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Properties of spontaneously formed clusters of synchronous dynamics in a structureless network of

noisy excitable neurons connected via delayed diffusive couplings are studied in detail. Several tools

have been applied to characterize the synchronization clusters and to study their dependence on the

neuronal and the synaptic parameters. Qualitative explanation of the cluster formation is discussed.

The interplay between the noise, the interaction time-delay and the excitable character of the

neuronal dynamics is shown to be necessary and sufficient for the occurrence of the synchronization

clusters. We have found the two-cluster partitions where neurons are firmly bound to their subsets, as

well as the three-cluster ones, which are dynamical by nature. The former turn out to be stable under

small disparity of the intrinsic neuronal parameters and the heterogeneity in the synaptic connectivity

patterns. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4753919]

Synchronization of neuronal activity is considered as a

fundamental dynamical ingredient of various brain func-

tions. Therefore, multifarious properties of the synchroni-

zation dynamics in neural network models have been the

topic of intensive and thorough research. Dynamics of re-

alistic neuronal networks is crucially influenced by the

interaction involving synaptic delays, and by small pertur-

bations of various origin, which are commonly treated as

noise. The impacts that noise or the interaction delays

make on the dynamical properties of neuronal populations

are diverse and well known. However, the systematic ex-

ploration of the co-effects introduced by the simultaneous

presence of noise and time delay has begun only quite

recently. An interesting type of the ensuing synchroniza-

tion phenomena may be the splitting of a population into

clusters, each made up of neurons oscillating in synchrony,

whereby the activity between the clusters shows phase

lags. Usually, the synchronization cluster formation is a

consequence of some structural inhomogeneity, either in

the local neuronal parameters or the network topology. In

a recent letter, we briefly reported on the occurrence of

synchronization clusters observed in a homogeneous net-

work of excitable stochastic neurons with delayed cou-

pling. Despite the network being completely structureless,

the interplay of noise, time-delay and the excitable charac-

ter of the neurons is found sufficient to trigger the cluster-

ing. This paper provides a thorough and systematic

exploration of such spontaneous cluster formation.

I. INTRODUCTION

Selective synchronization of relevant neural populations

is a general principle for organizing communication in the

brain, as it is associated with many cognitive processes,1–5

while also being crucial for movement preparation and exe-

cution.6–9 It is commonly believed that synchronously oscil-

lating neurons exchange information more effectively.10

Neurons in vivo operate under the influence of many factors

that can be modeled as noisy perturbation. Nontrivial and

constructive role of noise in the dynamics of a single neuron,

few neurons, or large neuronal networks is well known.11–19

The key to this lies in the fact that the excitable dynamics of

a single neuron acts as an amplifier of the small noisy pertur-

bation. The latter can shift a neuron near the stable fixed

point of the excitable regime randomly into a state that yields

a spike discharge. Such noise induced spiking resembles cha-

otic oscillations. However, for a certain range of noise inten-

sity, which depends on the neuronal refractory period,

spiking may appear as regular oscillation with a well defined

frequency. Coupling to other neurons can then lead to syn-

chronization between stochastic spiking or may induce deter-

ministic oscillatory dynamics.

Transmission of neuronal impulses through an axon and

synapses is not instantaneous. The transport time can be

included phenomenologically into the modeling by using

explicit time lag in the synaptic interaction terms. Relatively

small interaction time delays are known to have profound

effects on the neuronal dynamics.20–27 The time delay may

induce oscillations through different mechanisms, such as

the Hopf or some global bifurcations, or it may suppress the

existing oscillations. It is also widely recognized how time

delay can profoundly influence the type of synchronization

between the neurons.

The effects of the simultaneous influence of noise and

the interaction delays on the dynamics of typical neuronal

systems have been analyzed much less, viz.,22,28 and the

references therein. One such phenomenon, induced by

combining the noise, interaction-delay and the excitablea)Electronic mail: buric@ipb.ac.rs.
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character of the local dynamics, constitutes the splitting of

population into clusters, each made up of synchronously fir-

ing neurons. So far, the issues gaining significant attention

have been the formation of clusters of synchronous dynamics

either due to the inhomogeneous distributions of the neuro-

nal parameters or the non-trivial network topologies, see

Refs. 10 and 29. Appreciating such studies, one would

imagine the clusters emerging in structureless networks

less likely. Note that this does not connote to systems of

globally coupled identical oscillators, where clustering

already constitutes a well-known manifestation of multi-

stability, usually being associated with more complex inter-

action functions.30–32 However, it has recently been

reported33 that the synchronization clusters can be formed

even in completely homogeneous networks of excitable units

owing solely to a subtle interplay of noise, interaction delay

and the neuronal excitability. In this paper, we provide an in-

depth analysis of the spontaneous clustering phenomena.

Several techniques are to be employed to characterize the

aspects of local and the macroscopic dynamics related to the

synchronization clusters, capturing the mechanisms that

allow them to arise and be maintained.

We consider a collection of N identical Fitzhugh-

Nagumo excitable neurons perturbed by the white noise and

interacting via the delayed linear couplings. Each neuron is

connected to every other neuron, assuming uniform synaptic

strength and the time-lag. Though the default setup involves

a homogeneous ensemble, some of the cluster states are fur-

ther shown to be robust with respect to small dispersions of

the neuronal and network parameters. Results of the detailed

numerical study on the properties of the cluster partition are

discussed, making its dependence on the coupling strength,

noise intensity, and the time-lag explicit. Following on that,

we provide an explanation of the observed phenomena using

numerical and qualitative arguments, as well as the recently

developed mean-field model of the stochastic delay-coupled

network of excitable units.22,28,34

The paper is organized as follows. In Sec. II, the focus

lies with the details of the applied neuron and population

models, further providing background on the global regimes

generic for the extended excitable media. Section III is

aimed at introducing the coherence measure appropriate to

characterize the mutual adjustment between the neuron firing

patterns, arriving at the means to analyze the structure of

clustered states from the macroscopic perspective. The other

major issue concerns the relationship between the cluster

states and the already familiar global regimes, in particular

in terms of anticipating the parameter regions that may facil-

itate clustering. Section IV is dedicated entirely to the two-

cluster states, examining whether and how are the regularity

of local dynamics and the properties of cluster partition

affected by variation of noise amplitude and the time delay.

Another matter of interest is the asymptotic dynamics related

to clustering, referring both to the long term stability and the

behavior under increasing the system size. In Sec. V, one

shows the structure of the three-cluster states to be prone to

reconfiguration, at variance with its two-cluster counterpart.

The two following sections underlie the common framework

behind the clustering phenomena. On one hand, it is shown

that the coaction of noise and delay induces a unique form of

neuron phase portraits, whereas on the other, the developed

mean-field (MF) model is demonstrated to undergo a global

bifurcation reflecting the onset of clustered states. The final

section contains the summary and the discussion on the

results obtained.

II. BACKGROUND ON THE NEURON MODEL
AND THE POPULATION DYNAMICS

Consistent with the assumption on neuron excitability,

the local dynamics of an N-size population is built on the

Fitzhugh-Nagumo model35–37

�dxi ¼ ðxi � x3
i =3� yi þ IÞdtþ c

ni

XN

j¼1

gij½xjðt� sÞ � xiðtÞ�dt;

dyi ¼ ðxi þ bÞdtþ
ffiffiffiffiffiffi
2D
p

dWi; (1)

where xi and yi are the respective activator and recovery var-

iables, gij present the elements of the adjacency matrix and

ni refer to the number of neurons which the given neuron i is

connected to. Setting � ¼ 0:01 enforces a clear separation

between the fast and slow variable subsystems, such that the

former embodies the dynamics of membrane potentials, and

the evolution of the latter may be linked to the action of the

Kþ ion gating channels. The system is not subjected to exter-

nal stimulation currents, so I¼ 0 holds. The neurons are

nonetheless exposed to a noisy environment, a point reflected

by the
ffiffiffiffiffiffi
2D
p

dWi terms representing the stochastic increments

of the independent Wiener processes, whose expectation

values and correlations satisfy hdWii ¼ 0 and hdWidWji
¼ di;jdt. Communication between neurons occurs via diffu-

sive couplings, parametrized by the synaptic strength c and

the time delay s, the latter accounting for the finite propaga-

tion speed over the axons and/or the latency in postsynaptic

responses. The synaptic parameters are taken to be uniform

not least for simplicity, but rather to set aside all possible

sources of secondary effects that may interfere with the core

clustering phenomenon.

The key intrinsic parameter b is supposed to modulate

the neuron excitability. To see how this may be so, one first

recalls how the isolated neuron in the noiseless case under-

goes a supercritical Hopf bifurcation for jbj ¼ 1, such that it

possesses a unique attractor, the fixed point (FP) above and

the limit cycle (LC) below this value. Appreciating the invar-

iance of the system (1) to transformation ðxi; yi; bÞ ! ð�xi;
�yi;�bÞ, one can consider only the case b > 0 without any

loss of generality. As a corollary of the strong time-scale

separation, the Hopf threshold marks the onset of relaxation

oscillations, where the phase point within each cycle spends

O(1) time along the spiking and refractory branches of the

slow manifold, executing rapid Oð�Þ jumps in between them,

see Fig. 1(a). Translated to the stochastic version of the

bifurcation, for vanishingly small D the trajectories still land

on the appropriate attractor with probability 1.38 However,

slightly above b¼ 1 the neurons are found in an excitable re-

gime, meaning that an adequate stimulation, be it by the

noise or the interaction term, may elicit large transients of
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membrane potential, whereby the orbit traverses the spiking

and refractory states before the equilibrium is reinstated. A

typical instance of such a behavior is obtained for b¼ 1.05,

the value kept fixed throughout the paper. Confined to the

non-interacting case, one further encounters a range of inter-

mediate noise amplitudes where the ensuing spike sequences

show very little randomness. The particular setup with addi-

tive noise in the slow subsystem, such that in Eq. (1), may

foster the coherence resonance (CR),19 characterized by a

tight analogy between the stochastic LC and its deterministic

counterpart.39 The latter does not hold for the alternative

scenarios attending noise in the fast subsystem: letting it

act alone or combined with that in the slow variable dynam-

ics may give rise to self-induced stochastic resonance

(SISR)39,40 or several forms of mixed-mode oscillations,38

respectively.

Extending the above framework to excitable media, one

typically invokes a scenario where noise enacts a control pa-

rameter, tuning between the different global regimes.41–44 In

case of instantaneous couplings, the ensemble averages have

been demonstrated to take up three generic forms of behav-

ior, contingent solely on variation of the noise amplitudes, as

illustrated in Fig. 1(b). For small D, there is a stochastically

stable global equilibrium, since the individual spiking is rare

and incoherent, leaving most of the population at rest at any

given time. The intermediate noise amplitudes give rise to a

more frequent firing with most of the events synchronized,

effectively turning the population into a macroscopic oscilla-

tor whose global frequency matches those of individual neu-

rons due to mutual entrainment. Increasing D even further,

one reaches a point when noise overwhelms the libration

effects of coupling, with the ensemble averages decaying

into chaotic regime. While the local spiking frequencies con-

tinue to increase, the synchronization systematically deterio-

rates by most of the spikes thrown out of step. These two

points imply that at any instant the bulk of the population is

refractory, which renders the trajectory of the global varia-

bles confined to an area of phase space much smaller than

the one encircled by the LC.

The paradigm involving the three described types of

behavior has first been reported for fully connected net-

works16,45 and has later been confirmed to endure for the lay-

outs involving more complex interaction patterns.41,46 What

we argue is that the inclusion of synaptic delay profoundly

alters such a landscape, influencing in a meaningful way the

succession of global variables’ regimes. In particular, the

coaction of noise and delay is found to facilitate a distinct

form of synchronization that allows for the onset of the clus-

ter states. As the effects of topology remain secondary to the

core ingredients behind the phenomenon, namely, the noise,

time delay and the neuron excitability feature, the results

presented here refer to a globally connected network, viz.,

gij ¼ 1 holds for each (i, j) pair of indices and ni ¼ N applies

to every node. This type of idealization has proven use-

ful,47,48 and populations with assumed all-to-all couplings,

once subjected to external forcing or feedback control, have

even been implemented in modeling the emergence of

healthy and pathological brain rhythms, as well as the inter-

action between the distributed brain areas.29,49,50 Neverthe-

less, in a discussion later on we consider an issue of

removing a fraction of links between the neurons, showing

that the phenomena laid out persist in randomly diluted net-

works on a condition that the sparseness level and the inho-

mogeneity in nodal degrees distribution are not excessive.

III. OBSERVATION OF CLUSTERING

The main topic of this section concerns introducing the

appropriate tools to monitor the emergence and describe the

temporal structure of the cluster states. In particular, there

are four issues we address: first, defining the quantities that

may readily be implemented to distinguish between the ho-

mogeneous and the cluster states; second, gaining an insight

on the set of parameters that admit clustering; third, examin-

ing whether the cluster states appear monostable or coexist

with the homogeneous ones, and fourth, devising methods to

discern and visualize how the neurons get distributed

between clusters for each realization of the n-cluster state. In

FIG. 1. Recap on the dynamics of an excitable Fitzhugh-Nagumo element, followed by an overview on the collective modes of excitable media, illustrated for

the system 1 at s ¼ 0. (a) In case of CR, the stochastic LC is a precursor to the deterministic one. As such, it takes place on the attractive (outer) branches of

the x nullcline (dotted line), avoiding the unstable (middle) branch. EQ indicates the position of the equilibrium. A typical orbit (solid line) is made up of two

portions of slow motion O(1), connected by two rapid transients Oð�Þ. The former include a descent down the refractory branch SR until the left knee is

reached, and the ascent along the spiking branch SS. The inset shows a section from the time series x(t) for D¼ 0.003. (b) For instantaneous couplings, the neu-

ral population exhibits three generic types of global behavior if D is systematically increased. This is epitomized by the phase portraits of the ensemble

averages X ¼ N�1
XN

i¼1
xi and Y ¼ N�1

XN

i¼1
yi at c¼ 0.1, displaying incoherent motion (D¼ 0.0002), coherent collective oscillations (D¼ 0.002) and the

decay into the chaotic regime (D¼ 0.009).
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a nutshell, the aims stated are best achieved by means of

pairwise and population coherence, which characterize the

extent of correlation between the spiking events on the local

and the global level.

To begin with, one is required to split the full iteration

period T into bins k of length D ¼ T=m, such that each neu-

ron i is awarded a binary variable XiðkÞ 2 f1; 0g, dependent

on whether the neuron has fired or not within the given bin,

respectively. By doing so, the continuous time series of neu-

ron membrane potentials are coarse-grained into binary

sequences of ones and zeroes. Then, the pairwise coherence

jij is defined as the cross-correlation between the neuron

spike trains51,52

jij ¼

Xm

k¼1
XiðkÞXjðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

k¼1
XiðkÞXjðkÞ

q : (2)

Throughout the paper, the time bin D ¼ 0:008 is set,

whereas X0 ¼ 1 is the threshold assigned for the neuron

potential to cross so to register a spike, verifying that the

results withstand if either of these values is reduced further.

We have made certain that the transients are excluded from

calculations. Note that the distribution of jij values may be

used to distinguish between the homogeneous and the (dif-

ferent types) of cluster states, the information gained from its

modality and the peaks’ width.

Alternatively, fjijg can also be viewed as if it provides

a template for defining a posteriori a connectivity matrix

completely independent on the structural one, given by gij.

One may envision this as an interpolation of the notion of

functional networks,53–56 a well-known tool for analyzing

the properties of the long-term dynamics within the large N
systems, essentially intended to qualify some form of syn-

chronization between the units. This is based on the idea of

considering a pair of units (more strongly) coupled if their

respective firing series are (better) synchronized. Hence, the

way in which the functional network is built reflects the self-

organization of neuron dynamics so that it places the units

with precisely timed spikes within the same functional mod-

ules.29,53,55 The latter role is here assumed by the clusters, so

that the functional networks can be applied in exposing the

structure of the cluster states. Since we introduce the coher-

ence as a type of synchronization measure, the terms func-

tional and coherence network are used alternatively.

The coherence networks57 referred to here are by con-

struction undirected, but can involve either binary or

weighted links. In the former case, a pair of neurons is con-

sidered connected if their pairwise coherence lies above a

certain threshold H, be it nonzero or trivial.56 Within this

approach, the distinction between the homogeneous and the

clustered states is apparent from the profile of the distribu-

tion of nodal connectedness degrees PðkiÞ, as derived from

the appropriate coherence network. Note that the nodal con-

nectedness degree ki is defined as the number of nodes which

the given node i is connected to.

In Fig. 2(a), one sees the homogeneous state of global

coherent oscillations typified by a unimodal distribution at

H ¼ 0, such that all the neurons are interconnected, viz., the

structural and the coherence networks are an exact match.

On the other hand, for the cluster states, one expects an

n-modal degree distribution P(k), whereby the threshold

level necessary to arrive at clearly separated peaks depends

on the ratio of intra- to inter-cluster correlations: the higher

it becomes, the lesser H is required. For the two-cluster state

in Fig. 2(b), coherence between neurons participating the dif-

ferent clusters is negligible, so one may take a marginal

threshold value to obtain the coherence network, whose

nodal degree distribution reflects the cluster partition

fN1;N2g.

FIG. 2. Characterization of the cluster states in

terms of features of the corresponding binary and

weighted coherence networks. In (a) and (b), it is

demonstrated how the distinction between the ho-

mogeneous coherent states and the n-cluster states

can be made explicit by the binary coherence net-

work, which possesses a unimodal (an n-modal) dis-

tribution of the nodal connectedness degrees P(k) in

the former (latter) case. The data in (a) are obtained

for the homogeneous coherent state at c¼ 0.1,

D¼ 0.001, s ¼ 6, whereas the parameter values for

the two-cluster state in (b) are c¼ 0.1, D¼ 0.00025,

s ¼ 2. The weighted coherence network, repre-

sented by the weight matrix in (c), and the binary

network in (d) may serve independently or com-

bined to capture the structure of the given cluster

state, as shown for the two-fraction partition at

c¼ 0.1, D¼ 0.0005, s ¼ 5.
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Now, let us explore the notion of the weighted coher-

ence network, which rests on interpreting jij as elements of a

weight matrix that determines the scheme by which the

nodes are interconnected. In order to visualize the structure

of a cluster state, one is supposed to take two steps. The first

is to introduce a distance metric which, loosely speaking,

translates the least coherent neurons into the farthest ones, so

that fjijg is effectively transformed into a matrix of distan-

ces fcijg. The second step consists in applying an agglomera-

tive hierarchical clustering algorithm on fcijg, whereby the

closest lying neuron groups are systematically merged into

larger ones. Level-by-level, the groups to be joined are deter-

mined by a linkage criterion, expressing the intergroup dis-

tance as a function of pairwise distances between their

respective members. In relation to the first step, it is conven-

ient to adopt the distance metric dði; jÞ ¼ 1� jij. Complet-

ing the second stage, one readily obtains a dendrogram,

where the layout of neurons in the lowest level may serve to

rearrange fjijg so it assumes the block-diagonal form. The

diagonal blocks mirror the clusters, and those off-diagonal

represent the cross-correlations. What is displayed in Fig.

2(c) constitutes the outcome of the above strategy imple-

mented in case of the two-cluster state obtained at

ðD; sÞ ¼ ð0:0005; 5Þ. A matter of some interest is to probe

whether the binary and weighted coherence networks give

rise to equivalent partitions for the same network state.

Apparently, the binary networks, like the one in Fig. 2(d),

provide less sophisticated information, but corroborate well

with the weighted ones if the clusters are well separated,

viz., when H should top only the very small cross-terms.

Once there is more ambiguity to the separation, reaching the

qualitative agreement rests with selecting the “proper” H for

the binary network, as we see later on.

A. Where to look for the cluster states?

Having discussed the means of characterization, the

next objective is to determine the parameter domains that

facilitate the onset of the cluster states. For the most part,

one is interested in the impact of D and s, and to a lesser

degree in the influence of c. Focussing initially on the iso-

lated effects that each of the parameters brings in, we first

consider how the system’s behavior is modified under varia-

tion of a single parameter, while the remaining ones are

fixed. To this end, one invokes the global coherence52

j ¼ 1
NðN�1Þ

XN

i;j¼1;i 6¼j
jij, derived from the pairwise coher-

ence by averaging over the neuron population. Given the

definition, j may assume values within the ½0; 1� interval,

with the upper and lower limits reflecting the completely

coherent and incoherent firing between neurons, respec-

tively. What is most useful about j is that it decreases only

for two reasons, either if the cluster states emerge or if some

form of disordered states sets in. In the former case, should

there be a two-cluster state with an approximate equipartition

and a strong cluster separation, one expects to find j � 0:5
or a slightly lesser value, depending on the deviations from

the two assumptions we made. However, a larger reduction

of j can be considered a certain signature of the disordered

states. Based on these two remarks, one should be able to

read from any j dependence where the cluster states are

likely located. In particular, if there are no disordered states

in the vicinity, the cluster states should coincide with the

local minima of j.

This is first probed for the jðsÞ dependence, viz., Fig.

3(a), having D fixed at two appropriate values, D1 ¼ 0:0005

and D2 ¼ 0:0007. Under this setup, the intention is to dem-

onstrate that tuning the delay gives rise to the clustering

effect, meaning that there exist some narrow intervals of s
which may be cast as the cluster-resonant ones.33 We have

indeed found by numerical simulation that the local minima

around s � 2; 6 and 10 coincide with the onset of the two-

cluster states, as to be expected from the curves’ profile. The

properties of such states will be analyzed in more detail in

Sec. IV. However, one notes that clustering around s � 2 is

distinct from the analogous phenomena for larger s, given

that in the former case, when increasing the delay, no ho-

mogenous coherent states arise prior to the cluster state, a

point which in the latter case no longer applies. The other

FIG. 3. Focus on the impact of interaction delay on the system’s behavior. (a) shows the jðsÞ plots for D¼ 0.0005 (solid circles) and D¼ 0.0007 (open dia-

monds) at fixed c¼ 0.1. The local minima exhibited by jðsÞ serve as an indication on the intervals of s that foster the cluster states. (b) The representation

scheme with respect to D is adopted from (a). The inset refers to the variation of the average oscillation period hTXi=T0 with s for the macroscopic variable X.

In qualitative terms, the curves appear virtually the same for different noise, whereby the given profiles imply that the system’s dynamics can be traced to the

competition between the noise-driven and the delay-driven oscillation modes. The dashed line corresponds to the case hTXi ¼ T0. In the main frame is dis-

played the dependence of the scaled average oscillation period hTXi=T0 on s for different D. For the homogeneous coherent states found within the approxi-

mate intervals s 2 ½2:6; 4:2�; s 2 ½6:2; 8:2� and s � 9:8, the above competition is resolved in favor of the delay-driven mode. For the two-cluster states around

s 2 ½4:8; 6� and s 2 ½8:8; 9:8�, the noise-driven mode prevails.
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important observation is that jðsÞ acquires virtually a univer-

sal form for the fixed D values selected from the range rele-

vant to clustering. The minor differences around the local

minima are the reflection of the noise-specified behavior of

the global variables leading in to the formation or dissipation

of the cluster states. Such background effects lie outside the

scope of the present paper. However, the argument on minor

differences and the earlier statements on having to select the

appropriate D values that admit clustering imply that one

should also take into account the interplay between the

effects of D and s. In particular, apart from the characteristic

time-scale determined by s, note that the noise intensity as

well brings in a characteristic time-scale, the one for “bare”

oscillations in the delay-free case s ¼ 0. The latter’s period

T0 is solely determined by D, with T0ðDÞ being a decaying

function within the considered D-range. To get a sense on the

values which T0 may assume, we state two relevant instances,

T0ðD ¼ 00005Þ � 3:78 and T0ðD ¼ 00007Þ � 3:66. It is not

a surprising effect to find the system’s behavior being deter-

mined by the competition between the two oscillation modes,

one guided by noise and the other driven by the interaction

delay. In this context, it is interesting that the cluster-resonant

delays sr in Fig. 3(a) may roughly be approximated by the

formula sr ¼ T0=2þ n � T0, which contains an implicit

dependence on D through s. Note that the given expression is

similar to what is obtained in Ref. 58 for the coupled phase

oscillators. Nevertheless, the formula may only be accepted

in conditional terms, under two important constraints. First, it

should not be read as if implying the existence of point-like

resonances with delay, but rather as an indication on where

the centers of the cluster-resonant intervals are situated. On

the second constraint, note that Fig. 3(a) has the formula

empirically confirmed only for n¼ 0, 1, 2. However, one

should also take into account that considering overlong

delays, viz., s several times longer than the neuron refractory

period, makes little sense in physiological terms.

Looking for further confirmation and additional details

on how the system’s behavior is driven by the competition of

the delay and noise-driven oscillation modes, we examine

the variation with s of the normalized average oscillation

period for the global variable X, hTXi=T0, where averaging

refers to an ensemble of different stochastic realizations. The

plot is displayed in the inset of Fig. 3(b). Determining hTXi
is the same as determining the average interspike interval

(ISI),59 except for the two-cluster states, where the former is

approximately twice as the latter. Apart for the non-trivial

behavior in general, the curves for different D again qualita-

tively show a common form, with the minor noise-specific

effects manifested mostly in the vicinity of s � 2. An impor-

tant point is that around sr the hTXi=T0 values lie very close

or slightly above the identity line hTXi ¼ T0, indicated by

dashes in the inset of Fig. 3(b). This should not be confound

with the peaks around s � 3:8 and s � 7:6, where s � n � T0

applies. These peaks are unrelated to clustering and reflect

a form of global events in the phase space, which involve

the limit cycle for the macroscopic variables approaching

the vicinity of the saddle fixed point. Nonetheless, once the

homogeneous coherent states first set in ðs � 24Þ; hTXi=
T0ðsÞ dependence exhibits nearly a periodic behavior

approximately respecting the bare oscillation period T0, viz.,

the sections s 2 ½2:6; 6:2� and s 2 ½6:2; 9:8�.
To establish more firmly how are the homogeneous and

the cluster states distinguished in terms of the prevailing os-

cillation modes, we also consider the variation with s of the

scaled average oscillation period for the global potential,

hTXi=s, see the main frame in Fig. 3(b). It strikes that the

curves for different D again show nearly universal behavior.

Essentially, one finds three plateaus approximately for s 2
½2:6; 4:2�; s 2 ½6:2; 8:2� and s � 9:8, which are numerically

confirmed to coincide with the homogeneous coherent states.

Their average oscillation periods amount to s; s=2 and s=3,

respectively, clearly implying the prevalence of the delay-

dominated mode over the noise-driven one. Cross-

referencing the results from the inset and the main frame, it

also becomes clear that the sections for the approximate

intervals s 2 ½4:8; 6� and s 2 ½8:8; 9:8� correspond to the two-

cluster states, where the T0-dominated oscillation mode wins

over the s-dominated one. In other words, it may be stated

that in the noise-delay adjustment leading up to the cluster

states, noise has the upper hand on determining the oscilla-

tion frequency, suppressing the forcing effect of the delay.

As for the impact of bringing in the stronger noise, one only

observes a minor broadening of the s intervals where cluster-

ing can be found. This may be interpreted in the context of

the finding that the delay-driven mode gives way to that

driven by noise when the cluster states set in. Though it

presents a simplification, note that the approximate formula

on srðT0Þ is able to capture how the centers of the cluster-

supporting delay intervals shift to smaller s for larger D.

After an extensive overview focused mainly on the

effects of s on the formation of the cluster states, we direct

our attention to demonstrating more explicitly how the sys-

tem’s behavior is influenced by the variation of D. In this

context, it is interesting to compare the jðDÞ curves for the

different s, examining how the cluster states interfere with

the previously known picture involving three generic global

regimes, contingent on the intensity of noise. To this end, in

Fig. 4(a) are displayed the jðDÞ curves obtained by having

fixed the delays at s ¼ 2; 4 and 6. The value s ¼ 2 has earlier

been established to support clustering, s ¼ 6 is in this respect

marginal but still facilitates the cluster states, whereas s ¼ 4

is identified as the value where no cluster states emerge. The

latter curve serves to provide the point of reference, given

that the deviations from its form may indicate clustering,

among other phenomena. Note that the curve s ¼ 4 conforms

to a stereotype profile in the delay-free case s ¼ 0. Following

the explanation on the global regimes stated in the Introduc-

tion, one would expect to be able to discern three segments

for the small, intermediate and large values of D, coinciding

with the low initial j values, significant j increase through

the middle section and a sharp decay for the latter part. This

is basically confirmed for jðDÞ at s ¼ 4, only the initial seg-

ment with low values is not apparent, as the required noise

amplitudes are much smaller than the adopted, already small

sampling step for noise. Note that the jðDÞ curves for s ¼ 2

and s ¼ 6 acquire quite different forms, though they both

indicate clustering at certain D ranges. In the former case,

j � 0:5 implies the existence of two-cluster states for
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relatively small D � 0:0008. In the case s ¼ 6, the D values

that foster clustering seem to span the wider range. However,

the overall picture may be somewhat smeared, since some

average j do not correspond to either the homogeneous

coherent or the cluster states, reflecting bistability between

the two, or even other types of multistability within some pa-

rameter ranges.

Finally, we touch upon the influence of varying the

coupling strength c on the formation of the cluster states.

To do so, we plot the jðDÞ families of curves for c¼ 0.08,

0.1, and 0.12 at fixed s ¼ 6, see Fig. 4(b). It is apparent that

the stronger the coupling, the more isolated become the

“irregularity” sections embedded into the flatter curve’s

profile, the latter being a corollary of the interaction term

winning over the noise. Put differently, the stronger cou-

pling confines the cluster states to smaller regions of the

D-s parameter space, making the resonance effect a more

sharper one.

Once the existence of cluster states is established, j may

be put to use in determining whether they appear monostable

or the dynamics exhibits multistable behavior for the given

parameter set. If the j values for different stochastic realiza-

tions were to bunch into distinct groups, it should be consid-

ered an evidence of the latter. On a cautionary note, this

issue is likely to be sensitive on the system size.

Unless stated otherwise, the results presented throughout

the paper refer to a population of N¼ 200 neurons, with the

numerical integration performed by an Euler method taking

the iteration step dt ¼ 0:002. Additional reduction of dt has

been confirmed to leave the results unaffected. Apart from

direct simulations of the ensemble dynamics for N¼ 500 and

N¼ 700, the persistence of clustering phenomena has been

verified by a method intended to probe the asymptotical

behavior of the system in the thermodynamic limit N !1,

see Subsection IV A. The two sections to follow are aimed at

characterizing the temporal structure of the two- and three-

cluster states. The former are demonstrated to be stationary

and the latter dynamical by nature,60 the distinction based on

whether the neurons are allowed to cross back and forth

between the clusters.

IV. PROPERTIES OF THE TWO-CLUSTER STATE
DYNAMICS

Enhancing the noise amplitude, the two-cluster states

are first encountered at D � 0:00025 for s ¼ 2. It is notewor-

thy that the given D values lie close to the crossover domain

between the incoherent and the coherent collective dynam-

ics. A useful approach is to consider first the phase portrait

for the macroscopic variables X ¼ N�1
PN

i¼1 xi and

Y ¼ N�1
PN

i¼1 yi, deemed as suitable descriptors since the

higher amplitude of the peak global potential reflects a larger

portion of neurons firing in synchrony. For such collective

motion, Fig. 5(a) yields a twisted orbit made up of two clearly

discernible segments that coincide with the macroscopic frac-

tions of the population activated in turns, whereby the ap-

proximate synchronization within the subsets is maintained.

In other words, the structureless population is in a dynamical

fashion split into clusters, such that one’s activation is accom-

panied by the neurons in the other cluster being refractory.

This goes along with the observation in Fig. 5(b), demonstrat-

ing the overlap between the X(t) spikes and the individual

action potentials evoked in arbitrary neurons from the distinct

clusters. One also learns how each of the two latter series dis-

plays high regularity, with the phase difference between their

respective pulses apparently locked to p. The particular phase

shift implies a splay state,12,61 meant in general as an n-clus-

ter partition where the phase difference between any two

groups amounts to an integer multiple of 2p=n.

To display the above behavior, the neurons have to be

entrained to a single frequency, a point reflected in the distri-

bution of local jitters ri
19,46 over the population. The jitters

are defined as normalized variations of the interspike inter-

vals Tk extracted from the individual time series xi

ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hT2

k i � hTki2
q

hTki
; (3)

such that their smaller values indicate more regular firing

patterns. Expectedly, for ðD; sÞ ¼ ð0:00025; 2Þ, the ri distri-

bution in Fig. 6(a) is unimodal with a narrow peak and a

FIG. 4. Insight on the impact of D and c on the system’s dynamics. (a) shows the jðDÞ family of curves for the set of delay values including s ¼ 2 (open trian-

gles), s ¼ 4 (solid triangles), as well as s ¼ 6 (open circles), having c¼ 0.1 fixed. Two-cluster states are indicated for the noise amplitudes D � 0:0008 at

s ¼ 2, whereas the appropriate range of D is broader at s ¼ 6. The curve’s profile for s ¼ 4 implies the lack of clustering within the considered interval of

noise. (b) illustrates how the shape of the jðDÞ curves at fixed s ¼ 6 is altered under variation of c, beginning with c¼ 0.08 (open triangles), over c¼ 0.1 (solid

triangles) to c¼ 0.12 (open circles). Too strong a coupling appears to suppress the onset of the cluster states.
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maximum at a very low value hrmi � 0:01, all the points in-

dicative of the approximately uniform neuron frequencies

across the population. Also, the mutual interaction acts

within the clusters so to give rise to a form of a recovery

mechanism, which rapidly suppresses any neuron from dis-

playing large fluctuations in the firing period, the type of

behavior that potentially leads to escaping the cluster.

Though the stochastic background of the system dynamics

may resurface causing occasionally the local ISIs to depart

noticeably from the mean, one finds such perturbations

resolved already in the next firing cycle. This is witnessed in

Fig. 6(b), where the first return map of the ISIs for an arbi-

trary neuron shows a large majority of points tightly

bunched. The latter holds irrespective of the cluster the given

neuron belongs to, the point confirmed by the virtually indis-

tinguishable ISI distributions for the members of the distinct

subsets, viz., the inset in Fig. 6(b).

In terms of variations of the two-cluster partition

fN1;N2g under different stochastic realizations, it is interest-

ing how for small D and s the system appears less disposed

to a splay state with equal sized fractions. Instead, one finds

the fractions’ ratio fluctuating around 2:1, displaying the

stronger convergence to an asymmetrical state if the popula-

tion size N were increased, which rules out the possibility of

this being the finite-size effect. In fact, it has more to do with

the reduced ability of small amplitude noise to draw more

neurons away from the main bunch.

At certain s longer than the average cycle of the isolated

neuron, the two-cluster states are found to span the range D 2
ð00004; 00008Þ, a domain where the homogeneous coherent

states are obtained in the case s ¼ 0. Though at first sight of

Fig. 7, illustrating the typical phase portrait for the ensemble

averages under these parameters, it may seem plausible just to

carry over the arguments from above, one should still outline

a couple of differences. On a lesser note, the maximum of the

ri distribution is seen to shift to hrmi � 0:19 due to an overall

reduced regularity of the firing patterns. Qualitatively, how-

ever, the system dynamics in respect to different stochastic

realizations switches into a bistable regime which involves

coexistence between the two-cluster and the disordered states.

Also, the conditions where D and s are increased seem to

favor the symmetrical cluster state with equal fractions in

the population partition. The tendency to N1=N2 � 1 : 1 ratio

becomes more salient with the increased system size, but is

manifested as well for a somewhat larger s ¼ 6, if the D val-

ues lie in the already considered range.

Though it is not within the scope of the present paper to

extend the analysis in such a direction, one should still verify

FIG. 5. Two-cluster states at small D and s. (a) As a signature of the population split, the phase portrait for the collective dynamics shows a twisted limit cycle

orbit, where the two discernible segments reflect the action of the clusters. (b) A section from the X(t) series (dashed line) is overlaid by the xiðtÞ series (solid

lines) for two arbitrary neurons from the distinct clusters. A high-level coherence within the subsets is witnessed by the fact that the peaks of the global poten-

tial perfectly match the ones of the local potentials. The latter series imply that the firing of clusters is locked in antiphase. The data are provided for the case

c¼ 0.1, D¼ 0.00025, s ¼ 2.

FIG. 6. Properties of single neuron dynamics. (a) The distribution of local jitters PðriÞ implies that highly regular spiking patterns are maintained across the en-

semble. (b) The first return map of the firing periods Tn for an arbitrary neuron illustrates how any larger deviations from the mean value are rare, further sub-

dued already within the following cycle. The latter is upheld independent on the particular cluster a neuron belongs to. This is witnessed in the inset, which

shows the ISI distributions PðTnÞ for two arbitrary neurons from the distinct subsets. The parameter set is ðc;D; sÞ ¼ ð0:1; 0:00025; 2Þ.

033147-8 Franović et al. Chaos 22, 033147 (2012)



that the two-cluster states remain intact if one were to intro-

duce heterogeneity into the intrinsic neuron parameters or

the network coupling scheme. On the former, we have con-

sidered a population diversity scenario62 where the excitabil-

ity parameter is randomly drawn from a uniform distribution

over a 2r interval around b¼ 1.05. One should be careful to

adjust r so that the lowest possible b lies above the Hopf

threshold b¼ 1. Nevertheless, the ensuing phase portraits for

ðc;D; sÞ ¼ ð0:1; 0:00025; 2Þ and ðc;D; sÞ ¼ ð0:1; 0:0005; 5Þ
are virtually unchanged compared with those in the homoge-

neous case, except for the minor variations in the cluster

sizes occurring sporadically between the firing cycles. The

other point concerns the persistence of the two-cluster states

in case when the embedding network is randomly diluted.

The dilution is carried out by randomly removing a certain

fraction of links (synapses) from the fully (globally) con-

nected network, as defined by the probability for removal p.

Expectedly, at the above ðc;D; sÞ parameter sets we have

found no modifications in the collective dynamics for the

moderate p, say p¼ 0.3 or slightly above.

A. Asymptotic dynamics

This subsection covers the asymptotic dynamics related

to the two-cluster state, both with respect to the long-term

behavior and the increasing system size. On the former, one

may inspect how are the representative points of neurons dis-

tributed in the xi � yi phase space at different moments over

the sufficiently long iteration period, viz., Fig. 8. This is

helpful in demonstrating the persistence of clusters, espe-

cially their invariance to dissolution and reconfiguration.

The two representative clouds can be seen to maintain a clear

separation and compactness throughout the simulation, as

they should if the neurons are indeed forbidden to leave and

exchange clusters. In practice, to assert the latter one may

further select a triplet of neurons, where a couple belongs to

the same cluster, and then show how these two are always

clumped together, while the remaining neuron never has the

spikes synchronized with them. This is further elaborated in

Sec. V A, where the method of dynamical correlation coeffi-

cients is implemented.

So far, the arguments on the persistence of cluster

states with increasing N have relied on the results of numer-

ical simulations. Here, we implement a method intended

to probe the system dynamics in the thermodynamic limit

N !1. To this end, one introduces a type of a synchrony

measure63

v2ðNÞ ¼ r2
X

1
N

XN

i¼1
r2

xi

; (4)

FIG. 7. Two-cluster states at intermediate D and s. Phase portrait for the

global dynamics at ðc;D; sÞ ¼ ð0:1; 0:0005; 5Þ is projected in the X – Y
plane. The properties of the cluster partition N1;N2 are seen to depend on

the parameter values, whereby the larger D and s appear to favor the states

closer to an equipartition N1=N2 � 1 : 1 over the asymmetric clustering.

FIG. 8. In case of the two-cluster state, evolution of

the representative clouds for the distinct clusters is

shown in the xi � yi phase space. To indicate the

stationary character of the cluster partition, we

selected a triplet of neurons, including two arbitrary

members (labeled by 1 and 162) from one cluster,

and a single neuron (labeled by 51) from the other

cluster. At any given moment, the neurons’ respec-

tive positions, denoted by arrows, imply that there

is no mixing between the clusters. The parameters

are set to ðc;D; sÞ ¼ ð0:1; 0:0003; 2Þ.
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which presents the time-averaged variance of the global

potential X(t), r2
X ¼ hXðtÞ

2it � hXðtÞi
2
t , normalized over the

mean of the time-averaged variances of the local potentials

xiðtÞ; r2
xi
¼ hxiðtÞ2it � hxiðtÞi2t . By the law of large numbers,

for the systems of sufficient size vðNÞ reads63

vðNÞ ¼ vð1Þ þ affiffiffiffi
N
p þ Oð1=NÞ; (5)

where vð1Þ denotes the asymptotic component. Should

there be genuine cluster states, the latter is expected to lie

within a range between 0 and 1. The existence of the vð1Þ
term has been verified for the previously considered parame-

ter sets, with the example for ðD; sÞ ¼ ð0:00025; 2Þ provided

in Fig. 9. Notably, the vðNÞ dependence makes it explicit

that the near-asymptotic behavior sets in already about

N � 200. This suggests that the implied stability of the two-

cluster states in large populations cannot be affected by

some mechanisms absent at small N.

V. THREE-CLUSTER STATE DYNAMICS

The cluster states addressed so far can be considered sta-

tionary in terms of stability against reconfiguration, which is

the changes in population partition due to neurons switching

back and forth between the clusters. Adding up to a polymor-

phous character of the clustering phenomena, we also report

on the existence of three-cluster states dynamical by na-

ture,60 where the ability of neurons to exchange cluster sur-

vives even in the asymptotic regime. One stresses how such

a scenario, encountered with further increase of D and s
about D � 0:0013 for s ¼ 10, does not include a splay state

with the clusters at any moment staggered by the 2p=3 phase

difference, so it should by no means be related with stochas-

tic fluctuations around such a partition. Instead, there is a

weaker cluster separation, which is best analyzed applying

the methods laid out in Sec. III, drawing a comparison to the

results on the properties of binary and weighted coherence

networks derived in Sec. IV.

In particular, the pairwise coherence matrix in Fig. 10(a)

yields the inter-cluster elements much larger than those in

the two-cluster state. A further indication on this is received

from the corresponding binary network, whose structure now

shows a strong dependence on the threshold parameter H, a

point announced earlier on. If one chooses too low a thresh-

old, there is insufficient resolution to distinguish between the

three clusters, so one may end up with a seemingly two-

cluster partition. However, any choice of H should be justi-

fied in a self-consistent fashion, such that no qualitative

changes emerge after it is increased. In this context, it may

readily be verified how a rise in H reveals the actual three

cluster partition, viz., Fig. 10(b), corroborating with the find-

ings from the coherence matrix approach.

Now let us focus on the origin and the long term behav-

ior of the three-cluster states. In relation to the former, an im-

portant perspective lies with the local dynamics. Except for

the brief episodes within the population cycle when all the

units are refractory, at any given moment the three clusters

are roughly made up of neurons in refractory, spiking and

resting (excitable) states, respectively, whereby the two latter

subsets are proximal in the phase space. For this point alone,

the three-cluster state may best be understood as derived

from the two-cluster state instability, where the mutual

entrainment fails to maintain the proper inter-cluster phase

difference, giving way to noise. Moreover, the instability is

self-sustained, as the stochastic effects are amplified by the

very properties of the partition that has two subsets firing in

close succession. Note how for any neuron participating the

cluster states there are but two effective sources of noise,

one explicit, embodied by the D term in the yi subsystems,

FIG. 9. vðNÞ dependence for the two-cluster state at ðc;D; sÞ ¼ ð0:1;
0:0005; 5Þ. The existence of an asymptotic component vð1Þ 2 ð0; 1Þ suggests

the persistence of clustering in the thermodynamic limit, whereby the onset

of the near-asymptotic behavior is found about N � 200. The latter makes it

unlikely that the stability of the two-cluster states in larger populations may be

altered by some mechanisms absent at smaller N.

FIG. 10. Global properties of the three-cluster state.

(a) Compared to Fig. 2(c), the weight matrix for the

weighted coherence network displays larger off-

diagonal terms, indicating less clear cluster separa-

tion. (b) The binary coherence network reveals the

three-cluster partition if the threshold level is raised

to H � 0:45. The data refer to the parameter set

ðc;D; sÞ ¼ ð0:1; 0:0013; 10Þ.
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and the other implicit, due to interaction in the fast variable

subsystems. On the latter, consider first the example involv-

ing the two-cluster partition. There, one finds a kind of sub-

division imposed between the interaction terms, such that

each neuron feels the action of its cluster co-members

strongly, while the impact of the other subset amounts to

noise, which is a consequence of tuning between the delay

and the duration of neuron firing cycles. To some extent, this

carries over to the three-cluster state. In particular, the intra-

cluster interactions still provide “periodical forcing” neces-

sary to conserve the mutual entrainment, whereas the action

of neurons from the other two clusters may be treated, apart

for some zero-measure intervals due to imperfect adjustment

of spiking periods relative to s, as interaction-induced noise

with zero mean values and small amplitudes. Nevertheless,

the combined effects of the enhanced noise “proper” and the

“interaction noise” can make an excitable neuron susceptible

to exchanging clusters. This can take place under the scenar-

ios of “spike skipping” or “premature firing.” In the former

case, a neuron is denied a spike by getting caught in vicinity

of the equilibrium, so that it misses out on its cluster beat. In

the event of premature firing, a sufficiently large interaction

term influences a neuron passed beyond the halfway of the

mean interspike interval, making it escape the refractory

branch of the slow manifold. Once the given unit discharges

ahead of the remaining subset co-members, there is a high

likelihood for it to become assimilated into the cluster active

around that time.

An intuitive perspective on the long-term behavior

behind the three-cluster states may be gained by considering

the features of the appropriate ri distribution (not shown).

Two points deserve special attention, both at odds with what

is obtained for ðD; sÞ ¼ ð0:0005; 5Þ. First, the distribution

peak is around hrmi � 0:09, the value substantially higher

compared to 0.19 from the previous case, and second, the

distribution has a longer tail to the right. The former is not

easy to grasp, as it can hardly be attributed solely to a D� s
co-effect. In view of the very narrow D interval occupied by

the three-cluster state, one may rather hypothesize a more

subtle development, a putative interplay between the noise

proper and the interaction-induced noise, which is not too far

off the scenarios for the mixed-mode oscillations exhibited

by isolated neurons subjected to additive noise in both the

fast- and slow-variable subsystems. As for the longer tail of

the ri distribution, the three-cluster partition apparently

exhibits a form of disorder related to the broken balance

between the refractory and the spiking branches of the popu-

lation at any given moment. This is likely to make the state

non-generic, meant as sensitive to all kinds of parameter

inhomogeneities, including the nonuniform connectivity pat-

terns and the diversity introduced by letting b vary over the

ensemble.

From the analysis of the available mechanisms by which

the neurons exchange clusters, as well as the findings on the

ri distribution, it is justified to conclude that the gross-

structure of the three-cluster states involves a nucleus made

up of two clusters and a non-negligible fraction of “itinerant”

neurons, switching between the hard cores. This is not to say

how the former are free from cluster exchange, it is only that

on the average they execute considerably less jumps than the

latter. An instance showing one of the itinerant neurons

switching between the core clusters via the “premature

firing” scenario is provided in Fig. 11. Curiously enough, in

spite of being involved in an apparently random activity, the

itinerant neurons do not behave in an independent fashion

but rather maintain some degree of mutual coherence. In

terms of the corresponding distribution of local jitters, the

nucleus comprises the values centered around its peak,

whereas the rest of the population reflects its tail. Altogether,

both the intra- and the inter-cluster synchronizations are

intermittent by nature, but the neurons with more frequent

coherent episodes are more likely to commit to synchronous

firing again.

A. Dynamical correlation coefficients as means to
quantify dynamical clustering

Appreciating the discussion above, we implement a

method illustrative of the extent of co-activity which quali-

fies the neurons as members of the same cluster. Focusing on

characterization of the coherent episodes, one considers the

evolution of the dynamical correlation coefficients64

cij
k ¼

hTiTjik � hTiihTjikffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
hT2

i ik � hTii2kÞðhT2
j ik � hTji2k

�r ; (6)

each reflecting the variation of the pairwise correlation

between the respective ISIs sampled over the moving frame.

The frame’s length should scale with the characteristic dura-

tion of the episodes or be taken so to encompass a meaning-

ful number of events, say in the range of tens of spikes. In

Eq. (6), Ti and Tj denote interspike intervals for neurons i
and j, whereas the angled brackets indicate averaging over

FIG. 11. Illustration of the dynamical clustering typifying the three-cluster

states. The top and bottom panels show sections from the xiðtÞ series for two

arbitrary neurons, labeled 2 and 82, which belong to distinct core-clusters.

The middle panel refers to a minority subset that exhibits switching between

the cores, with its behavior characterized by the neuron 40. Within the inter-

val t 2 ½900; 922�, spiking in the middle series is in step with the top series,

whereas for t 2 ½923; 960� it is synchronized with the firing series from the

bottom panel. The moment when the neuron 40 jumps between the two

core-clusters t � 922 is indicated by an arrow in the middle panel. The data

are provided for ðc;D; sÞ ¼ ð0:1; 0:0013; 10Þ.
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the k-th frame. ci;j
k belong to the interval (�1, 1) and high-

light how well are the fluctuations in firing patterns of one

neuron matched by those of the other on a low level of tem-

poral coarse-graining. The values close to the upper (lower)

boundary indicate correlated (anti-correlated) spiking, while

near zero values point to the lack of correlation.

In Fig. 12, the objective is to clearly distinguish between

the asymptotically stable two-fraction and unstable three-

fraction partitions by plotting side-by-side the ci;j
k time

dependencies which illustrate the typical inter-cluster (dotted

lines) and intra-cluster (solid lines) correlations. The (i, j)
couples for each partition are chosen so to keep one neuron

fixed, while extracting from its own and the distinct cluster

the other neuron. If large fluctuations in ci;j
k are encountered,

one may resort to an appropriate smoothing algorithm. As

expected, in Fig. 12(a) which refers to the two-cluster state,

there is persistent correlated (anti-correlated) spiking within

(between) the clusters, whereby the corresponding curves

display no mixing. Nevertheless, in case of the three-cluster

state, see. Fig. 12(b), two points should be outlined. At var-

iance with Fig. 12(a), not only has the difference between

the dynamical correlation coefficients for the members of the

same and the distinct subsets reduced but also episodes can

be found where the inter-cluster correlation exceeds the

intra-cluster one. This also corroborates with the statement

on how the intermittent synchronization facilitates the for-

mation of the three-cluster state: compared to the neurons in

different clusters, those within the same cluster enjoy pro-

longed intervals of mutually coherent spiking with rare and

short interruptions.

In Sec. VI, the aim is to lay out the unifying framework

behind the clustering phenomena, drawing on the analysis of

the common properties exhibited by the individual phase

portraits. The interest lies with the microscopic mechanisms

that allow the cluster states to emerge and provide for the

necessary robustness against perturbations.

VI. EXPLANATION OF THE CLUSTERING DYNAMICS

Having discussed clustering from the macroscopic point

of view, it is of interest to explain the way it is induced by

and how it is manifested in the behavior on a microscopic

level. An improved understanding on how the dynamics of

neurons participating the distinct clusters is mutually

adjusted can be gained by drawing an analogy between the

motion of the fast variables and that of particles in a double-

well potential.39 Making a change of variables t ¼ �t0, one

can rewrite the equations for xi from Eq. (1) in the form

dxi ¼ � @Vðxi;yi;XÞ
@xi

dt0. The Vi potentials reduced to each of the

fast subsystems then read

Viðxi; yi;XÞ ¼ �
1

2
ð1� cÞx2

i þ
1

12
x4

i þ xiyi � cxiX; (7)

incorporating both the intrinsic and the interaction terms.

It is natural to treat yi and the delayed ensemble average

Xðt� sÞ as parameters, with the former changing at a rate

much slower than xi. One notes how the local minima and

the maximum of the given Vi coincide with the intersections

that the curve yi � cX ¼ const, referring to the “dressed”

slow variable makes with the fast variable nullcline. The lat-

ter’s profile is, apart from the flattening effect due to interac-

tion (the y-values at the knees are 6 2
3
ð1� cÞ3=2

), very much

the same as that displayed in Fig. 1(a). In particular, of the

three branches, the minima are tied to the refractory and the

spiking ones, whereas the maximum is linked to the unstable

branch. Within this framework, the spiking dynamics can be

understood in terms of crossing the potential barrier between

the two wells.

One may capture how the variations of the barrier’s

height and the wells’ depth are reflected in the local dynam-

ics by monitoring the simultaneous positions the arbitrary

members of the distinct clusters occupy in relation to the cor-

responding Vi curves, see Fig. 13. The focus is on the

changes in the form of the potential induced by the neurons

visiting some characteristic points along the orbit. For ease

of presentation, one neuron (solid Vi curves) is selected as

referential, such that the Figs. 13(a)–13(c) coincide, in the

respective order, with the peak of the spike, the onset of the

refractory period and the resting state approaching the left

knee of the slow manifold. In the first two instances, the tran-

sition barriers are expectedly high, whilst the other neuron

assumes notably less stable positions on the refractory

FIG. 12. Asymptotic vs intermittent synchronization between the neurons. (a) and (b) refer to the two-cluster state at ðc;D; sÞ ¼ ð0:1; 0:0005; 5Þ and the

three-cluster state for ðc;D; sÞ ¼ ð0:1; 0:0013; 10Þ, respectively. In both panels are plotted the time variations of ci;j
k for an arbitrary pair of neurons in the same

cluster (solid lines) and from the distinct clusters (dotted lines). (a) implies stable correlated (anti-correlated) spiking within (between) the subsets. The mixed

picture in (b) indicates that correlated episodes occur for neurons occupying both the same cluster and the distinct ones, but are more abundant in the former

case. The smoothed curves are obtained by applying the second-order Savitzky-Golay algorithm.

033147-12 Franović et al. Chaos 22, 033147 (2012)



branch. Nevertheless, the most important point concerns

Fig. 13(c) aimed to convey the actual signature of the clus-

tering phenomena impressed on the local dynamics. What is

demonstrated amounts to a trapping effect, where the neuron

nearby, but sufficiently above the left knee, faces a very low

barrier. However, its potential is almost, yet not quite enough

to escape from the refractory to the spiking branch. In fact, it

can be shown that the neuron is kept frustrated precisely due

to the interaction term, which raises the barrier up on the

value determined solely by yi, enough to make the transition

impossible. This type of behavior is maintained over the

lower section of the refractory branch, with the net result of

the spike generated later than the “barren” neuron dynamics

would yield under the same conditions.

The discussion related to Fig. 13(c) can be appreciated

by drawing a comparison between the individual phase por-

traits typical for neurons participating the homogeneous

coherent states and the cluster states, see Figs. 14(a) and

14(b), respectively. It immediately strikes that the latter pos-

sesses a kink on the refractory branch of the slow manifold,33

which derives from the trapping effect described above. For

the moment, we refer to the two-cluster state, a natural

approach knowing the three-cluster state to be descended

from it. Either way, the presence of the kink is the key mani-

festation of the self-regulation mechanism based on the D-s
co-effect which gives rise to the ensemble split into clusters

and allows the established phase relationship among them to

be maintained. The role of the kink consists in keeping the

neurons frustrated on the refractory branch so to postpone

the phase point’s descent toward the left knee. This scenario

conforms to a lock-and-release type of behavior, where the

delayed interactions primarily give rise to the former, and

the action of noise to the latter part. If a fraction of neurons

were to move past the left knee while the rest lagged behind,

for the convenient D and s the kink emerges to stabilize the

inter-cluster separation, simultaneously strengthening the

inner cluster cohesion. The location of the kink, which

depends on the parameter set, is a decisive factor for the trap-

ping effect to succeed: it has to be placed nearby the knee of

the refractory branch, where the neuron dynamics is most

susceptible to perturbation, yet the sufficient distance to the

equilibrium has to be maintained.

FIG. 14. (a) and (b) display the phase portraits for the local dynamics of the homogeneous coherent states and the cluster states, respectively. The latter are

distinguished by the kink K, which reflects the D� s co-effect. The inset shows sections of xiðtÞ series for two arbitrary members of the distinct clusters,

whereby an arrow indicates the neuron, whose portrait is presented in the main frame. For an insight into the role of kink, we highlighted by bullets the respec-

tive positions of the involved neurons along the orbit at a given moment t. As a neuron lies at the kink, the other’s potential is at the peak of the rising

phase (farthest right bullet). In addition, at t� s, the former is located very close to the peak, which illustrates how the delay affects the adjustment between

the clusters’ dynamics. The parameters are set to ðc;D; sÞ ¼ ð0:1; 0:0005; 6Þ in (a) and ðc;D; sÞ ¼ ð0:1; 0:00025; 2Þ in (b).
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FIG. 13. Analysis of the local dynamics in analogy

to motion of particles in a double-well potential.

The solid and dotted curves ViðxiðtÞ; yiðtÞ;Xðt� sÞÞ
indicate the respective potentials attributed to repre-

sentative neurons from the distinct clusters. Transi-

tions between the refractory ðx � � 1Þ and the

spiking ðx � 1Þ branches are interpreted as hopping

over the potential barrier, whose height depends on

the interaction term. (a) reflects the setup where one

neuron is active, and the other is refractory. The

configuration in (b) shows both neurons on the re-

fractory branch, with one having just completed a

spike, whereas the other approaches the left knee. In

(c) one of the neurons is trapped on the refractory

branch, which constitutes a hallmark of clustering

on the local level.
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The episode at the kink onset presents the sole section

along the limit cycle where the interaction term prevails over

the noise proper. Then, for a brief period, prompted by the

rise in xi the evolution of yi gets accelerated to match the

rate of change in the direction orthogonal to the slow mani-

fold, the whole event driven by the spiking subset of the pop-

ulation. Note that the condition on the trapping interval

duration is imposed as prerequisite to sustain the entrainment

to a single frequency between the neurons. This frequency

agrees with the one in a delay-free case, ensuring that the

system dynamics takes on the form most resilient against

small perturbations. Such a remark, combined with the estab-

lished p phase difference for the two-cluster partition,

implies that clustering may prefer some delay values over

the others. One should recall here the earlier stated approxi-

mate formula for the clustering-resonant delays sr ¼ T0=2

þn � T0, where T0 stands for the period of coherent oscilla-

tions in case of s ¼ 0. The given expression and the subdivi-

sion of interaction terms in which the “periodical forcing”

prevails over the “implicit noise” are in fact two sides of the

same coin, as forcing cannot fulfill its role unless the delay is

not properly adjusted so that cluster compactness can be

maintained. As for the noise, the increase of s has to be

countered by the larger D to facilitate relaxation from the

kink to the slow manifold while retaining the entrainment to

the proper frequency. In this context, the larger noise ampli-

tudes may begin to manifest in a wider spread of the active

subset. One can see conceptually how the enhanced delays

are then required to cancel, or rather average out such an

effect, instating a form of control through delayed feedback.

Building on the analysis so far, we provide an additional

perspective on the dynamical instability found in the three-

cluster states, viz., Sec. V. Looking back at the proposed sce-

narios, one is seen as emerging in parallel to the kink’s

occurrence, and the other is tied to its collapse. In the former

case, a neuron may exchange clusters by skipping to fire

within its subpopulation beat, as it sticks too long in a close

proximity of the equilibrium, performing a turn around the

fixed point before resettling to the original limit cycle.

Within the framework involving the double-well potential,

the postponed firing instability unfolds via a scenario where

a delayed rise in the interaction term combined with a small

yi value effectively causes an inhibitory effect. This reestab-

lishes the barrier in lieu of the single solution on the spiking

branch, setting the neuron temporarily back in the vicinity of

the potential minimum on the refractory branch.

Under the alternative scenario, the neuron firing may

precipitate the rest of its cluster by virtue of the interaction

terms winning over the action of noise proper. This prevents

the relaxation to the refractory branch of the slow manifold,

so that the neuron traverses instead a smaller orbit inside the

area of phase space encircled by the typical limit cycle. The

effective disappearance of the kink is tied to the collapse of

the V potential barrier, the reason for it lying in that the inter-

action term acquires a positive value while the neuron’s

phase point has not yet reached the left knee. The collapse

leaves the minimum at the spiking branch as the only solu-

tion, such that getting further descent terminated promotes a

smaller limit cycle orbit. To put this matter into a broader

perspective, one may recall the distinction between the CR

and the SISR phenomena on non-interacting neurons, whose

respective limit cycles exhibit a similar relationship.39 In

view of the detailed structure of the interaction terms, it may

be tempting to interpret the local dynamics behind the two-

cluster partition as the CR-like behavior, and the second sce-

nario on dynamical instability as a sign of a mixed mode38

where SISR-like phenomena step in.

Following the study on how the collective activity is

reflected in that of individual neurons, the final section deals

with the macroscopic dynamics from the perspective of the

MF approximation we have derived. Two main points are

introduced: first, one shows the MF model to undergo a

global bifurcation for the parameter set where the exact

system exhibits the onset of clustering, and second, there is

further clarification on the role of noise within the D-s inter-

play inducing the cluster states.

VII. THE MF MODEL AND CLUSTERING

Appreciating the all-to-all coupling scheme, one is led

to develop a MF approximation to the exact model (1), an

approach where the thermodynamic limit N !1 on the

population size enters in a natural way. In general, the MF

treatment consists in reducing the original set of SDDE to a

novel system of DDE in terms of cumulants or the moments

of distribution describing deviations around the ensemble

averages. In either case, the equation for the quantity of arbi-

trary order may involve a number of higher orders, leaving

an issue of how to truncate the series that may appear

unclosed.16 In this sense, the cumulant method is more con-

venient for it provides a plausible closure hypothesis within

the Gaussian approximation, which states that the instantane-

ous distributions of local variables are Gaussian and that the

ensemble averages at any given moment coincide with the

expectation values of the appropriate distributions. If these

two conditions are met, all the cumulants above second order

are supposed to vanish. The detailed derivation based on

these broad assumptions may be found in Ref. 28, whereas

the final result reads

�
dXðtÞ

dt
¼ XðtÞ � XðtÞ3=3� XðtÞ

2
f1� c� XðtÞ2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½c� 1þ XðtÞ2�2 þ 4D

q
g

�YðtÞ þ c½Xðt� sÞ � XðtÞ�;
dYðtÞ

dt
¼ XðtÞ þ b:

(8)

The particular form of the system (8) is a corollary of an

observation exclusive to the problem at hand, which estab-

lishes the characteristic time scales of the second-order cumu-

lants to be much longer than those of the first-order ones.

Though a simplification, the MF model should still

reflect, at least qualitatively, the dynamical regimes of the

exact system. The previously carried out analysis on local

bifurcations displayed by the approximate system with

respect to D and s as control parameters28,34 has revealed a

succession of supercritical and subcritical Hopf bifurcations
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under increasing delay if past the noise amplitude

D � 0:0025. This is corroborated in Fig. 15 numerically by

means of the DDE-biftool,65,66 an adaptable package of MAT-

LAB routines suitable for handling the sets of DDE with con-

stant delays. There is a clear interpretation on these results.

The supercritical Hopf bifurcations account for the transi-

tions between the stochastically stable fixed point and the

stable limit cycle, the latter implying the existence of the pa-

rameter regions where the exact system becomes equivalent

to the deterministic one. Likewise, the subcritical bifurca-

tions suggest how introducing specific delays may put out

the global coherent oscillations. Nonetheless, all the impli-

cated noise amplitudes are D � 0:0025, too far up on the val-

ues where the cluster states are seen to kick in, which makes

it legitimate to rule out any of the local bifurcations of the

approximate system as linked to the phenomenon.

However, an important point we pursue is that the MF

model is capable of anticipating the onset of cluster states in

a range of small D, c, and s. In particular, one finds the sys-

tem (8) to undergo a global bifurcation at the parameter val-

ues around s ¼ 2, D¼ 0.00025, c¼ 0.08. Under the given

D and s, for c < 0:08 there is only the equilibrium, whereas

about c � 0:08 a large and a small limit cycle are born via

the fold-cycle scenario. On the latter, note how the phase

portrait for the MF system in Fig. 16(a) acquires the form

reminiscent of the one for the exact system, viz., Fig. 5(a).

The two discernable segments on the orbit are supposed to

mirror the action of the subsets emerging within the actual

population. This structure of the limit cycle goes unstable

with increasing c and s, in both cases suffering from the

stronger impact of the interaction term. An interesting point

on the MF model is that the complex-shaped limit cycle

coexists with the fixed point, a behavior apparently absent in

the exact system. However, mapping the respective basins of

attraction in Fig. 16(b) yields that the equilibrium is nested

very close to their boundary, meaning it is stochastically

unstable and therefore unobservable in the exact model for

an arbitrarily small noise. On the particular choice of initial

function for the mean-field variables X and Y, the evolution

within the time interval t 2 ½�s; 0� is obtained by numeri-

cally integrating the set (8) for c¼ 0 starting off from X0 and

Y0. Making an analogy to the exact system, this is equivalent

to assuming that all the neurons act as noninteracting ele-

ments for t 2 ½�s; 0�. Nonetheless, it is found that the main

result on the equilibrium lying close to the boundary between

its attraction basin and that of the limit cycle, also stands for

other forms of the initial function.

Though the approximate system is less likely to provide

accurate predictions once D and s are enhanced, one can still

gain some insight on the nature of their coaction and its

influence on the dynamics of the real system. This especially

refers to setups with larger s which admit clustering. Under

these conditions, the equilibrium appears as pseudo-stable in

the MF dynamics, that is the limit cycle orbits remain too

long nearby the fixed point, rendering the population periods

longer than in the actual model, see Fig. 16(c). Extending the

last analogy, such a behavior may be interpreted as exagger-

ating the likelihood for the “skip to fire” events, or in other

words, overestimating the possibility to observe in the real

system the minor oscillations around its fixed point. The dis-

tinct phenomena due to the lack of stochastic effects in the

MF approximation can in fact pose “fortunate failures,” since

they might help us pinpoint the role played by the noise in

the exact model. Here, it is suggested how noise may be con-

structive in maintaining the cluster partition by keeping the

neurons from mingling outside their subsets, i.e., it is

assumed to suppress the excessive cluster exchange by cut-

ting on its leading contribution from the “skip to fire” mech-

anism. The two discussed instances at small and moderate D
and s demonstrate that the MF approximation can be sensi-

tive enough to account, both qualitatively and quantitatively,

for the complex phenomena in the collective dynamics of the

actual model. Nevertheless, in terms of reaching an explana-

tion, its application is not a straightforward one, with the pit-

falls related to establishing the proper analogies between the

behaviors the given two systems display.

VIII. SUMMARY AND DISCUSSION

We have studied the dynamics of a collection of sto-

chastically perturbed Fitzhugh-Nagumo excitable units with

time-delayed diffusive couplings. In particular, our interest

has lied in analyzing the spontaneous formation of clusters,

whereby the neurons within each subset are synchronized,

but different clusters become active at different phases of the

population oscillation. Apart from discussing the means to

characterize the cluster states and their dependence on the

parameter set, we have gained an insight into the dynamical

mechanism responsible for clustering. In conditional terms,

i.e. having fixed the excitability property of neurons, the

adjustment between noise intensity and time delay is found

to provide the sufficient and necessary conditions that allow

for the cluster states to emerge. The latter refers to the dem-

onstrated resonant character of the clustering effect in gen-

eral, rather than making a claim on the particular set of

parameter values that admit clustering. No heterogeneity in

the coupling scheme or the distribution of the intrinsic neuro-

nal parameters is required for the clusters to emerge. Never-

theless, the two-cluster partition has been verified to be

robust if a small disparity of these model parameters is

introduced.

Several techniques have been employed to describe and

understand the synchronization clustering, starting off with

FIG. 15. Sequence of Hopf bifurcation curves for the MF model under

increasing D and s. Though the curves can account for the transitions

between the stochastically stable fixed point and the stable limit cycle, one

cannot associate them with the cluster formation.

033147-15 Franović et al. Chaos 22, 033147 (2012)



the methods to detect and visualize the clusters. To that end,

the pairwise coherence jij (2) was used. In fact, after apply-

ing a convenient transformation, the matrix jij assumes a

block-matrix form where the diagonal blocks mirror the clus-

ters, and the off-diagonal blocks present the inter-cluster cor-

relations. Two- and three-cluster distributions have been

observed for different parameter values. Global coherence j,

obtained as the average of jij, is used to study the depend-

ence of the cluster formation on the parameters D; s and c,

viz., the noise intensity, time-lag, and the coupling strength,

respectively. In order to investigate the dynamical properties

of clusters, we have considered the distribution of local jit-

ters (3), turning out to be quite useful in highlighting the dif-

ferences between the dynamical properties of the two- and

three-cluster regimes. The long-term behavior and the as-

ymptotic dynamics as the population size N is increased

have also been discussed. On the former, the two-cluster par-

tition has been established as stable, whereas the internal

structure of the three-cluster states has been found to involve

a two-cluster nucleus and a non-negligible fraction of neu-

rons jumping between the hard cores. The difference

between the dynamical behaviors of two- and three-cluster

states (stationary against the dynamical clustering) is also

reflected in the dynamical correlation coefficient (6). Follow-

ing on that, we turned to an explanation of the mechanism

behind clustering, based on treating the evolution of the neu-

ronal fast variables as if it referred to the motion of particles

subjected to a double-well potential (7). A local manifesta-

tion of clustering is shown to be the kink formation nearby

the knee of the refractory branch of the individual neuron

orbit, a finding one can use to provide the qualitative expla-

nation on the conditions necessary for the occurrence of clus-

ters. Finally, we have demonstrated that a global fold-limit

cycle bifurcation in the approximate MF model can indicate

the onset of the cluster states, further elaborating on how the

proper interpretation of the reasons for some of the appa-

rently artificial behavior displayed by the MF may serve to

clarify the roles played by the particular parameters in the

exact system.

Numerous recent studies have revealed formation of

synchronization clusters in networks of oscillators or excita-

ble neurons.10,29 However, for the most part the phenomenon

is seen to arise due to the locally variable parameters, viz.,

Refs. 67 and 68 or as induced by the dynamically varying

couplings, e.g., Ref. 69. The collection of neurons studied

here is completely structureless, so that the synchronization

clusters are formed by the subtle interplay of noise, interac-

tion time-delay and the excitable nature of the units. Never-

theless, at least some of the spontaneous clustering is shown

to be stable under small perturbations of the local parameters

and the pattern of neuron interconnections. Such resilience

may be interpreted as further indicator of possible real world

applications, in particular in the context of facilitating the

neural encoding or improving its capacity. Most promi-

nently, this refers to cognitive processes of binding and seg-

mentation. In the former instance, multiple representations of

the same object may be bound into a cluster state, whereas in

the latter, clustering is supposed to contribute in discriminat-

ing between the distinct perceptual entities.29,70 At variance

with the beneficial roles, certain pathological brain rhythms

linked to the epileptic seizures involve a high frequency fir-

ing of neural populations that might emerge through the

interspersed action of several clusters.10 On the formal side,

it would be interesting to investigate whether the spontane-

ous synchronization clustering also occurs in networks of

excitable systems with a different types of excitability.

FIG. 16. Behavior of the MF model in the parame-

ter domains related to clustering. (a) and (b) illus-

trate bistability observed for D¼ 0.00025, s ¼ 2 at

c¼ 0.1. (a) Shows the examples of trajectories con-

verging either to the fixed point or the limit cycle,

contingent on the initial conditions. In (b) are

mapped the corresponding basins of attraction, with

the equilibrium (EQ) found to lie very close to their

boundary. (c) Refers to the “fortunate failure” of the

approximate model under the increased D and s.

The time series and the phase portrait are provided

for ðD; s; cÞ ¼ ð0:0005; 6; 0:1Þ.
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094101 (2012).
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