black line) and pure state dispersions ∆ψq1 ((a) and (b) grey line) and ∆Jz ((c), grey line)

and ∆Jy ((d), grey line). The classicality parameter β = 0.01. Initial states are oscillator coherent states ((a), (c), and

(d)) and the number state (b). Other parameters are ε1 = ε2 = 1, α = 1, c = 0.01, and t is dimensionless time t ≡ tε1.

Fig. 3. Influence of the amplitude noise with γa = 0.001. Evolution of the averages 〈q1〉, 〈p1〉 (panels (a) and (b), black

line) and 〈Jz,y〉 ((c) and (d) black line), and pure state dispersions ∆ψq1, ∆ψp1 ((a) and (b), grey line) and ∆Jx,y ((c)

and (d), grey line) for the classicality parameter β = 0.01. The initial state is the number state. Other parameters are

ε1 = ε2 = 1, α = 1, c = 0.01, and t is dimensionless time t ≡ tε1.
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Fig. 4. The same as in Fig. 3 but the initial state is an SU(2) coherent state.

Dispersions ∆ψJy and ∆ψJz are always smaller
than the corresponding averages, and together con-
verge to zero. Dispersions of the variables 〈qi〉, 〈pi〉
behave in the same way as with the number initial
states, i.e. quickly converge to a small value charac-
teristic of the oscillators coherent states. We can con-
clude that with the amplitude noise and any initial
condition, for small β, the oscillator variables 〈qi〉 and
〈pi〉 behave approximately classically, while the vari-
able ∆ψJy,z appears classical only if the initial state
is one of the SU(2) coherent initial states. For the
described behaviour from any of the initial states to
occur the classicality parameter must be sufficiently
small, i.e. for β = 1 no variable displays classical be-
haviour.

5. Summary

We studied an open Bose–Hubbard system with
two types of noise that are relevant in the current ex-
periments. Our goal is to examine which physical vari-
ables under what conditions can be considered to be
classical in the sense that the dispersions remain neg-
ligible compared with the averages during evolution.
This question is crucial for the mean-field approxima-
tion of open system dynamics.

The open system can be described by its density
matrix or by an ensemble of pure states. In the de-
scription by the density matrix the classical and the

quantum contributions to the averages and the disper-
sions are inseparable, but in the stochastic pure state
description the two contributions can be clearly dis-
tinguished and can be computed separately. We use
the description in terms of stochastic pure states as
provided by quantum state diffusion theory, and the
pure state quantum averages and dispersions of vari-
ous operators are calculated.

In our analyses three parameters β, c, and γ play
important roles. The classicality parameter β corre-
sponds to different physical quantities, depending on
the classical model, but small values of β always corre-
spond to the classical limit. β = 1, on the other hand,
corresponds to the purely quantum system. The non-
linearity parameter c measures how much the Hamil-
tonian deviates from a linear expression of the main
dynamical variables. The parameters γp and γa repre-
sent the strengths of the phase or the amplitude noise
respectively.

Our main conclusions can be summarized as fol-
lows.

(I) No variable 〈A〉 of an isolated BH system can
be considered to be classical for general initial states
and any nonzero values of β and c. The angular vari-
able behaves as a classical one asymptotically in the
limit β → 0 if the initial state is one of the SU(2)
coherent states.

(II) In the case of phase noise L1,2
p the variable

〈Jz〉 can be considered as a classical variable since
∆ψJz is much smaller than 〈Jz〉. qi and pi (and Jx, Jy)
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do not display classical behaviour. This is true for all
initial states and sufficiently small nonzero β.

(III) In the case of the amplitude noise L1,2
a , and

for small β, variables 〈qi〉, 〈pi〉 behave classically with
small dispersions. Angular variables in general satisfy
∆ψJx,y,z/Jx,y,z > 1 so that they cannot be considered
to be classical for any nonzero β. In the case of SU(2)
the coherent initial state ∆ψJx,y,z/Jx,y,z < 1.

Thus, the type of noise crucially determines which
of the variables of the open BH model can be consid-
ered to be classical. From the point of view of deco-
herence theory this is not an unexpected result, but it
is important in the formulation of mean-field approx-
imation of the open BH system.
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