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Properties of an operator representing the dynamical time in the extended parameterization invariant formulation

of quantum mechanics are studied. It is shown that this time operator is given by a positive operator measure analogously

to the quantities that are known to represent various measurable time operators. The relation between the dynamical

time of the extended formulation and the best known example of the system time operator, i.e., for the free one-

dimensional particle, is obtained.
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1. Introduction

Fundamental dynamical theories of classical and

quantum nonrelativistic physics treat the time as an

evolution parameter, i.e., as an independent variable

conceptually and mathematically different from de-

pendent dynamical variables or observables such as

the coordinate, the momentum, and the functions

thereof. However, the relativistic covariance,[1−4] on

one hand, and the direct measurements of the time of

occurrence and the duration time,[7−13] on the other,

require that the time is treated in the same way as the

standard measurable quantities.

Corresponding to the two main motivations,

namely, the relativistic covariance and the measure-

ments of time, there are two fundamentally different

approaches to the representation of time as a physical

measurable quantity. Our paper explores properties of

the time operator in the reparameterization invariant

formulation of Hamiltonian dynamics and is directed

towards an explanation of the relations between differ-

ent time observables as they might be and have been

introduced following the two motivations.

The approach motivated by the relativistic co-

variance is based on the so-called parametric form

of the Hamiltonian dynamics,[1,2,14] with two analo-

gous formulations for classical[14] and quantum[1] sys-

tems. The time variable/observable is represented and

treated as an additional degree of freedom. Original

degrees of freedom and the time form the so-called ex-

tended phase space. However, the parametric invari-

ance represents the gauge symmetry, which is treated

as a constraint on the extended phase space. The con-

straint involves the Hamiltonian of the extended sys-

tems. In the quantum case, the physical interpretation

of the constraint is specially problematic, leading to

what has been called the problem of time in quantum

gravity.[4]

In the second approach, a specific solvable system,

such as free particle or harmonic oscillator, is consid-

ered, and the time variable/observable proportional

to the evolution parameter[10,11] or the time of spe-

cific events occurring in the system[7−9] is expressed

in terms of the basic dynamical variables/observables,

say the canonical coordinates and momenta. In order

to let such a time variable/observable be proportional

to the evolution parameter, the condition of covari-

ance is imposed on the Poisson bracket {H,T} = 1 or

the commutator [Ĥ, T̂ ] = i of the time and the Hamil-

tonian. It is well known that neither the classical nor

the quantum form of the covariance conditions can be

satisfied with physically acceptable Hamiltonians. In

the classical case, the relation with a generic H can

be satisfied only locally; and in the quantum case, the

spectrum of Ĥ would have to be the whole of R. Simi-

larly, expressions for the time of occurrence of different
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dynamical events, like the arrival time, have been ex-

pressed in terms of canonical variables/operators via

expressions that are singular in the classical case or

results with non-self adjoined operators in the quan-

tum case. A general consensus in the quantum case is

that when the time is expressed in terms of canonical

operators, the resulting expression is an object that

does not give a projector measure (PM) on R, while

a self-adjoined operator does. Instead, the mathemat-

ical object representing the time operator is defined

via nonorthogonal resolution of unity by positive op-

erators, i.e., by a positive operator valued measure

(POVM).

The purpose of this paper is to explore relations

between the two approaches in the context of quantum

mechanics. We shall start with the parametric Hamil-

tonian formulation and study the mathematical prop-

erties and the physical interpretation of the naturally

defined dynamical time. We shall see that the dynami-

cal time, introduced quite generally in the parametric

formulation formalism, is given by a nonorthogonal

resolution of unity. This is the typical property of op-

erators representing various time observables in terms

of the canonical operators. It will then be shown for

the example of a free particle that an operator for-

mulated using the dynamical time of the parametric

formulation reproduces the probability distributions

given by the well-known POVM obtained by repre-

senting the time in terms of the canonical variables.

The paper is organized as follows. In the next

section, we briefly recapitulate the parametric formu-

lation for quantum systems. In Section 3, we first

present the main properties of the dynamical time op-

erator. We then introduce an operator based on the

dynamical time and compare it with the well known

POVM representation of the time for the free parti-

cle. Section 4 presents a brief discussion of the pos-

sible probabilistic interpretation of vectors from the

extended space and from the dynamical space. A sum-

mary is given in Section 5. In the appendix, we pro-

vide an alternative mathematical framework, which

avoids the mathematical difficulties of the Hilbert

space formulation of the reparametrization invariance

constraint.

2. Extended space and space of

dynamical vectors

The parametric formulation of Hamiltonian dy-

namics based on the extended phase space enables us

to treat the time formally on an almost equal footing

as the other canonical coordinates. However, since

the dynamics of the time must be trivial, i.e., the

time must be proportional to the evolution param-

eter, the time appears as an unphysical degree of

freedom, and the extended system is constrained on

the subset of dynamical vectors by the corresponding

constraint. Furthermore, the quantum mechanics of

the constrained extended system introduces potential

mathematical subtleties.

We shall very briefly sketch the classical Hamil-

tonian formulation of the extended system with the

parametric invariance, and recapitulate the analogous

formulation in quantum mechanics with more details.

In the parametric formulation of the Hamiltonian

mechanics, the time is treated as the coordinate of

an additional degree of freedom, and the evolution

is parameterized by a new evolution parameter. In

order to let the dynamical equations of the original

and the extended systems describe the same evolu-

tion, the Hamiltonian of the extended system is de-

fined as a sum of the original Hamiltonian Hs and the

variable Jt conjugated to the time coordinate T , i.e.,

Hex = Hs−Js. Here Hex is a function on the extended

phase space, for the example of one dimensional par-

ticle, it is Mex = R2 × R2. The physical meaning

of the time variable is formalized as a constraint on

the extended phase space. In the classical case, the

constraint is given by

Hex(q, p, Jt) = Hs(q, p)− Jt = 0, (1)

where Jt = hs(q, p), and hs(q, p) is the value of Hs at

(q, p).

The quantization of the extended system Hex

is often discussed as a simple example of a con-

strained quantization, i.e., reparametrization invari-

ant, system.[1] In our recapitulation, we shall follow

one of the possible quantization procedures, in which

the extended phase space is canonically quantized as

if there is no constraint. The constraints are then in-

cluded in the form of conditions imposed on the space

of dynamical vectors.

The classical approach suggests an analogous

treatment of the extended quantum system with time

as an additional physical observable. The Hilbert

space Hex of the extended system is considered as the

tensor product of the Hilbert space Hs correspond-

ing to the spatial degrees of freedom and the Hilbert

space Ht that corresponds to the time treated as an

additional degree of freedom. The extended system

will be defined by the commutation relations between

070302-2
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the time and its conjugate, the extended Hamiltonian

and the constraint.

The extended Hilbert space is defined as the di-

rect product Hex = Hs ⊗ Ht. The structure of Ht

is dictated by the desired algebraic properties of the

time variable represented by an operator I ⊗ T̂ acting

on Ht. Analogy to the classical extended phase space,

the Hilbert space Ht should carry an irreducible rep-

resentation of the same Lie algebra

[T̂ , Ĵt] = −i. (2)

Thus, T̂ and Ĵt are represented by multiplication and

differentiation operators acting on functions from the

corresponding domains in Ht. Of course, T̂ and its

conjugate Ĵt commute with the operators acting in

Hs. In particular, T̂ commutes with Hamiltonian op-

erator Ĥs.

Operators T̂ and Ĵt have continuous spectra on

Hex. Nevertheless, we shall often use the terminology

eigenvalues and eigenvectors for those operators, these

should be understood in the generalized sense. Let∫
|E⟩⟨E|dE denote the spectral resolution of unity

associated with the Hamiltonian operator Ĥs. The

integral is understood as a sum or as an integral over

the spectra of Ĥs depending on the types of the spec-

tra. Similarly
∫
R
|Jt⟩⟨Jt|dJt and

∫
R
|t⟩⟨t|dt denote

the continuous orthogonal resolutions of unity corre-

sponding to operators Jt and T on Ht.

Consider a system with the Hamiltonian Ĥs =

Ĥs(q̂, p̂). In order to let the original system on Hs and

the extended one on Hex describe the same quantum

evolution, the Hamiltonian of the extended system is

defined as

Ĥex = Ĥ − Ĵt. (3)

The Hamiltonian Ĥex and the operator T̂ satisfy

∆Hex∆T ≥ ⟨i[Ĥex, T̂ ]/2⟩ = 1/2. (4)

Of course, the physical interpretation of Eq. (4) is not

that of the time–energy uncertainty relation, since the

system’s energy is represented by the Hamiltonian Ĥs,

which commutes with T̂ .

The classical constrain Hex = 0 is introduced into

quantum mechanics by using a constraint that must

be satisfied by the vectors from Hex as follows. It is

declared that not all vectors from Hex should be con-

sidered as representing the dynamically possible vec-

tors but only those that satisfy the following condition

analogous to the classical equation of the constraint:

Ĥex|ψ⟩ = (Ĥs − Ĵt)|ψ⟩ = 0, (5)

which is, for the self-adjoined operators, equivalent to

⟨ψ|(Ĥs − Ĵt)
2|ψ⟩ = 0. (6)

Since Ĥs and Ĵt are linear, the set of dynamical vec-

tors is a linear subspace of Hex. We denote the space

of dynamical vectors, i.e., those that satisfy Eq. (5),

by Hdyn ⊂ Hex. However, the vectors satisfying the

constraint might not have finite norms, which is the

case if zero is an eigenvalue in the continuous spectrum

of Hex. Mathematically, the rigorous formulation of

the constraint (5) is provided by the geometric Hamil-

tonian formulation of quantum dynamics,[15−19] as is

shown in Appendix A.

The constraint (5) demands that operators Ĥs⊗1

and 1⊗ Ĵt are equal when restricted on the subspace

of the dynamical vectors. Vector |E0⟩⊗|Jt⟩ represents
a dynamical vector if and only if Jt = E0, i.e., if the

eigenvector |Jt⟩ of Ĵt has the eigenvalue of Jt numer-

ically equaling to the eigenvalue E0 of the Hamilto-

nian. We denote such vectors by |E⟩ ⊗ |E⟩ ≡ |E,E⟩.
A general vector from the extended space is given by

|ψ⟩ =
∫∫

dEdJtf(E, Jt)|E⟩ ⊗ |Jt⟩, (7)

and the dynamical vectors are of the form

|ψ⟩dyn =

∫
dEf(E)|E⟩ ⊗ |E⟩. (8)

The projector on the subspace of dynamical vec-

tors Hdyn is written as

P̂dyn =

∫
dE|E,E⟩⟨E,E| 1

δ(0)
, (9)

where 1/δ(0) cancels the norm of eigenvector |JT =

E⟩. Obviously, the subspace of dynamical vectors is

invariant under the Schrödinger evolution generated

by Hex.

Notice that the second component of the elemen-

tary dynamical vector |E⟩⊗|E⟩ is a generalized eigen-

vector of operator Ĵt. This operator has only a contin-

uous spectrum, and its eigenvectors are not normaliz-

able and do not belong to the Hilbert space Ht, but

are properly speaking elements of the corresponding

rigged Hilbert space. In the same way, the eigenspace

Hdyn of the extended hamiltonianHex must be under-

stood in the sense of generalized vectors. The expres-

sion of P̂dyn given by Eq. (9) represents a projection

operator only formally and in the generalized sense.

Despite this fact, we shall continue to address Pdyn as
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the projection operator bearing in mind the mathe-

matical subtleties involved in its definition.

The physical meaning of P̂dyn is seen in the fact

that it associates with an arbitrary vector of the form

|ψ0⟩|t0⟩ with its image P̂dyn|ψ0⟩|t0⟩ ∈ Hdyn, and

the latter can be identified with a solution of the

Schrödinger equation in Hs, i.e., the system’s orbit

that goes through the state |ψ0⟩ ∈ Hs at time t0. In

other words, the Cauchy problem for the Schrödinger

evolution equation in Hs is replaced by two algebraic

equations for the vectors of the extended Hex. The

first one is the constraint (5) satisfied by each dy-

namical vector, i.e., each Schrödinger orbit on Hs. A

particular orbit, which goes through ψ0⟩s ∈ Hs at

t = t0, is described by the particular dynamical vec-

tor |ψ⟩dyn ∈ Hdyn, which satisfies, besides constraint

(5), the second condition

1⊗ |t0⟩⟨t0|ψ⟩dyn = |ψ0⟩s ⊗ |t0⟩. (10)

The probabilistic interpretation of general vectors

from Hex and Hdyn is discussed in Section 4.

3. Dynamical time and system

time

The parameter time of the Schrödinger equation

is in the extended space related to operator 1⊗T̂ . The
projection of this operator on the space of dynamical

vectors Hdyn gives an operator, which we shall call

the dynamical time T̂dyn

T̂dyn = P̂dyn(1⊗ T̂ )P̂dyn. (11)

Properties of the particular system enter into the def-

inition of T̂dyn through projector P̂dyn, i.e., through

the constraint (5). However, the constraint is a con-

sequence of the parametric invariance, and this is a

property of the formalism not of the particular sys-

tem. Therefore, rather peculiar properties of operator

T̂dyn are valid for all Hamiltonian systems and are a

consequence of the fact that the dynamical time T̂dyn
is not a proper dynamical variable (constraint (5)),

and it does not correspond to an independent degree

of freedom. The properties are consistent with the

interpretation of T̂dyn as an object representing the

universal time external to any system. Let us formu-

late the main properties of T̂dyn all following from the

explicit form (9) of projector P̂dyn. In fact, by using

Eq. (9), T̂dyn becomes

T̂dyn =

∫
|E,E⟩⟨E,E| dE

δ(0)
(1⊗ T̂ )

×
∫

|E′, E′⟩⟨E′, E′| dE
′

δ(0)

=

∫
|E,E⟩⟨E,E| dE

δ(0)
[⟨E|T̂ |E′⟩/δ(0)]

= −i
δ′(0)

δ(0)
P̂dyn. (12)

The crucial properties of T̂dyn easily follow from

the observation that operator T̂dyn acts trivially on

the space of dynamical states Hdyn = P̂dynHex. It

is easily seen that ⟨T̂dyn⟩ = δ′(0)/δ(0) for any vector

|ψ⟩, which can be informally read as ⟨T̂dyn⟩ = 0. Fur-

thermore, the projection on the dynamical vectors of

the spectral resolution of operator 1 ⊗ T̂ generates a

non-orthogonal resolution of unity. Consider the prod-

uct of P̂dyn(1 ⊗ |t⟩⟨t|)P̂dyn for two different values of

t = t1, t2,

P̂dyn(1⊗ |t1⟩⟨t1|)P̂dyn(1⊗ |t2⟩⟨t2|)P̂dyn. (13)

Substituting formula (9) for Pdyn gives (up to the nor-

malization)∫
dEdE′dE′′|E,E⟩⟨E,E|(1 +⊗|t1⟩⟨t1|)

× |E′, E′⟩⟨E′, E′|(1⊗ |t2⟩⟨t2|)|E′′, E′′⟩⟨E′′, E′′|

=

∫
dEdE′dE′′δ(E − E′)δ(E′ − E′′)

× exp[it1(E − E′) + it2(E
′ − E′′)]|E,E⟩⟨E′′, E′′|

=

∫
dE|E,E⟩⟨E,E| ̸= 0. (14)

Thus, it can be concluded that operator T̂dyn is not

given by a PM, but in a rather trivial sense by a

POVM. However, let us stress that the trivial action

of operator T̂dyn matches the trivial character of the

dynamical time considered as a physical observable.

We have seen that quantity T̂dyn representing the

external time has rather trivial properties. However,

the framework of the space of dynamical vectors offers

the possibility to introduce operators of the form

P̂dyn(|ψ⟩⟨ψ| ⊗ T̂ )P̂dyn (15)

with suitable |ψ⟩ ∈ Hs, which have nontrivial prop-

erties and a rather interesting interpretation. In par-

ticular, statistics generated by the well-known system

time operators can be reproduced with operators of

the form (15). Before we explore this possibility, let us

very briefly recapitulate the well-known example[10,11]

of the system time operator for the case of a free quan-

tum particle.
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The free particle Hamiltonian Ĥ = P̂ 2/2m is dou-

bly degenerate. The basis of the energy representation

is given by two component eigenvectors

Ĥ|E,±⟩ = E|E,±⟩,
P̂ |E,±⟩ = ±

√
2mE|E,±⟩, E ∈ (0,∞). (16)

Vectors

|tH , α⟩ =
1√
2π~

∫ ∞

0

dE exp[−iEtH/~]|E,α⟩, (17)

which in the energy representation read

ψtH ,α(E, β) = ⟨E, β|t, α⟩H

= δα,β
1√
2π~

exp[−iEtH/~], (18)

form a nonorthogonal resolution of unity. Indeed,

⟨tH |α|t′H , β⟩ = δα,β [δ(tH − t′H)

+
iP

2π(tH − t′h)
. (19)

Thus formula

F̂µ =
∑
α

∫
µ

dtH |tH , α⟩⟨α|tH |, µ ⊂ (−∞,∞) (20)

gives a POVM on R. The POVM and the free particle

Hamiltonian satisfy the covariance, i.e., the commu-

tation relation, which is the basic condition set on the

object that can represent the system time.

Using the POVM (20), we can formally define an

operator

T̂H =
∑
α

∫ ∞

−∞
tH dt|tH , α⟩⟨α, tH |. (21)

The operator T̂H has been called the event time or

the screen time. We shall call it the system time. The

index H in T̂H and in all other formulas is to remind

us that the corresponding objects are constructed for

the system with a particular Hamiltonian. To the

best of our knowledge, the first person to treat the

free particle time in this way was Prof. Holevo in his

monograph.[10]

The operator T̂H is represented as differentiation

in the energy bases and has a pleasing property

⟨ψ|T̂H |ψ⟩(t) = t, (22)

but is not self-adjoined. It is self-adjoined on the do-

main D = {|ψ⟩ ∈ Hs| < 0, α|ψ⟩ = 0}. With this

remark, we end our brief recapitulation.

To explore the possible relation with an operator

of the form (15) and the system time T̂H , let us first

consider operators of the form

P̂dyn(B̂ ⊗ |t0⟩⟨t0|)P̂dyn, (23)

where B̂ represents some physical observable. The ex-

pression

⟨ψ|P̂dyn(B̂ ⊗ |t0⟩⟨t0|)P̂dyn|ψ⟩
= ⟨ψs(t0)|B̂|ψs(t0)⟩ (24)

reproduces the expectation of quantity B̂ in quantum

state |ψs(t0)⟩s ∈ Hs in terms of dynamical vectors

Pdyn|ψ⟩ ∈ Hdyn ⊂ Hex and operator B̂ ⊗ |t0⟩⟨t0|.
Notice that the relevant quantity is B̂ ⊗ |t0⟩⟨t0| not
just B̂ ⊗ 1. The system’s quantum state |ψs(t0)⟩ is

the state on the orbit determined by the dynami-

cal vector P̂dyn|ψ⟩ that goes through |ψs(t0)⟩ at time

t = t0. Explicitly and in the coordinate representa-

tion, ψs(x; t0) = ⟨x|⟨t0|P̂dyn|ψ⟩.
To proceed we ask the following general question:

is there an operator Â such that

P̂dyn(B̂ ⊗ |t0⟩⟨t0|)P̂dyn = P̂dyn(Â⊗ T̂ )P̂dyn. (25)

If the answer is positive, then Eq. (25) in combination

with Eq. (24) can be considered as an implicit defini-

tion of operator Â such that P̂dyn(Â⊗T̂ )P̂dyn gives the

statistics of the measurement of the system’s observ-

able B̂ at time t0. Such an operator Â would obviously

depend on time t0. We shall analyze Eq. (25) for the

specific case of B̂ ≡ T̂H .

In this case, the following relation between an op-

erator of the form (23) and the free particle time T̂H
can be demonstrated:

⟨ψ(t0)|T̂H |ψ(t0)⟩
= 2π⟨ψ|P̂dyn(| − tH0 ⟩⟨−tH0 | ⊗ T̂ )P̂dyn|ψ⟩, (26)

where T̂H and |tH0 ⟩ are the free particle time and its

eigenvector as in Eq. (21), respectively. The relation

(26) is obtained by explicit substitution in the left and

the right sides of the relevant formulas. Indeed,

⟨ψdyn|P̂H−t0 ⊗ | − t⟩⟨−t||ψdyn⟩

=

(
1

2π

)2 ∑
α

∫
dEdE′ψ̄(E,α)ψ(E′, α)

× exp[i(E − E′)tH0 ] exp[−i(E − E′)t], (27)

which coincides with the explicit expression in the en-

ergy representation of

⟨ψ(t0)||tH⟩⟨tH ||ψ(t0)⟩. (28)
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Integrating over tH dtH gives formula (26). According

to the standard interpretation, the left-hand side of

Eq. (26) represents the expectation of the system time

T̂H if measured in the moment of time t0 for the free

particle in the state |ψ(t0)⟩. Equation (26) expresses

this quantity in terms of operator |tH0 ⟩⟨tH0 | ⊗ T̂ and

dynamical vector |ψ⟩dyn.

4. Probabilistic interpretation of

dynamical vectors

In this section, we would like to clarify certain

points about the probabilistic interpretation of the

vectors from the extended Hilbert space and the dy-

namical vectors. Some probability interpretation is

needed if the formulas, like formulas (26) and (15),

are to be related with the standard quantum mechan-

ical expressions.

Consider first the vectors from Hex. Such a vector

|ψ⟩ has a finite norm, and in the coordinate represen-

tation, ⟨x|⟨t|ψ⟩ ≡ ψ(x, t), the function

ρ(x, t) =
|ψ(x, t)|2∫ ∫
|ψ(x, t)|2dxdt

(29)

has the properties of a joined probability distribution

on R×R.

From the joined probability ρ(x, t), we can form

conditional probabilities by using the standard proce-

dure

ρt0(x) =
|ψ(x, t0)|2∫
|ψ(x, t)|2dx

, (30)

ρx0(t) =
|ψ(x0, t)|2∫
|ψ(x0, t)|2dt

. (31)

Notice that expression (30) is well defined even if

ψ(x, t) is not square integrable with respect to t, but

is square integrable with respect to x for any fixed t0.

The interpretations of ρt0(x) and ρx0(t), if they

exist, could be as follows: a) ρt0(x) is the probability

that the measurement of coordinate Q̂ performed at

time t0 gives result x; b) ρx0(t) is the probability that

if the measurement of Q̂ gives x0, then the measure-

ment of T̂ gives t.

However the integral in formula (31) is divergent

for dynamical vectors |ψ⟩dyn ∈ Hdyn. Thus, for such

vectors, the presented joined probability (29) and the

conditional probability (31) are not defined. Further-

more, the would be interpretation of ρx0(t) conflicts

with the physical intuition. Indeed, there could be

many instants t or no instant t at all when measure-

ment of Q̂ gives x0. Thus, for the physically plau-

sible vectors from the extended space, the interpre-

tation of ρx0(t) as the conditional probability is not

viable. This is formally confirmed by the fact that

ψ(x0, t) is not square integrable for any dynamical vec-

tor |ψ⟩dyn ∈ Hdyn satisfying the constraint (5). On

the other hand, the conditional probability interpreta-

tion for ρt0(x) given by Eq. (30), where ψ(x, t) ∈ Hdyn

is a dynamical vector, is perfectly consistent. In fact,

it is reduced to the standard probability interpretation

for the vectors from Hs.

5. Conclusion

We have studied properties of the dynamical time

operator as it appears in the extended formulation

of reparameterization invariant theory of Hamiltonian

quantum mechanics. This is the time operator that

corresponds to the parameter time of the Schrödinger

dynamical equation. The construction of the extended

Hilbert space and the constraint corresponding to the

reparametrization invariance have been recapitulated.

Vectors from the extended Hilbert space that sat-

isfy the constraints are called the dynamical vectors,

and each dynamical vector represents an entire orbit

in the Hilbert space of the system’s states. Obviously,

the time that can be associated with such dynamical

vectors, i.e., the entire orbits, is in fact rather triv-

ial. Mathematical properties of the dynamical time

operator (11) are consistent with its trivial physical

character when considered as a dynamical observable.

In particular, it is proportional to the unit operator

on the space of dynamical vectors, and it generates

a POVM on R. The later property of the dynam-

ical time operator appears as a consequence of the

reparametrization invariance of the Hamiltonian for-

malism, and does not depend on the properties of a

particular Hamilton operator. On the other hand, the

similar property obtained for the few operators repre-

senting different measurable time in terms of the sys-

tem’s dynamical observables is always a consequence

of the semi-boundedness of the spectrum. The latter

is a property of the Hamiltonian operator of certain

type of system and not that of the Hamiltonian for-

malism.

After studying the properties of the operator of

the dynamical time, we have explored the relation be-

tween the most well-known system time, i.e., the case

of a free particle, and the corresponding dynamical
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time. It turns out that the statistics of the system

time observable measurement at some time can be ex-

pressed entirely in terms of operators and vectors of

the extended Hilbert space involving the dynamical

vectors and particularly the modified dynamical time

operator. In particular, the fact that the system time

generates a POVM can be obtained from the POVM

generated by the operator related with the dynamical

time of the extended formalism.

Appendix A

It is well known that a quantum system with

the Hilbert space H can be considered as a Hamil-

tonian dynamical system with the projective Hilbert

space PH as the symplectic phase space.[15−17] In

the Hamiltonian formulation, the real and the imag-

inary parts of the Hermitian scalar product, reduced

on PH , generate the Riemannian and the simplec-

tic structures on the phase space, respectively. Pure

quantum states are represented by points in the phase

space, and the observables Â by functions ⟨Â⟩, whose
Hamiltonian vector fields generate the isometries. The

Schrödinger evolution equation is reproduced by the

Hamilton dynamical equations with the Hamilton’s

function H = ⟨Ĥ⟩, where Ĥ is the Hamiltonian. The

function representing the commutator between two

observables is given by the Poisson bracket of the cor-

responding functions. The geometric formulation of

quantum mechanics has been used to study the con-

strained quantum dynamics.[18,19]

Consider now a quantum system with the time

as an additional degree of freedom, i.e., with the ex-

tended Hilbert space Hex = Hs⊗HT . In the geomet-

ric Hamiltonian formulation, the system with spacial

degrees of freedom and the time are associated with

the corresponding real manifolds Ms and Mt. The

extended system is associated with the product mani-

fold Mex = Ms×Mt. Here Mex is obviously different

from the real manifold associated with Hex, but we

shall nevertheless use the somewhat misleading nota-

tion Mex. The constraint (5), equivalent to constraint

(6), is imposed with the functional constraint on Mex

Φ(xψ) ≡ ⟨ψ|Ĥ2
ex|ψ⟩ ≡ H2

ex(xψ) = 0, (A1)

which is well defined. No problem with the con-

strained eigenspace composed of non-normalizable

vectors occurs in the geometric formulation.

We can see that the quantum problem with the

Hamiltonian Ĥ and the constraint Ĥ|ψ⟩ = 0 is re-

placed by a classical infinite-dimensional Hamiltonian

system with the Hamilton function Hex = ⟨Ĥex⟩ and

the constraint H2
ex = 0. The constraint H2

ex = 0

is irregular and can be replaced by the regular one

Hex = 0. The total Hamilton function is

Htot(x) = Hex(x) + λ(x)Hex(x)

= k(x)Hex(x). (A2)

The reparameterization invariance is seen as a gauge

freedom associated with the first class constraint

Hex = 0.
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