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Complex Dynamics
of Spring-Block Earthquake
Model Under Periodic
Parameter Perturbations
A simple model of earthquake nucleation that may account for the onset of chaotic dy-
namics is proposed and analyzed. It represents a generalization of the Burridge–Knopoff
single-block model with Dieterich–Ruina’s rate- and state-dependent friction law. It is
demonstrated that deterministic chaos may emerge when some of the parameters are
assumed to undergo small oscillations about their equilibrium values. Implementing the
standard numerical methods from the theory of dynamical systems, the analysis is carried
out for the cases having one or two periodically variable parameters, such that the
appropriate bifurcation diagrams, phase portraits, power spectra, and the Lyapunov
exponents are obtained. The results of analysis indicate two different scenarios to chaos.
On one side, the Ruelle–Takens–Newhouse route to chaos is observed for the cases of
limit amplitude perturbations. On the other side, when the angular frequency is assumed
constant for the value near the periodic motion of the block in an unperturbed case, vari-
ation of oscillation amplitudes probably gives rise to global bifurcations, with immediate
occurrence of chaotic behavior. Further analysis shows that chaotic behavior emerges
only for small oscillation frequencies and higher perturbation amplitudes when two per-
turbed parameters are brought into play. If higher oscillation frequencies are assumed,
no bifurcation occurs, and the system under study exhibits only the periodic motion. In
contrast to the previous research, the onset of chaos is observed for much smaller values
of the stress ratio parameter. In other words, even the relatively small perturbations of
the control parameters could lead to deterministic chaos and, thus, to instabilities and
earthquakes. [DOI: 10.1115/1.4026259]

Keywords: spring-block model, coupled oscillations, spring constant, stress ratio, deter-
ministic chaos

1 Introduction

Understanding the development and initial stages of an earth-
quake rupture is a major goal of earthquake science. Some
researchers suggest that the nucleation process, specifically the size
of the nucleation zone, is related to the ultimate size of the resulting
earthquake [1–3], while others support the view that the size of the
nucleation zone is unrelated to the final magnitude of an earthquake
[4,5]. However, the influence of the nucleation mechanism on the
final impact of an earthquake certainly exists, so the modeling of
this phenomenon could lead to new insights on the nature of earth-
quakes. A common approach in the description of seismic sources
is their approximation by a model of equivalent forces that corre-
spond to the linear wave equations, neglecting nonlinear effects in
the source area [6–8]. Equivalent forces are defined as the forces
that produce displacements at a given point that are identical to
those from the real forces acting at the source. Nevertheless, this
body-force equivalent is a formal concept and it is necessary to
relate its characteristics to the real earthquake source. Today, it is
commonly accepted that vast majority of shallow tectonic earth-
quakes arise from faulting instabilities [9]. However, since the
earthquake origin is not accessible to direct observation, the
research in this area is conducted either by studying the recorded
time series, propagation of seismic waves through the Earth’s inte-
rior, or by simulating the earthquakes in laboratory conditions.

In this paper, we succeed the suggestion of Brace and Byerlee [10],
that stick-slip occurring in laboratory experiments on rock friction
may be significant under shallow crustal conditions and that it can
be regarded as a possible source of earthquakes.

Following the idea of Brace and Byerlee [10], Burridge and
Knopoff [11] proposed a spring-block model, which is today rec-
ognized as a common model for the earthquake nucleation mecha-
nism [12–14]. In the present paper, the Burridge–Knopoff (BK)
model consists of only one block (Fig. 1), attached through a har-
monic spring to a driving plate, which causes the block to move in
a stick-slip fashion along the rough surface of the lower plate
[15,16]. In the context of seismology, this spring-block model can
be understood as a representation for earthquake motion [17–21].

The main nonlinearity of this system comes from the friction
between the block and the rough surface of the lower plate. Con-
cerning this, some specific constitutive laws for rock friction have
been developed based on laboratory studies. These laws have
been successfully used to explain various aspects of stable and
unstable sliding between elastic solids as observed in the labora-
tory [22,23]. In the present paper, we use the Dieterich–Ruina
rate- and state-dependent friction law [24].

Though the simulations of the BK model have led to much
insight, one should still be mindful about its character, which is,
especially in the elementary configuration, closer to that of a toy
model than the realistic representation of the fault dynamics. The
model’s realism has been contested for a number of reasons that
generally fall into two categories, one related to the basic setup
and the other concerned with the friction laws applied [25]. With
respect to the former, some of the strongest criticisms refer to a
lack of mechanisms by which the seismic energy is radiated or
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dissipated. Apart from that, attention has also been directed to the
absence of the long-range stress transfer and the possibility that
the displayed complexity of the small events may be an artifact
related to the lack of the continuum limit. As for the Dieteri-
ch–Ruina friction law, a drawback lies in that it is valid only for
aseismic slip velocities but fails within the range of the seismic
ones [26]. The intention here is not to address the specific issues
outlined above but rather to point out how there may be some
effects and influences whose inclusion into the original model
may prove beneficial in qualitative terms. The latter expectation
also draws on some of the advantages of the BK model, one of
them being that the impact of the introduced variables and param-
eters is easily tractable. Proceeding in this spirit, the aim is to iso-
late some potentially novel mechanisms that may contribute to the
emergence of chaotic dynamics in the monoblock setup. In partic-
ular, we propose a mechanism related to some external effects,
like dynamic triggering from distant earthquake or vibrations
caused by some artificial source.

In the present paper, we analyze a system of equations proposed
by Madariaga, already used in Refs. [20,27], under the assumption
that nondimensional stress change ratio and spring constant ex-
hibit simple sinusoidal time dependence. The aim of the research
is to show whether this kind of perturbation would generate com-
plex dynamics, giving rise to the onset of deterministic chaos.
Moreover, our idea was to determine whether the onset of chaos is
also possible in the single-block model, only by coupling two si-
nusoidal oscillators, which is a common theoretical approach fre-
quently used in the area of nonlinear dynamics.

It has to be emphasized that even though seismic waves do not
generate such idealistic perturbations, they are of interest because
of their simple shape and because a real wave pattern results in a
superposition of such periodic waves. These idealistic perturba-
tions also set the basis for a more complex periodic perturbation
in a form of a sine wave scaled by a Gaussian pulse [28]. Similar

research was already performed by Perfettini et al. [29], except
that they assumed a simplified pulselike stress change. Also, this
kind of analysis with sinusoidal parameter perturbations was pre-
viously applied in the area of immunology, where periodic varia-
tion of a system’s parameters is ascribed to some external
perturbations [30].

The purpose of this paper is to provide a minimal, yet sufficient,
model of fault dynamics that may give rise to chaotic behavior.
One may appreciate the simplicity tied to such an approach,
given that a couple of possible mechanisms are laid out that
are easy to incorporate as subtle modifications to the original
Burridge–Knopoff model with the well-known Dieterich–Ruina’s
rate- and state-dependent friction law. An important point is that
the considered setups do not presuppose a compound fault struc-
ture but rather build on the simplest possible monoblock arrange-
ment. It turns out that the inclusion of minor perturbations to the
system parameters may be all that it takes for the system to exhibit
robust chaotic dynamics. One cannot rule out the possibility that
similar mechanisms operating alone or in synergy with the ones
stated above may partially contribute to the occurrence of chaotic
dynamics on real faults.

The scheme of the paper is as follows. In Sec. 2, we describe
the original model in detail, while the modified model is presented
in Sec. 3. Section 4 provides the main results, with detailed analy-
sis of the system’s dynamics when either one or both parameters
are perturbed. The obtained complex dynamical behavior is con-
firmed by calculating the Fourier power spectrum and the largest
Lyapunov exponent. Concluding remarks are given in Sec. 5 with
suggestions for further research.

Fig. 1 The Burridge–Knopoff block and spring model, repre-
sented by a slider coupled through a spring to a loader plate,
which moves with velocity V

Fig. 2 Bifurcations of the system (2) (or (3) if di 5 0 is set) under the variation of one of the pa-
rameters e (1) and n (2). Orbital diagram is constructed for the section with plane h 5 1, and cal-
culation step 0.01, showing the asymptotic dynamics after 8 3 106 time units. At each
instance, the parameters held constant are awarded values that admit the equilibrium point,
e 5 0.2, n 5 0.6, and c 5 0.8.

Fig. 3 Attractors of the system (3) (or (4) with di 5 0) in parame-
ter plane e-n. The remaining parameters are held fixed at values
admitting the equilibrium point, as in Fig. 2 Corresponding time
series and phase portraits for points 1 and 2 are shown in Fig. 4
EQ and PM are abbreviations for equilibrium state and periodic
motion, respectively.

031019-2 / Vol. 9, JULY 2014 Transactions of the ASME

Downloaded From: http://computationalnonlinear.asmedigitalcollection.asme.org/ on 04/29/2014 Terms of Use: http://asme.org/terms



2 Background of the Original Model

The present analysis on complex dynamics of a spring-block
model is based on the system of equations proposed by Madariaga
[20]. These equations of motion coupled with the Dieterich–Ruina
rate- and state-dependent friction law are originally given by

h
:

¼ � V

L

� �
hþ B log

V

V0

� �� �

U
:
¼ V � V0

V
:
¼ � 1

M

� �
kU þ hþ A log

V

V0

� �� � (1)

where parameter M is the mass of the block and the spring stiff-
ness k corresponds to the linear elastic properties of the rock mass
surrounding the fault [18]. According to Dieterich and Kilgore
[31] the parameter L corresponds to the critical sliding distance
necessary to replace the population of asperity contacts. The pa-
rameters A and B are empirical constants, which depend on mate-
rial properties. According to Ref. [32], parameter A measures the
direct velocity dependence (“direct effect”) while (A�B) is a mea-
sure of the steady-state velocity dependence. For convenience,

Fig. 4 Temporal evolution of variable V and the appropriate phase portraits for: (1) e 5 0.1,
n 5 1.0, and c 5 0.8 (equilibrium state); (2) e 5 0.5, n 5 1, and c 5 0.8 (periodic motion)

Fig. 5 Single peak in power spectrum indicates the oscillatory
behavior of the model. Parameter values are the same as in
Fig. 4(2).

Fig. 6 Bifurcations of the system (3) under the variation of the
parameter e. Orbital diagram is constructed for the section with
plane h 5 1, and calculation step xe 5 0.01, showing the asymp-
totic dynamics after 8 3 106 time units. At each instance, the pa-
rameters held constant are awarded the values near the
equilibrium point but admitting the limit cycle, e 5 0.4 (de 5 0.4),
n 5 0.5, and c 5 0.8. Corresponding time series and phase por-
traits for periodic and chaotic motion are shown in Fig. 7.
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system (2) is nondimensionalized by defining the new variables
h’, V’, U’, and t’ in the following way: h¼Ah’, V¼V0V’,
U¼ LU’, t¼ (L/V0)t’, after which we return to the use of h, V, U,
and t. This nondimensionalization puts the system into the follow-
ing form

h
:

¼ �Vðhþ ð1þ eÞ logðVÞÞ
U
:
¼ V � 1

V
:
¼ �c2 U þ 1=nð Þ hþ log Vð Þð Þ½ �

(2)

where e¼ (B�A)/A measures the sensitivity of the velocity
relaxation, n¼ (kL)/A is the nondimensional spring constant, and
c¼ (k/M)1/2(L/V0) is the nondimensional frequency [20].

3 Extended Model With Periodically Perturbed

Parameters

In the present paper, the dynamics of a single-block model are
analyzed by assuming the time-dependent character of e and n in
the following way:

h
:

¼ �V hþ 1þ e tð Þð Þ log V½ �
U
:
¼ V � 1

V
:
¼ �c2 U þ 1=n tð Þð Þ hþ log Vð Þ½ �

(3)

where e(t) and n(t) are positive periodic functions of time:

Fig. 7 Temporal evolution of variable V and the appropriate phase portraits for: (1) xe 5 0.9
(periodic motion); (2) xe 5 0.2 (deterministic chaos). At each instance, the parameters held
constant are awarded the values near the equilibrium point, but admitting the limit cycle,
e 5 0.4 (de 5 0.4), n 5 0.5, and c 5 0.8.

Fig. 8 (1) Fourier power spectrum of periodic motion (first peak is for fundamental frequency,
other peaks represent harmonics); (2) the broadband noise in the Fourier power spectrum
indicates the onset of deterministic chaos. Parameter values are the same as in Figs. 7(1) and
7(2), respectively.
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eðtÞ ¼ eþ de sinðxetÞ
nðtÞ ¼ nþ dn sinðxntÞ

(4)

such that de, dn, xe, and xn represent the constant oscillation
amplitudes and the angular frequencies, respectively. The former
satisfy the constraint de � e, dn � n, which ensures the model’s
consistency as it confines each perturbation term to an appropriate
range of values. The introduced modification addresses the issue
of the system’s response to an external perturbation, this aimed at
showing that even the small-amplitude influences are sufficient to
profoundly change the original behavior, leading to the onset of
chaos. Within this framework, the external perturbations are
incorporated implicitly by assuming that they induce small oscil-
lations near the equilibrium values of some of the system parame-
ters but admitting the periodic motion. Such persistent time-
dependent perturbations may be attributed to the earthquakes that
arise from slow rupture along the faults or to some nonnatural
source of vibrations, on one side [33], or Earth tides and reservoir
effects, on the other side [34]. However, note that the persistence
of perturbations should be assessed in relative terms, meaning that
even the impact of transient influences whose oscillation period is
much shorter than the time they act on the system may still qualify
for the provided description. In this context, one recalls the
dynamical triggering models, which concern the possibility of
earthquakes caused by the passage of seismic waves from the
mainshock on some distant fault [35,36]. In particular, it has been
proposed that the stress pulse emitted by the mainshock may
increase another fault’s slip speed or enhance triggering by reduc-
ing the associated state variable.

4 Numerical Analysis

The system (3) has only one stationary solution
(h,u,v)¼ (0,0,1), which corresponds to steady sliding. We shall
proceed in the standard way to determine and analyze the dynam-
ics of Eq. (3) around a stationary solution (0,0,1).

Let us first analyze the dynamics of the system (3) under the
perturbation of one or two parameters, while the remaining ones
are held fixed at values admitting the equilibrium point. To pro-
vide a point of reference, we first present the results on the stabil-
ity of the equilibrium point for the autonomous system (2) if one
of the parameters e and n is varied, viz. Fig. 2.

In order to gain insight on how the interplay between the pa-
rameters affects the behavior of the original system (2), we further
plot the attractors in the (e, n) parameter plane, which is obtained
analytically (Fig. 3). The corresponding diagrams for the other
pairs of parameters are qualitatively similar. Corresponding time
series and phase portraits for points 1 and 2 (in Fig. 3) are shown
in Fig. 4. One learns that the variation of each of the parameters

e or n leads the system through the supercritical Hopf bifurcation,
such that the equilibrium point goes unstable and a new stable
limit cycle is created.

Periodic motion of the block is confirmed by calculating the
Fourier power spectrum (Fig. 5).

As stated earlier, the main goal of the analysis is to examine
whether some sinusoidal perturbations acting in the system may
change its underlying dynamics, giving rise to the chaotic solu-
tions. The perturbations are introduced in an implicit fashion,
assuming that they induce oscillations of the system parameters
near their equilibrium values before and after the bifurcation
occurs in the original system (2) (Fig. 3). Our strategy consists of
varying the parameters in the vicinity of their respective equilib-
rium values, verifying if the periodic perturbation of a certain am-
plitude and frequency can elicit the chaotic behavior in the
system, whereas the perturbation amplitudes have to comply with
the elementary constraint de � e and dn � n, the corresponding
frequencies can assume a broader range of values.

The systematic exploration along these lines reveals the follow-
ing results. First we address the issue of what occurs if only a sin-
gle parameter, e or n, undergoes periodic oscillations, while the
other parameter is fixed. Note that the chosen parameter values
would lead to the limit cycle in the unperturbed system (2). We
start by changing the angular frequency of periodic oscillations of
parameter e, for the fixed upper limit value of amplitude

Fig. 9 Maximal Lyapunov exponent converges well to kmax 5 0.072, confirming the onset of
deterministic chaos. The parameter values are identical to those in Fig. 7(2).

Fig. 10 Bifurcations of the system (3) under the variation of
the parameter n. Orbital diagram is constructed for the section
with plane h 5 1, and calculation step xn 5 0.01, showing the as-
ymptotic dynamics after 4 3 106 time units. At each instance,
the parameters held constant are awarded values near the equi-
librium point, but admitting the limit cycle, e 5 0.4, n 5 0.5
(dn 5 0.4), and c 5 0.8. Corresponding time series and phase por-
traits for quasi-periodic motion are shown in Fig. 11.
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(de¼ 0.4). It turns out that as the parameter xe takes smaller val-
ues at each step in the range [0,1], a transition from periodic
motion to deterministic chaos is observed, with periodic and
quasi-periodic windows interspersed between chaotic clouds of
dots (Fig. 6). Note that in all of the examined cases trajectory
intersects Poincare surface in only one direction. The typical time
series and phase portraits for the corresponding time series are dis-
played in Fig. 7.

The transition to chaos is verified by calculating the Fourier
power spectra for the time series presented in Fig. 7, with the
results displayed in Fig. 8. The first maximal peak for fundamen-
tal frequency and several smaller peaks for harmonics (as integer
multiples of the fundamental frequency) in Fig. 8(1) imply the
periodic evolution of the system. The broadband noise in Fig. 8(2)
suggests the emergence of a strange attractor. Maximal Lyapunov
exponent, which is determined using the method of Wolf et al.
[37] converges well to a positive value (kmax � 0.072), indicating
the onset of deterministic chaos (Fig. 9).

The analysis of the system’s dynamics when the perturbation of
the parameter n (xn) is assumed (also for the fixed upper value of
amplitude, dn¼ 0.4) indicates a more complex picture, with suc-
cessive transition from periodic and quasi-periodic motion to
deterministic chaos, interspersed with periodic and quasi-periodic
windows (Fig. 10). The corresponding time series and phase por-
trait for quasi-periodic motion are shown in Fig. 11.

The quasi-periodic motion is further verified by several incom-
mensurate frequencies in Fourier power spectra (Fig. 12) for the
time series presented in Fig. 11.

Although the onset of chaos is observed due to a single parame-
ter perturbation, the drawback of such an approach is that the
associated perturbation amplitude has to be comparable to the pa-
rameter’s equilibrium value (de¼ dn¼ 0.4). This is why we con-
ducted additional analysis of complex dynamics of the model (3)
by choosing a value of angular frequency admitting the periodic
motion of the block in an unperturbed state, while the dynamics is
observed by changing the perturbation amplitudes for each of the
observed parameter separately (Fig. 13).

As it is clear from Fig. 13, in case of perturbing only a single
parameter (e or n), there is a direct transition to deterministic
chaos for both amplitude values de and dn in the range [0,0.4].
This type of scenario to chaos could imply the existence of some
global bifurcation. One should note that for dn> 0.4, system (3)
becomes extremely stiff in the plausible parameter domains,
meaning that an exceedingly small iteration step (<10�5) is
required to carry out the numerical integration.

In the next step of our analysis, we examined another case of a
single amplitude perturbation, only this time with higher fre-
quency values (xe¼xn¼ 0.9). As it can be seen in Fig. 14, for

the higher frequency values, a transition from periodic motion to
deterministic chaos is observed, which is a type of dynamics al-
ready captured in Fig. 6. By comparing orbital diagrams in Figs.
13 and 14, it is clear that the onset of chaos could be controlled
only by tuning the angular frequencies of assumed periodic pertur-
bation of the selected parameters (e or n).

We further proceed by analyzing what occurs if both
e and n undergo small oscillations. As a first step in the anal-
ysis, we choose values of angular frequencies admitting the
periodic motion of the block in an unperturbed state and
observe the dynamics of the model (3) by simultaneously
changing the amplitude values for both parameters e and n
(Fig. 15).

In this case, a transition from periodic motion to deterministic
chaos is observed (Fig. 16), with the onset of chaos for higher
perturbation amplitudes in comparison to Figs. 13 and 14. The
conclusions on the character of the observed behavior rely on the
two commensurate frequencies and well-developed continuous
noise in the power spectrum for the time series V(t), provided in
Figs. 17(1) and 17(2), respectively.

Deterministic chaos is further corroborated by calculating the
positive value of the maximal Lyapunov exponent, as indicated in
Fig. 18, using two different methods [37,38].

Fig. 11 Temporal evolution of variable V (1) and the appropriate phase portrait (2) for
xn 5 0.65 (quasi-periodic motion). At each instance, the parameters held constant are awarded
the values near the equilibrium point, but admitting the limit cycle, e 5 0.4 (de 5 0.4), n 5 0.5,
and c 5 0.8.

Fig. 12 Several incommensurate frequencies in Fourier power
spectrum indicate quasi-periodic motion. Parameter values are
the same as in Fig. 11.
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If we proceed with further analysis, this time by assuming
high constant perturbation frequencies (xe¼xn¼ 0.9) and by
simultaneously changing the amplitude values for both parameters e
and n, in the range [0,0.4], the system (3) exhibits only the periodic
motion.

5 Concluding Remarks

In this paper, we analyze the effect of periodic parameter per-
turbation on the onset of complex dynamics in Burridge–Knopoff
single-block model. In the first phase of the research, we examine
the impact of a single parameter perturbation (e or n) on the
system’s dynamics. The results indicate that the complex dynam-
ics are observed only under a single parameter perturbation for
limit amplitude values, with transition from periodic and quasi-
periodic motion to deterministic chaos, interspersed with
periodic and quasi-periodic windows between chaotic clouds of
dots. An interesting finding is that the onset of chaos is observed
for the frequencies of a single parameter perturbation near the
frequency of periodic motion of the block in an unperturbed state
(xe¼ 0.2, xn¼ 0.3). In an earthquake analogy, it means that the
instability of motion along the fault could be generated by small-
amplitude oscillations with a frequency value admitting the
aseismic motion along the fault. Further analysis of the system’s
dynamics with oscillation frequencies assumed constant

Fig. 13 Bifurcations of the system (4), for different perturbation amplitudes de and dn: (1)
xe 5 0.2; (2) xn 5 0.3. In both cases, orbital diagram is constructed for the section with plane
h 5 1, and calculation step xe 5 xn 5 0.01, showing the dynamics after 8 3 106 and 4 3 106 time
units, respectively. At each instance, the parameters held constant are awarded values near
the equilibrium point, but admitting the limit cycle, e 5 0.4, n 5 0.5, and c 5 0.8.

Fig. 14 Bifurcations of the system (3), for different perturbation amplitudes de and dn: (1)
xe 5 0.9; (2) xn 5 0.9. In both cases, orbital diagram is constructed for the section with plane
h 5 1, and calculation step xe 5 xn 5 0.01 showing the dynamics after 8 3 106 time units. At
each instance, the parameters held constant are awarded values near the equilibrium point
but admitting the limit cycle, e 5 0.4, n 5 0.5, and c 5 0.8.

Fig. 15 Attractors of the system (3) in parameter plane de - dn,
for the frequencies near the frequency of the block in unper-
turbed state, admitting chaos due to a single parameter pertur-
bation (xe 5 0.2, xn 5 0.3). Diagram is constructed for the grid
0.01 3 0.01. At each instance, the parameters held constant are
awarded the values near the equilibrium point but admitting the
limit cycle, e 5 0.4, n 5 0.5, and c 5 0.8. P and C are abbreviations
for periodic motion and deterministic chaos, respectively. Cor-
responding time series and phase portraits for points 1 and 2
are shown in Fig. 16.
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(xe¼ 0.2, xn¼ 0.3) and only by changing the perturbation
amplitudes de and dn in the range [0,0.4] shows a direct
transition to deterministic chaos, which could indicate the exis-
tence of global bifurcations. On the other hand, for higher oscil-
lation frequencies (xe¼xn¼ 0.9), a transition from periodic
motion to deterministic chaos is observed. In this case, it is
obvious that the onset of chaos could be controlled only by tun-
ing the angular frequencies of assumed single parameter
perturbation.

In the second phase of the research, we assume the coaction of
both parameters e and n. By changing only the perturbation ampli-

tudes of both parameters in the range [0,0.4] with constant values
of frequencies admitting the periodic motion of the block in an
unperturbed state (xe¼ 0.2, xn¼ 0.3), the results indicate the
transition from periodic motion to deterministic chaos, with the
onset of chaos only for higher values of perturbation amplitudes
in comparison to the case when only a single parameter is per-
turbed. On the other side, the system (3) exhibits only the periodic
motion for the coaction of both perturbed parameters if higher
frequency values are presumed (xe¼xn¼ 0.9).

It has to be emphasized that sinusoidal oscillations represent an
idealistic case of parameter perturbation, which rarely occurs

Fig. 16 Temporal evolution of variable V and the appropriate phase portraits for points 1 and
2 in Fig. 15: (1) de 5 0.1, dn 5 0.05 (periodic motion); (2) de 5 0.2, dn 5 0.2 (deterministic chaos).
At each instance, the parameters held constant are awarded values near the equilibrium point
but admitting the limit cycle, e 5 0.4, n 5 0.5, and c 5 0.8. Values of the angular frequency are
chosen to be near the angular frequency of the block in an unperturbed state, admitting the
onset of deterministic chaos for a single parameter perturbation: xe 5 0.2, xn 5 0.3.

Fig. 17 (1) Two commensurate peaks in power spectrum (first peak for the fundamental fre-
quency, and the second peak for the harmonic) imply the periodic motion (2). The broadband
noise in the Fourier power spectrum indicates the chaotic behavior of the system. The param-
eter values are the same as in Figs. 16(1) and 16(2), respectively.
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under the real conditions in Earth’s crust. However, as already
stated in the introductory part, we believe they are of interest
because of their simple shape and because a real wave pattern
results in a superposition of such periodic waves. Also, some
earthquakes that arise from slow rupture along the faults could
generate seismic waves of such simple shape [33], or they could
occur as a product of some artificial source (e.g., heavy mining
machines and equipment).

Nevertheless, though the analyzed model and the assumed per-
turbations are rather simple, the performed analysis showed that
the onset of deterministic chaos could be observed for small val-
ues of the control parameter e, which is in contrast to the research
conducted by Erickson et al. [20], who observed the occurrence of
deterministic chaos in Burridge–Knopoff single-block model for
e¼ 11. On the other side, the results of our analysis correspond
well with the research also conducted by Erickson et al. [39],
where the transition to chaos is observed for e¼ 0.5 as the number
of blocks increases from 20 to 21. This further implies that the
onset of chaos does not have to be size dependent, as it was al-
ready indicated in our previous research on the dynamics of
spring-block model with time delay [27].

In the present paper, the focus has been on introducing a min-
imal model of fault dynamics that can exhibit chaotic behavior.
The possible gain from such an approach lies in highlighting
the more subtle mechanisms otherwise neglected in the models
that involve the compound fault structure. What we actually
suggest is that the results obtained here should be viewed as
complementary to those established for the more complex mod-
els. Nonetheless, the strategy we adopted can likely be repli-
cated in case of the larger number of blocks or be incorporated
into the model of a transform fault, implying that the current
results may further be reevaluated under some more realistic
setups.
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