
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 147.91.1.44

This content was downloaded on 04/04/2016 at 14:45

Please note that terms and conditions apply.

Synchronization of the minimal models of bursting neurons coupled by delayed chemical or

electrical synapses

View the table of contents for this issue, or go to the journal homepage for more

2012 Chinese Phys. B 21 010203

(http://iopscience.iop.org/1674-1056/21/1/010203)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1674-1056/21/1
http://iopscience.iop.org/1674-1056
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Chin. Phys. B Vol. 21, No. 1 (2012) 010203

Synchronization of the minimal models of bursting

neurons coupled by delayed chemical or

electrical synapses∗
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The minimal two-dimensional model of bursting neuronal dynamics is used to study the influence of time-delay on

the properties of synchronization of bursting neurons. Generic properties of bursting and dependence of the stability of

synchronization on the time-lag and the strength of coupling are described, and compared with the two common types

of synaptical coupling, i.e., time-delayed chemical and electrical synapses.
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1. Introduction

Synchronization of coupled nonlinear dynamical
systems is a widespread phenomenon occurring in
physical and biological systems.[1,2] The observations
of synchronous neural activity in the central ner-
vous system have stimulated a great deal of the-
oretical work on synchronization in coupled neural
networks.[3,4] These observations suggest that neural
activity is a cooperative process of neurons and syn-
chronization plays a vital role in information process-
ing in the brain, such as in processing information
from different sensory systems to form a coherent and
unified perception of the external world. Many stud-
ies have been carried out on synchronization in limit
cycle systems and, more recently, chaotic systems.[2]

Phenomenological or qualitative models (or models of
the generic bifurcation type as they are sometimes
called) have been employed in many studies on syn-
chronization in networks.[5−8] Small world and scale-
free networks of various neuronal models with noise
and synaptic delays have been studied numerically,
for example in Refs. [9]–[14].

Generic bifurcation models, depending on the
model, are able to display, to a greater or lesser ex-
tent, behaviour beyond simple spiking, thus captur-

ing what is believed to be the essence of neocortical
diversity. The important advantages of a good qual-
itative model are that it describes generic properties
and is more transparent and easier to analyse. The
simplicity of generic models has been achieved by us-
ing the minimal number of variables needed to capture
the relevant dynamical behaviour. For example, the
famous FitzHugh–Nagumo (FN) neuron model,[15,16]

is a two-dimensional nonlinear neuron model, and it
is used as a paradigm for type II spiking behaviour
in neurons.[6] It has been often used to study syn-
chronization of excitable neuronal dynamics (see for
example Refs. [17], [18] and references therein). In
addition, a three-dimensional Hindmarsh–Rose (HR)
model[19] is a commonly used example of a model that
can exhibit more complex behaviour than only peri-
odic movement. It is capable of producing bursting
solutions for a wide range of parameters (i.e., a series
of spikes which are chaotically interspersed with the
quiescence behaviour). Stability and bifurcations of
the stationary solution and the exact synchronization
of the bursting dynamics for delayed coupled HR neu-
rons have been analysed for example in Refs. [20]–[24].

It is believed that a burst of spikes is more reliable
than a single spike in producing responses in post-
synaptic neurons, so it is important to study burst-
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ing neuronal dynamics[5,6] Among the various types
of models that can exhibit bursting dynamics, the
most elementary one, and in this sense the generic
model, has been given by the two-dimensional sys-
tem of ordinary differential equations introduced by
Izhikevich.[5,25] Our goal in this paper is to present
some synchronization properties of bursting neurons,
described by the minimal Izhikevich model, that can
be expected to be generic. In particular, our investi-
gation will concentrate on the influence of the time-
delay and coupling strength on bursting synchroniza-
tion with the two types of coupling: electrical and
chemical couplings.

In most synchronization studies, the coupling be-
tween the elements in the network is assumed to be
electrical (also called linear or diffusive), and is rep-
resented as the difference between the membrane po-
tentials of the interacting neurons. Although there
are synapses which are well approximated by the elec-
trical coupling, the majority are in fact the so-called
chemical synapses.[3,7] The fast threshold modulation
(FTM) model proposed by Somers and Kopell[26] is a
simple mathematical model that represents this kind
of coupling well. FTM differs from electric linear cou-
pling in that the coupling term is a nonlinear function
of the state variables of the coupling system.

In modelling qualitative neuronal networks, it is
useful and also important to use explicitly the time-
delays in the description of the transfer of information
between the neurons. Obviously, the information flow
in coupled systems is not instantaneous. On the con-
trary, finite speed of signal transmission over a dis-
tance gives rise to a finite time-delay. For example,
the speed of signal conduction through unmyelinated
axonal fibres is on the order of 1 m/s, resulting in
time delays of up to 80 ms for propagation through
the cortical network.[3] Furthermore, the complicated
succession of processes that take place in real synapses
can be modelled by a single interaction term with an
explicit time-lag in the dynamical equations of the in-
teracting neurons. In addition, it is known that values
of the time-lag in a realistic domain can change the
qualitative properties of dynamics: introduce or de-
stroy stable oscillations and enhance or suppress syn-
chronization between different units. In this paper,
we will study the synchronization of two elementary
two-dimensional bursters with an explicit time-delay
in the coupling.

The paper is organized as follows: in the next sec-
tion, we present the models for connectivity used for

the coupling between the neurons. Each of the neu-
rons is modelled by the Izhikevich equations and, for
the chemical synapse, we use the FTM model with
explicit time-lag. In Section 3, we derive the delay-
differential equations for small deviations from the
manifold of the exact synchronization that we used to
study the stability of the synchronization. The equa-
tions are analogous to those derived in Ref. [9] for HR
neurons coupled by the delayed electrical synapses.
Results of our analyses of the effects of the synap-
tic time delay on the bursting dynamics and synchro-
nization are presented in Section 4. The conclusion is
given in Section 5.

2. Basic models of bursting and

synaptic connections

Izhikevich[25] introduced the minimal, qualitative,
generic-type model of bursting behaviour, which re-
quires only two variables and is of the form

ẋ = x − x3

3
− y +

4
1 + exp(5(1 − x))

cos(40y),

ẏ = µx, (1)

where µ = 0, 01, x is the rescaled membrane potential
of the neuron and y corresponds to the slow current,
for example Ca+. Slow oscillations of y variable drive
the fast variable x through periods of oscillatory and
quiescent behaviour. An isolated Izhikevich neuron
shows a two-dimensional hedgehog-like limit cycle at-
tractor because the parameters are fixed to the values
typical for bursting behaviour and the system has an
unstable stationary solution. The burst in the dy-
namics of the fast(x) variable occurs for such (c, τ)
that imply oscillatory behaviour of the slow variable y,
and in particular during the periods when dy/dt > 0.
Typical orbit of the Izhikevich model is illustrated in
Fig. 1 by presenting its phase portrait (Fig.1(a)) and
the time series x(t) and y(t) (Fig. 1(b)).

Synapses are of two types: chemical and electri-
cal, both of which occur in the neocortex, although
the chemical ones are much more frequent.[3] Chemical
synapses have complex morphology and correspondly
complex dynamics that operate on many different time
scales, thus providing memory function. They have a
steep activation function and therefore only transmit
information about the timing of the spikes (or bursts)
in the presynaptic cell. The fast threshold modula-
tion model was, as a model for chemical coupling,
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proposed by Somers and Kopell in 1993:[26] It is called
fast, because no dynamics are incorporated, and called
threshold modulation, because the model exhibits a
threshold-like behaviour, either a hard threshold, or a
more gradual, continuous threshold.

Fig. 1. The bursting dynamics on the attractor for the

Izhikevich neuron (µ = 0.01). (a) The phase portrait of

the attractor, (b) the time series x(t) (solid line) and y(t)

(dotted line).

Our main goal in this paper is to study the in-
fluence of time-delay on the synchronization of two
electrically or chemically coupled elementary bursters,
given by the following delay-differential equations
(DDE):

ẋ1 = x1 −
x3

1

3
− y1 +

4
1 + exp(5(1 − x1))

× cos(40y1) + C(x1, x
τ
2),

ẏ1 = µx1,

ẋ2 = x2 −
x3

2

3
− y2 +

4
1 + exp(5(1 − x2))

× cos(40y2) + C(x2, x
τ
1),

ẏ2 = µx2, (2)

where xτ
i ≡ xi(t − τ), and τ ≥ 0 is a measure of

the time-delay. The function C(xi, x
τ
i+1), i = 1, 2,

x3 ≡ x1, describes the time delayed coupling between
the units.

Two types of coupling will be analysed. The elec-
trical coupling

C(xi, x
τ
i+1) = c(xτ

i+1 − xi), (3)

and the chemical coupling in the following FTM form:

C(xi, x
τ
i+1) = c(xi − Vs)

1
1 + exp[−k(xτ

i+1 − θs)]
. (4)

The parameter Vs is the synaptic reversal poten-
tial. It determines the type of coupling. If Vs is larger
than the membrane potential x, then the membrane
potential x is de-polarized, thus exciting the cell. If,
on the other hand, Vs is smaller than the membrane
potential, then the membrane potential x is hyper-
polarized, thus the cell is inhibited. The variable pa-
rameter c is the coupling strength between the first
neuron at time t and its neighbour at some previ-
ous time t − τ . The model exhibits either a hard or
more gradual threshold-like behaviour, depending on
the size of the parameter k, with k → ∞ correspond-
ing to the hard threshold. In this study, the values of
the parameters θs, Vs and k will be fixed as θs = −0.25,
Vs = 3, and k = 10.

The time-delay plays a crucial role in the dynam-
ics of the coupled system (2). For example, in the case
of electrically time-delayed coupled bursters[23] or re-
laxation oscillators,[17,27] the time-lag in a certain do-
main leads to stabilization of the quiescent behaviour,
i.e., to the phenomenon of oscillation death. Further-
more, it has been shown that the time-delay facilitates
exact synchronization among bursting electrically cou-
pled HR neurons,[22] but this phenomenon is unstable
under an arbitrary small white noise perturbation.[24]

3. Linear stability analyses of

synchronization

In a system of coupled bursting neurons (2), one
can think of different degrees of synchronization. For
example, a type of weak synchronization is achieved
when the bursts in the two units occur roughly at the
same time without synchronization of spikes within
the bursts. The strongest type of synchronous dy-
namics is the exact synchronization. In Fig. 2, differ-
ent types of asynchronous and synchronous bursting
dynamics are illustrated. The two neurons in Eq. (2)
are exactly synchronous if the following conditions are
satisfied for all t:

δx = x1 − x2 = 0, δy = y1 − y2 = 0. (5)

In order to study the stability of the exact synchro-
nization of system (2), we have employed the method
of numerical calculations of the Lyapunov exponent
near the stationary solution of the equations that de-
scribe the dynamics of small deviations from the man-
ifold of exact synchronization.[22]
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Fig. 2. Different types of dynamics, such as weak synchronization ((a),(b)) when neurons are electrically coupled,

asynchronous bursting (c) and exact synchronization (d) achieved by increasing the values of the time-lag τ when

neurons are FTM coupled. Values of (c, τ) and the plotted curves are (a) (0.1, 5), x1 (solid line), x2 (dotted line); (b)

(0.1, 5), (x1 − x2); (c) (0.3, 60), x1 (solid line), x2 (dotted line); (d) (0.3, 66), x1 (solid line), x1 − x2 (dotted line).

On synchronization manifold (5), the dynamical
equation is

ẋ = x − x3

3
− y +

4
1 + exp(5(1 − x))

× cos(40y) + C(x, xτ ),

ẏ = µx,

x = x1 = x2, y = y1 = y2, (6)

where C(x, xτ ) is in the form of Eq. (3) for electrical
or Eq. (4) for chemical coupling.

The motion transverse to the synchronization
manifold can be described in terms of infinitesimally
small variations δx ∼ o(x), δy ∼ o(y) by the equations

δ̇x =
[
1 − x2 +

20
[1 + exp(5(1 − x))]2

× cos(40y) exp(5(1 − x)) + A

]
δx

−
[
1 +

160
1 + exp(5(1 − x))

sin(40y)
]

δy

+Bδxτ ,

δ̇y = µδx, (7)

where we have used x3
1 − x3

2 ∼ 3x2δx,

4
1 + exp(5(1 − x1))

cos(40y1)

− 4
1 + exp(5(1 − x2))

cos(40y2)

∼

[
20

[1 + exp(5(1 − x))]2
cos(40y) exp(5(1 − x))

]
δx

−
[

160
1 + exp(5(1 − x))

sin(40y)
]

δy,

and

c

[
(x1 − Vs)

1
1 + exp[−kxτ

2 + kθs]

−(x2 − Vs)
1

1 + exp[−kxτ
1 + kθs]

]
∼

[
c

1 + exp[−k(xτ − θs)]

]
δx

−
[
c(x − Vs)

k exp[−k(xτ − θs)]
(1 + exp[−k(xτ − θs)])2

]
δxτ .

In the case of the electrical coupling, we have

A = −c, B = −c,

and in the case of the chemical FTM coupling, we have

A =
[

c

1 + exp[−k(xτ − θs)]

]
,

B = −
[
c(x − Vs)

k exp[−k(xτ − θs)]
(1 + exp[−k(xτ − θs)])2

]
.

Equation (7) can be treated as a nonautonomous
system of DDEs for the dynamics of small variations
δx, δy, where the time dependence of x, y are de-
termined by Eq. (6). The synchronization manifold is
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stable or unstable, depending on whether the solutions
of (7) (δx(t), δy(t)) shrink to zero or grow asymptot-
ically as t → ∞. Sufficient condition for the stability
is that the largest Lyapunov exponent associated with
(7) is negative. The largest Lyapunov exponent of (7),
which can be obtained by numerical solutions of joint
equations (6) and (7), thus provides information of the
local stability of the synchronization manifold.

4. Bursting and synchronization

We have studied the conditions for synchroniza-
tion on parameters c and τ by numerical solutions of
Eqs. (2), (6) and (7). The main questions that we
want to answer are: a) for which values of c and τ ,
exactly synchronous bursting dynamics is stable and
b) in which way the properties of the bursts, like the
frequency of their occurrence and the average number

of spikes in each burst, depend on the values of the
coupling strength c and the time-delay τ .

The computations of the largest Lyapunov expo-
nent for the motion transverse to the synchroniza-
tion manifold (6) are used to determine the domain
of (c, τ) parameters that imply stability or instabil-
ity of the synchronization manifold. Application of
this method to DDEs has been described in details
elsewhere,[9,17,18] and will not be repeated here.

For τ = 0 and for both types of coupling, the units
are synchronized or non synchronized, depending on
the sign of the value c: for c > 0, the units are syn-
chronized and in the opposite case, i.e., when c < 0,
the units are non-synchronized. For τ > 0, a much
more complex behaviour emerges. The results of our
numerical study of the properties of the bursts and
their synchronization in terms of the coupling c and
the time-delay τ are presented by discussing Figs. 3–5.

Fig. 3. Domains in (c, τ) parameter plane that imply synchronous (black) or asynchronous (white) bursting

behaviour for electrical ((a), (b)) and chemical ((c), (d)) coupling.

Generally, Figs. 3–5 show an important and fun-

damental influence of time-delay on synchronization

and bursting and spiking properties of coupled Izhike-

vich neurons.

figure 3 indicates that the regions of the parame-

ter space (c, τ), where the largest Lyapunov exponents

are larger or smaller than zero, i.e., the regions of

the parameter space where units are non-synchronized

(gray) or synchronized (black), respectively. The sign

of the largest Lyapunov exponent is illustrated on a

net of 10 × 20 (c, τ) values for c > 0 and c < 0. We

choose the values of the coupling strength and the

time-delay in the realistic domain, i.e., in our calcula-

tions, we set |c| ≤ 1 and 0 ≤ τ ≤ 100. In the case of an
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electrical coupling, the regions in the parameter space
(c, τ) are much more interspersed than that in the
case of the chemical coupling, i.e., the transitions from
synchronized to non-synchronized behaviour (and vice
versa) occur much more often than that in the case of

the FTM coupling. Figures 3(c) and 3(d) (when the
neurons are FTM coupled) show the existence of large
areas of both synchronized and non-synchronized be-
haviour.

Fig. 4. (colour online) The dependence of the frequency of bursts on c and τ for electrical ((a), (b)) and FTM ((c), (d)) coupling.
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Fig. 5. (colour online) The dependence of the average number of spikes per burst on c and τ for electrical ((a), (b)) and

chemical ((c), (d)) coupling.
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Figure 4 demonstrates the dependence of fre-
quency of bursts on the parameters c and τ . The
frequency of the bursts introduced by electrical cou-
pling is much larger than the frequency introduced by
FTM coupling (almost two times bigger for certain re-
gions of (c, τ)). The electrical and chemical coupling
leads to qualitatively similar diagrams. In addition,
there is a qualitative difference for both types of cou-
pling between the dynamics for c < 0 and c > 0. In
other words, the qualitative difference is not so much
between the electrical and chemical coupling as it is
between the cases that c < 0 and c > 0.

Figure 5 shows the average number of spikes as
a function of the relevant parameters. Sharp peaks
can be seen, for certain values of c and τ , only in the
case where the units are electrically coupled and for
c > 0. All the three other diagrams look qualitatively
similar.

5. Summary and discussion

We have studied the exact synchronization of
bursting dynamics in a pair of neurons with both an
electrical and an FTM model of the chemical synapse.
An Izhikevich neuron was used as the minimal generic
model of each of the bursting units and we have in-
cluded explicitly the time-delay in the synapses. Al-
though the model with explicit time-delay is an infi-
nite dimensional dynamical system, and because there
is an infinite number of Lyapunov exponents, we ex-
amined the stability of the synchronized behaviour
by computing the maximum Lyapunov exponent for
the transverse directions to the synchronization man-
ifold. We have demonstrated that the time-delay in
both the electrical and the chemical FTM synapse can
lead to the exact synchronization of bursting. Nu-
merical calculations are used to solve the DDE’s of
the model and calculate the largest Lyapunov expo-
nent for the equations of perturbations transversal to
the synchronization manifold. These calculations can
serve to determine the domains of the values of the
coupling strength and time-delay that imply asyn-
chronous or exactly synchronous bursting dynamics
for initial states in some domains near the (unsta-
ble) stationary state. We have concentrated on the
effects of the synaptic time-delay on the stability of
synchronous bursting dynamics. Time-delay-induced
oscillation death was not observed in the domain of
parameters (c, τ) we have investigated, but instead of

that a simple spiking exists in the small domain of
values (c, τ).

The focus of our investigation here was on 1)
the synchronizing effect of time-delay as a function
of the time-lag and coupling strengths, 2) the stabil-
ity of synchronized states, and 3) the properties of
the bursts, like the frequency of their occurrence and
the average number of spikes in each burst, depend-
ing on the values of the coupling strength c and the
time-delay τ .

The following conclusions are obtained from our
calculations. For τ = 0 and for both types of coupling,
the units are synchronized or non synchronized, de-
pending on the sign of the value c: for c > 0 the units
are synchronized and, in the opposite case, i.e., when
c < 0, the units are non-synchronized. For τ > 0, a
much more complex behaviour emerges. In the case of
electrical coupling, the synchronization of the burst-
ing neurons occurs most often through the weak syn-
chronization, i.e., through the bursting of the coupled
neurons which is not exactly synchronous but the pe-
riods of bursts of the two neurons coincide. On the
other hand, the bursting of the two chemically FTM
coupled units is mostly either asynchronous or exactly
synchronous, and only a negligibly small (c, τ) param-
eter domain implies the weak synchronization.

Relations between the domains of synchronous
and asynchronous bursting described in this paper
have been obtained using the most elementary model
of bursting dynamics. It remains to be studied
whether the conclusions can be also applied qualita-
tively in the cases of more complicated neuronal mod-
els in the bursting regime, and deterministic neuronal
models with perturbations by white noise. It is also
important to study the relative importance of time-
delay for cases of instantaneous electrical or chemical
coupling on the synchronization in more complicated
networks of elementary bursters.
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