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Alternative routes to equivalent classical models

of a quantum system∗
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Coarse-graining of some sort is a fundamental and unavoidable step in any attempt to derive the classical mechan-

ical behavior from the quantum formalism. We utilize the two-mode Bose–Hubbard model to illustrate how different

coarse-grained systems can be naturally associated with a fixed quantum system if it is compatible with different dy-

namical algebras. Alternative coarse-grained systems generate different evolutions of the same physical quantities, and

the difference becomes negligible only in the appropriate macro-limit.
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1. Introduction

Reduction of classical mechanics onto a presum-

ably more fundamental quantum formalism is one of

the main topics of the theory of quantum to classical

relation (QCR). The relevant literature on the topic

is vast and we shall single out only a few reviews as

illustrative examples. Some of the more formal math-

ematical aspects of the QCR are treated in Ref. [1].

Putative physical mechanisms and the appropriate on-

tological considerations underlying the QCR are dis-

cussed from different points of view, for example in

Refs. [2]–[6]. During the last couple of decades de-

tailed experimental studies of the problems related to

QCR have been performed (see for example Refs. [7]–

[9]).

In this paper, we analyse possible alternative

routes to the classical limit utilizing a particular quan-

tum system, namely the two-mode Bose–Hubbard

model (2mBH). The main tool of our analyses is

the recently developed formalization of the process

that associates classical models with a given quan-

tum system.[10,11] The construction of the classical

model proceeds in two clearly distinguished steps: i)

a particular, system-dependent coarse-graining, for-

malized by the appropriate constraint on the quan-

tum system; and ii) the appropriate macro-limit. The

system appropriate coarse-graining is determined by

the system’s dynamical algebra. If, as in the case of

the 2mBH model, the quantum system is compatible

with different dynamical algebras, then the quantum

systems can be coarse-grained into different Hamilto-

nian dynamical systems. Our main conclusion will be

that the alternative coarse-grained systems generate

different evolutions of the relevant physical quantities

in general. Only in the relevant macro-limit of the

coarse-grained systems do the corresponding classical

models become canonically equivalent.

2. 2mBH system and its alterna-

tive mechanical models

2mBH system is given, up to c-number terms, by

the following Hamiltonian (see for example Ref. [12]

and the references therein)

Ĥ = ϵ1â
†
1â1 + ϵ2â

†
2â2 − δ(â†1â2 + â†2â1)

+
c

2

(
(â†1)

2â21 + (â†2)
2â22

)
, (1)

where the operators â†1, â1, and â
†
2, â2 are the bosonic

creation and annihilation operators for the two degrees

of freedom. The Hamiltonian (1) approximates the

physical situation created experimentally by confining

an atomic Bose–Einstein condensate in a double-well
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trap.[13,14] In this case operators a†1 and a†2 are inter-

preted as creating atoms in the condensate confined in

potential wells 1 and 2, respectively. The term propor-

tional to δ describes the tunneling of atoms between

the two wells and the term proportional to c describes

the non-harmonicity of the potential wells. The op-

erator N̂ = N̂1 + N̂2 = â†1â1 + â†2â2 commutes with

the Hamiltonian (1) and represents the conserved to-

tal number of atoms in the trapped condensate.

The Hamiltonian (1) can be interpreted as corre-

sponding to alternative but equivalent quantum me-

chanical models. One is the model of two coupled

nonlinear oscillators (q̂1, p̂1, q̂2, p̂2) and the other is

the angular momentum Ĵ . Substituting the operators

q̂1, q̂2, p̂1, p̂2 related to â†1, â1, â
†
2, â2 in the standard

way

âk =
q̂k + ip̂k√

2
, â†k =

q̂k − ip̂k√
2

, (k = 1, 2), (2)

the Hamiltonian (1) becomes, up to c-number terms,

Ĥ = ϵ1
q̂21 + p̂21

2
+ ϵ2

q̂22 + p̂22
2

− δ(q̂1q̂2 + p̂1p̂2)

+
c

2

(
(q̂21 + p̂21)

2

4
+

(q̂22 + p̂22)
2

4

)
. (3)

The operators of reduced coordinate and momentum

q̂k, p̂l satisfy the commutation relations [q̂k, p̂l] = iδkl
(k, l = 1, 2). The Hamiltonian (3) corresponds to a

system of two interacting nonlinear oscillators with

the same type of nonlinearity. Corresponding to the

total number of atoms N̂ is the quantity q̂21 + p̂21 +

q̂22 + p̂22, commuting with the Hamiltonian (3). The

dynamical algebra of the two models (1) and (3) is of

course the same: the direct product of two Heisenberg

algebras h4 ⊗ h4.

Two comments concerning the Hamiltonian (3)

are in order. The first is concerned with the term

interpreted as the interaction between the two oscilla-

tors containing products of the momenta p̂1p̂2. Inter-

action in the standard models of interacting mechan-

ical oscillators usually depends only on the oscilla-

tors coordinates, and therefore the interaction term in

Eq. (3) indicates the non-classical origin of the model.

The second remark concerns the conserved quantity N̂

or q̂21 + p̂21 + q̂22 + p̂22. Although it commutes with the

Hamiltonian, this quantity is represented by an oper-

ator on the systems state space and is therefore con-

sidered as all other quantum dynamical observables.

Introducing operators

Ĵx = (â†1â2 + â†2â1)/2, (4a)

Ĵy = i(â†1â2 − â†2â1)/2, (4b)

Ĵz = (â†2â2 − â†1â1)/2, (4c)

that satisfy the standard su(2) commutation relations

the Hamiltonian (1) becomes, up to a constant term,

Ĥ = (ϵ2 − ϵ1)Ĵz − 2δĴx + cĴ2
z . (5)

The invariant subspaces of the total Hilbert space

are the spaces of irreducible su(2) representations.

The total number operator N̂ is related to the Casimir

operator of the su(2) by the relation Ĵ2 = N̂/2(N̂/2+

1). The system corresponding to Eq. (5) with su(2)

dynamical algebra has one degree of freedom, but it is

equivalent to the system related to Eq. (1) or Eq. (3)

restricted on one of the invariant subspaces. Notice

that the conserved quantity N̂ is now treated as a

number related to the dimension of the system’s state

space, while it was represented by an operator in the

models (1) and (3) and considered as a dynamical ob-

servable.

3. Hamiltonian formulation of

constrained quantum dynam-

ics and the classical limit

Emergence of classical systems from the quantum

background necessary implies an appropriate coarse-

graining. A recently introduced formalization of this

coarse-graining procedure[10,11] is based on the treat-

ment of nonlinear constraints[15,16] within the Hamil-

tonian geometric formulation of quantum mechanics

(see for example Refs. [15], [17]–[19]).

Consider a quantum system with a dynamical Lie

algebra g. The Hilbert space of the system H can be

considered as a real Riemannian and symplectic man-

ifold M . Thus the manifold M associated with the

Hilbert space H can be viewed as a phase space of

a Hamiltonian dynamical system. A vector |ψ⟩ from

H , represented in the coordinate representation, if

it is appropriate, by ψ(q) = (ϕ(q) + i π(q))
√
2 or in

some denumerable or finite basis by the set of coeffi-

cients {ck = (xk + iyk)/
√
2, k ∈ N}, is identified with

the point of M , denoted by Xψ ∈ M , with the coor-

dinates {(xk, yk), k ∈ N} or {(ψ(q), π(q)), q ∈ Rd}.
These coordinates are canonical for the symplectic

structure on M . The Schrödinger equation on H is

equivalent with Hamiltonian dynamical equations on

M with the Hamilton’s function ⟨ψ|Ĥ|ψ⟩.
The coarse-grained description of the quantum

system which is necessary for its classical appearance
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is achieved by the appropriate equivalence of points

X ∈ M .[10,11] The equivalence relations relevant for

the case of oscillators is

X1 ∼ X2 ⇔ qi(X1) = qi(X2) ∧ pi(X1) = pi(X2), (6)

where i = 1, 2, and for the case of spin is

X1 ∼ X2 ⇔ J(X1) = κJ(X2), (7)

where J(X) = (⟨Ĵx⟩X , ⟨Ĵy⟩X , ⟨Ĵz⟩X) and κ is a pos-

itive scalar. In both cases, each equivalence class of

quantum pure states [X] contains one and only one

coherent state from the corresponding manifolds of

coherent states.[20]

Schrödinger evolution equation for ψ(t), or its

Hamiltonian form for Xψ(t), with the Hamiltonian

(3) or (5) does not preserve the equivalence classes of

quantum states (6) or (7) and the corresponding mani-

folds of coherent states are not invariant. On the other

hand, the system with the same Hamiltonian and ad-

ditional constraints introduced in such a way that the

relevant manifold of coherent states is invariant also

preserves the equivalence classes of quantum states.

This constrained Hamiltonian system when restricted

on the manifold of coherent states generates by defini-

tion the dynamics of the coarse-grained reduced quan-

tum system. Since the constrained manifold of the

relevant coherent states Γ is known to be symplec-

tic, the constrained system reduced on Γ is Hamilto-

nian with the Hamilton’s function is given simply by

H(Q,P ) = ⟨Q,P |Ĥ|Q,P ⟩, (Q,P ) ∈ Γ where (Q,P )

parameterize the relevant coherent states.[10,11]

The two coarse-grained systems corresponding to

systems (3) and (5) define Hamiltonian dynamical

systems on the manifolds of the respective coher-

ent states, Γ = R4 for the oscillators and Γ = S2

for the spin. For the oscillator system, the evolu-

tions of the coarse-grained states, or their representa-

tive points in Γ , are generated by H(q1, q2, p1, p2) =

⟨q1, p1|⟨q2, p2|Ĥ|q1, p1⟩|q2, p2⟩,[10] given by

H(q1, q2, p1, p2)

= ϵ1
q21 + p21

2
+ ϵ2

q22 + p22
2

− δ(q1q2 + p1p2)

+
c

2

(
(q21 + p21)

2

4
+

(q22 + p22)
2

4

)
. (8)

It can be checked that the quantity q21+p
2
1+q

2
2+p

2
2

is preserved during the evolution governed by Eq. (8).

Also the evolution by Eq. (8) preserves the minimal

sum of dispersions of the relevant dynamical variables

Fq,p ≡ ∆2q̂1 +∆2q̂2 +∆2p̂1 +∆2p̂2.

The evolution equations in the case of the spin are

given in terms of the canonical coordinates (q, p) ∈ S2

by the Hamilton’s function

H(q, p) =
ϵ2 − ϵ1

2
(q2 + p2 − 2j)− δq(4j − q2 − p2)1/2

+
c

4
(q2 + p2 − 2j)2

+
c

8j
(q2 + p2)(4j − q2 − p2). (9)

The canonical coordinates (q, p) are related to the co-

herent state averages ⟨Ĵα⟩(q, p) ≡ ⟨q, p|Ĵα|q, p⟩ (α =

x, y, z) by

⟨Ĵx⟩(p, q) =
q

2
(4j − q2 − p2)1/2, (10a)

⟨Ĵy⟩(p, q) = −p
2
(4j − q2 − p2)1/2, (10b)

⟨Ĵz⟩(p, q) =
1

2
(q2 + p2 − 2j). (10c)

We have also used the following relation

⟨Ĵ2
z ⟩(q, p) = ⟨Ĵz⟩2(p, q) +

1

8j
(q2 + p2)(4j − p2 − q2),

(11)

where due to quantum fluctuations ⟨Ĵ2
z ⟩(q, p) ̸=

⟨Ĵz⟩2(q, p). The evolution by Eq. (9) preserves the

minimal sum of dispersions of the relevant dynamical

variables Fj ≡ ∆2Ĵx +∆2Ĵy +∆2Ĵz.

The coarse-graining Eqs. (6) and (7) are inter-

preted as different approximate and incomplete de-

scriptions upon which different specific types of quan-

tum states and the related observables are consid-

ered as physically distinguishable. The requirement

that the choice of relevant variables and states is pre-

served during the evolution determines the appropri-

ate Hamilton’s function (8) or (9). From the form

of the Hamilton’s function, one then reads the phys-

ical interpretation of the coarse-grained description.

In the two coarse-grained models different physical

quantities will have minimal quantum fluctuations.

Let us stress that the coarse-grained evolution with

Hamiltonians (8) or (9) preserves the minimal sum of

dispersions of the relevant basic variables, i.e., Fq,p
with Eq. (8) and Fj with Eq. (9). On the other

hand, the sum of dispersions Fj is not preserved by

Eq. (8) and the sum of dispersions Fq,p is not pre-

served by Eq. (9). The coarse-grained systems pre-

serve, in modified forms, some of the quantum features

of the original models. In coarse-grained models (6)

and (8), the quantum fluctuations of the relevant vari-

ables q1, q2, p1, p2 are constrained to remain minimal,

but on the other hand the fluctuations Fj can be ar-

bitrary large. Analogously, in models (7) and (9) the
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variables Jx, Jy, Jz are all as classical as it is consis-

tent with the corresponding indeterminacy relations,

but the quantum fluctuations of Fq,p can be arbitrary

large. Only in the macro-limit are the quantum fea-

tures of the two coarse-grained systems negligible.

The Hamiltonian (8) and the corresponding sys-

tem withR4 as its phase space are interpreted as a pair

of nonlinear interacting oscillators. A non-classical

feature of the model is the form of the interaction con-

taining the term p1p2, which typically does not occur

in classical mechanical models. Furthermore, the im-

portant property of the interaction is that the quantity

q21 + p21 + q22 + p22 is conserved, but this conservation is

not incorporated explicitly in the formulation of the

model. On the other hand, the Hamilton’s function

(9) and the system on S2 as its phase space are inter-

preted as a Hamiltonian system constrained to evolve

in such a way that the quantity J2
x + J2

y + J2
z = j2

is conserved. The corresponding phase space S2 is

not a tangent bundle of some configuration manifold,

contrary to the phase spaces of standard mechanical

models.

A possible alternative physical interpretation of

the basic quantities occurring in coarse-grained mod-

els (8) and (9) can be inferred by relating these quan-

tities to the original physical picture behind the quan-

tum model (1). For example the canonical coordinate

q in the model (9), related to SU(2) coherent state

expectations ⟨θ, ψ|Ĵx,y,z|θ, ψ⟩ by Eq. (10), represents

the relative phase q = ψ of the two modes in system

(1) and the canonical momentum p = cos2(θ/2) gives

the population of the second mode. Here the angles

θ, ψ provide an alternative parametrization of S2, i.e.,

of the SU(2) coherent states. Similarly, the quantity

Jz gives the population imbalance between the two

modes, while the polar angle coordinate of the SU(2)

coherent state, i.e., the polar coordinate of the classi-

cal state in the phase space S2, is the relative phase

of the two modes. Therefore, coarse-grained systems

(7) and (9) represent the Hamiltonian model of the

original quantum system in which the quantum fluc-

tuations of the stated quantities are minimal, but still

consistent with the corresponding indeterminacy rela-

tions.

In order that the two coarse-grained systems

display fully classical properties, the corresponding

macro-limits are necessary. The macro-limit of the

2mBH system amounts to the limit of a large total

number of atoms N → ∞. In the case of the two os-

cillator coarse-grained systems (6) and (8), the states

of the system in the corresponding macro-limit belong

to the hypersurface of a large q21 + p21 + q22 + p22 → ∞.

Bounded and small quantum fluctuations Fq,p that oc-

cur in the coarse-grained system are negligible in this

limit. The macro-limit of SU(2) coarse-grained sys-

tems (7) and (9) is achieved with j → ∞. The phase

space S2 in the macro-limit asymptotically approaches

R2 and small and bounded quantum fluctuations Fj
become negligible. All features of the quantum behav-

ior are still present in the two coarse-grained systems

for relatively small values of N become negligible in

the macro-limit N → ∞.

There is a difference between the oscillators and

the spin representations of the 2mBH system in the

treatment of the macro-limit. In the case of the

oscillators’ representation, the coarse-grained Hamil-

tonian system has an additional constant of motion

q21+p
2
1+q

2
2+p

2
2, and is therefore integrable. Due to this

additional integral, the difference between the coher-

ent state expectation of the Hamiltonian expressed in

terms of the basic operators (8) and the Hamiltonian

expression in terms of the coherent state expectations

of the basic operators is a constant term that can be

neglected in the Hamiltonian. The only manifestation

of the quantum fluctuations in the coherent states is

in the overlap between the initial values. Therefore,

the macro-limit of the oscillator system is given by the

same Hamiltonian (8) and the condition that only the

phase-space hyper-surfaces with q21 + p
2
1+ q

2
2 + p

2
2 ≫ 1

are considered. In the case of the spin system, the

system is already reduced on an invariant manifold

and there is no additional invariance. Therefore the

quantum fluctuations in a spin coherent state imply

⟨Ĵ2
z ⟩(q, p) ̸= ⟨Ĵz⟩2(q, p) and are manifested dynami-

cally in the last term in Eq. (9).

4. Comparison of the coarse-

grained systems

The two equivalent quantum models (3) and (5)

generate the same evolution of the averages: ⟨Ĵx⟩,
⟨Ĵy⟩, ⟨Ĵz⟩ or ⟨a†1a2 + a†2a1⟩, ⟨i(a

†
1a2 − a†2a1)⟩, ⟨a

†
2a1 −

a†2a1⟩ from any initial state. It is of interest to com-

pare the dynamics of the corresponding coarse-grained

models for a finite total number of atoms. The coarse-

grained system corresponding to the two oscillators

algebra is defined on the phase space identified with

the parameter space (q1, q2, p1, p2) ∈ R4 of the cor-

responding coherent states |q1, p1⟩|q2, p2⟩, and anal-

ogously the spin coarse-grained system is defined on
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the sphere (q, p) ∈ S2. However, there are points in

the phase spaces of the two systems which give the

same value of the quantities ⟨Ĵx⟩, ⟨Ĵy⟩, ⟨Ĵz⟩. We use

such states as initial states for the comparison of the

time dependence of ⟨Ĵx⟩, ⟨Ĵy⟩, ⟨Ĵz⟩ generated by the

dynamics of Eqs. (8) and (9).

The dynamics generated by the two coarse-

grained systems is illustrated in Fig. 1.

0

-0.5

-1.0

-1.5

-2.0

-2.5

0

-0.5
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-1.5
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-2.0
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J
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t

0 0.2 0.4 0.6 0.8 1.0
t

Fig. 1. Figures illustrate the evolution of Jx = ⟨Ĵx⟩ as

generated by the two coarse-grained systems (8) (full line)

and (9) (dotted line). The initial states are as explained

in the main text resulting in (a) j = 8, (b) j = 32, and

(c) j = 72. The values of parameters are ϵ1 = ϵ2 = 1,

δ = c = 1.

The initial state for both systems gives the same

initial value of ⟨Ĵx⟩, ⟨Ĵy⟩, ⟨Ĵz⟩. In Fig. 1 the initial

values of the canonical coordinates (q, p) for the spin

systems are (q, p) = (0, 0), implying ⟨Ĵx⟩ = ⟨Ĵy⟩ = 0,

and the size of the spin was in Fig. 1(a) j = 8, in

Fig. 1(b) j = 32, and in Fig. 1(c) j = 72 implying

⟨Ĵz⟩ = 8, ⟨Ĵz⟩ = 32, and ⟨Ĵz⟩ = 72, respectively.

The initial points for the oscillators’ coarse-grained

dynamics that imply the same values of ⟨Ĵx⟩ = 0,

⟨Ĵy⟩ = 0, ⟨Ĵz⟩ = j, are always of the same form

(q1, q2, p1, p2) = (0, q2, 0, p2) with (q22 +p
2
2)/4 = j. For

example, in Fig. 1(a) (q1, q2, p1, p2) = (0, 4, 0, 4), in

Fig. 1(b) (q1, q2, p1, p2) = (0, 8, 0, 8), and in Fig. 1(c)

(q1, q2, p1, p2) = (0, 12, 0, 12). The evolution of ⟨Ĵx⟩
by the two systems (8) and (9) are clearly different,

even for quite small periods of time or for a small

number of characteristic oscillations. The difference

between the two evolutions depends on the size of the

spin, i.e., on the total number of atoms. The differ-

ence is larger for smaller values of j and decreases as

j is increased. In Fig. 1 the oscillator evolution starts

from the oscillators coherent states of the same type

|0, 0⟩|q2, p2⟩ corresponding to the initial spin coherent

state |j, j⟩ with j = (q22 + p22)/4. Qualitatively the

same conclusion is obtained (not illustrated) by con-

sidering the oscillators’ initial coherent states of the

form |q1, p1⟩|q2, p2⟩, where both component states are

at some distance from the ground state |0, 0⟩, and the

corresponding (q, p) for the spin are nonzero implying

that the initial averages ⟨Ĵx⟩ ̸= 0, ⟨Ĵy⟩ ≠ 0, ⟨Ĵz⟩ ̸= 0

are all nonzero.

Our results imply that the two coarse-grained de-

scriptions, corresponding to the equivalent quantum

models, are not equivalent for finite values of the to-

tal number of atoms. Let us stress that each of the two

coarse-grained descriptions is natural from the point

of view of the corresponding dynamical algebra. Only

in the macro-limit do the two coarse-grained dynam-

ical systems generate indistinguishable evolution cor-

responding to the unique classical limit. However, for

a moderate number of trapped atoms the difference

between the two coarse-grained descriptions might be

detected.

5. Summary

We have studied alternative coarse-grained de-

scriptions that can be associated with a given quan-

tum system. The following general picture emerges

from our analyses of the 2mBH example. A quantum

system is described by the Hamiltonian expressed in

120301-5
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terms of some basic operators. The commutation re-

lations between the basic operators define the dynam-

ical algebra g1 of the system and the system’s Hilbert

space appears as the space of an irreducible represen-

tation of the dynamical algebra. However, it might

occur that the Hilbert space is in fact a direct sum

of spaces that are invariant for the considered Hamil-

tonian and which generate irreducible representations

of some other algebra g2. In this case the Hamilto-

nian can be written in terms of the operators sat-

isfying the commutation relations of the algebra g2.

Nevertheless, the two ways of writing the Hamilto-

nian are equivalent and the dynamical evolution of

the physical observables is the same whichever form

of the Hamiltonian is used. However, the appropri-

ate coarse-grained description is determined by the

system’s dynamical algebra. The coarse-grained sys-

tem is defined as a Hamiltonian system on the mani-

fold of the coherent states, determined by the algebra,

given by the Hamiltonian which is equal to the coher-

ent state expectation of the original Hamilton’s opera-

tor. If the original quantum system is consistent with

two dynamical algebras, the above procedure leads to

two natural coarse-grained systems. We have shown

that the two coarse-grained systems generate different

evolutions of the same dynamical variables, which be-

come canonically equivalent only in the corresponding

macro-limits.
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