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a Department of Geology, University of Belgrade, Faculty of Mining and Geology, Ðušina 7, 11000 Belgrade, Serbia
b Department of Applied Mathematics, University of Belgrade, Faculty of Mining and Geology, Ðušina 7, 11000 Belgrade, Serbia
c Department of Theoretical Mechanics, Statistical Physics, and Electrodynamics, University of Belgrade, Faculty of Physics, Studentski Trg 12, 11000 Belgrade, Serbia
d Department of Geotechnics, University of Belgrade, Faculty of Mining and Geology, Ðušina 7, 11000 Belgrade, Serbia
e Institute for the Development of Water Resources ’’Jaroslav Černi’’, Jaroslava Černog 80, 11226 Belgrade, Serbia
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In present paper, we analyze the dynamics of a single-block model on an inclined slope
with Dieterich–Ruina friction law under the variation of two new introduced parameters:
time delay Td and initial shear stress l. It is assumed that this phenomenological model
qualitatively simulates the motion along the infinite creeping slope. The introduction of
time delay is proposed to mimic the memory effect of the sliding surface and it is generally
considered as a function of history of sliding. On the other hand, periodic perturbation of
initial shear stress emulates external triggering effect of long-distant earthquakes or some
non-natural vibration source. The effects of variation of a single observed parameter, Td or
l, as well as their co-action, are estimated for three different sliding regimes: b < 1, b = 1
and b > 1, where b stands for the ratio of long-term to short-term stress changes. The
results of standard local bifurcation analysis indicate the onset of complex dynamics for
very low values of time delay. On the other side, numerical approach confirms an
additional complexity that was not observed by local analysis, due to the possible effect
of global bifurcations. The most complex dynamics is detected for b < 1, with a complete
Ruelle–Takens–Newhouse route to chaos under the variation of Td, or the co-action of both
parameters Td and l. These results correspond well with the previous experimental obser-
vations on clay and siltstone with low clay fraction. In the same regime, the perturbation of
only a single parameter, l, renders the oscillatory motion of the block. Within the velocity-
independent regime, b = 1, the inclusion and variation of Td generates a transition to equi-
librium state, whereas the small oscillations of l induce oscillatory motion with decreasing
amplitude. The co-action of both parameters, in the same regime, causes the decrease of
block’s velocity. As for b > 1, highly-frequent, limit-amplitude oscillations of initial stress
give rise to oscillatory motion. Also for b > 1, in case of perturbing only the initial shear
stress, with smaller amplitude, velocity of the block changes exponentially fast. If the time
delay is introduced, besides the stress perturbation, within the same regime, the co-action
of Td (Td < 0.1) and small oscillations of l induce the onset of deterministic chaos.
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1. Introduction

Landslides constitute a major geologic hazard of strong concern in most parts of the world, posing a serious threat to
highway, railway and residential areas. They commonly occur in slopes of different geological and structural setting, and
can be triggered by various external factors, such as floods, earthquakes or volcanic eruptions [1]. In order to occur, forces
acting on a slope must overcome the friction strength along a possible sliding surface. The traditional way to asses whether a
slope is safe or not relies mainly on the use of factor of safety by assuming a limit equilibrium of the soil [2,3]. This analysis
commonly uses a simple static Coulomb failure criterion, where shear strength depends on the cohesion c and the angle of
internal friction u [4]. Here, the constant solid friction coefficient is interpreted as an effective average friction coefficient.
This failure criterion simply requires reaching a critical stress threshold s when instability occurs [5]. However, this failure
model alone does not explain the time-dependent nature of the failure threshold and it holds only for V = 0. This temporal
dependence of friction along a rough sliding surface was firstly observed in rock mass, and it has a significant impact on the
earthquake nucleation [6]. Apparently, real observations, as well as laboratory experiments, indicate temporal logarithmic
increase of friction coefficient during the interseismic interval or quasistationary contact between the block and rough sur-
face in the Burridge–Knopoff model [7]. This type of friction is well described by Dieterich–Ruina rate-and state-dependent
friction law, which has been studied extensively for rock joints [8–12]. Besides these experiments for dry rock joints, Skemp-
ton [13] observed similar behavior of clays in the ring shear tests, for much slower sliding rate (V < 0.01 mm/min), comparing
to the results obtained for Burridge–Knopoff model [8,14,15]. Following the results of Skempton [13], it is reasonable to as-
sume that Dieterich–Ruina rate-and state dependent friction law, with logarithmic increase of friction coefficient during the
quasistationary contact, also holds for the landslides. Indeed, Chau [16] suggested that Dieterich–Ruina friction law with one
state variable can be used to model landslides that occur in natural infinite slope along a plane of weak surface, such as a
persistent rock joint, a rock joint filled with wet gouge or soil or a soil interface. Some years later, further research conducted
by Chau [17] showed that two state variables are often needed for a more complete description of the shear stress evolution
with deformation, motivated by the experiments on quartzite [9], dolomite [18] and granite [12].

Triggering and propagation of shallow landslides is commonly modeled by using a discrete element method [19] or a
molecular dynamics approach [20]. In this paper, following the suggestion of Chau [16] and Helmstetter et al. [1], we assume
that the sliding process could be described by a single sliding block moving along the rough surface. In particular, we model a
landslide as a block resting on an inclined slope forming an angle u with respect to the horizontal [21–23]. This phenom-
enological model describes only the landslides with translational slope failures, which can be idealized by infinite slope
assumptions like the Vaiont landslide or La Clapiere landslide [1]. Furthermore, we assume that a pre-existing weak plane
exists within the slope, and that a landslide occurs as a consequence of the unstable slip of a creeping slope when it is subject
to small external perturbation [22,24,25].

As for the nature of friction between the block and the rough surface, we suppose that it could be described by Dieterich–
Ruina friction law, but with only one state variable. The effect of the other state variable, as well as the delayed increase in
frictional strength, is modeled by introducing the time delay parameter Td in friction term. This kind of analysis was already
applied for the earthquake nucleation model in our previous research [26]. Another reason for inclusion of time delay in fric-
tion term is that the delayed increase of static friction coefficient is observed in laboratory experiments, as well as in the
quiescent period of seismic stress drop during the recurrence interval [6]. By assuming the analogy between the landslide
faults and tectonic faults [27–29], it is plausible that this feature is also inherent for the friction coefficient along the sliding
surface. It has to be emphasized that our approach here differs from the research on spring-block Burridge–Knopoff model of
earthquake nucleation, primarily because gravitational pull is considered instead of spring–slider system.

Besides the introduction of time delay, the second part of the analysis included the external triggering effect of earth-
quake, by assuming periodic sinusoidal perturbations of the initial shear stress s0. The sinusoidal earthquake signal could
correspond to long duration shear seismic wave [28,30], or it could be generated by non-natural sources such as vehicle traf-
fic [28]. As far as the authors are aware, this analysis is new and the seismic impact on landslide dynamics has not been
investigated in this way so far. However, similar analysis was conducted for some biological systems [31], where periodic
Fig. 1. The single-block model of landslide on an inclined slope with velocity V(t) under gravitational pull.
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parameter perturbation are attributed to various slow internal and external changes of the surrounding environment, basic
variables and processes.

The paper consists of the following sections. In the first section, original model is described together with the correspond-
ing Dieterich–Ruina rate-and state-dependent friction law. Here we also present results of the previous research and moti-
vate our further analysis. In the second section, time delay parameter Td is introduced and the dynamics of the system is
analyzed numerically and by the means of standard local bifurcation analysis. In the third section we assume periodic
perturbation of initial shear stress l, and observe the changes in the landslide dynamics. In the fourth section, we analyze
the co-action of both parameters Td and l. In the final section, we give discussion on the obtained results, together with the
proposal for the future research.

2. Description of the original model and its derivatives

The aim of this paper is to provide a general framework which applies the one state variable friction law to landslide
problems. To make the problem mathematically tractable, we only consider landslides which can be idealized by infinite
slope assumptions (Fig. 1), as suggested in the work of Chau [16,17].

According to Chau [16], a motion of the single block on an inclined slope could be described by the system of three
coupled nonlinear first-order differential equations:
dV
dt
¼ g sin a� s

qh
ds
dt
¼ dh

dt
þ A

V
dV
dt

du
dt
¼ V

ð1Þ
where g is gravitational constant (9.81 m/s2), a is the slope angle, q is the mass density, h is the thickness of the overlying
soil, s is the shear strength along the sliding surface, V and u are the velocity and displacement of the block, respectively,
while A represents material constant, dependent on rock type, pressure, temperature and sliding velocity [32].

We model the shear strength along the sliding surface using a rate- and state-dependent friction law, which was origi-
nally developed to characterize laboratory observations of fault friction dependence on slip, time and sliding velocity [9].
In present paper, the choice of such friction model for sliding process was motivated by the results of laboratory analysis
in the work of Skempton [13], which showed that this friction model is also valid for fluid-saturated clay and siltstone con-
taining low clay fraction:
s ¼ s0 þ hþ A ln
V
V0

� �
dh
dt
¼ �V

L
hþ B ln

V
V0

� �� � ð2Þ
For V = 0, it is assumed that Coulomb’s friction law applies: s0 = lr, where l and r are the frictional coefficient and the
normal stress at the slip surface. In model (2) s0 represents the threshold shear stress at some reference sliding velocity V0, B
is an empirical constant, depending on the properties of soil, L is a characteristic slip distance comparable to a typical asper-
ity length (characteristic decay length scale), while h denotes the time-dependent state variable, which is a function of the
history of sliding [33]. State variable h represents an evolving time scale, as a delayed reaction of friction to instantaneous
changes in velocity [34]. In the static case, h = t, and Dieterich [8] suggested that h can be interpreted as the average age of
contacts, i.e. the average elapsed time since the contacts were first formed. In present case, this variable is introduced to
characterize the current mechanical state of the slip surface, and, in general, h remains constant for the steady state, but
evolves for unsteady slip [16].

Following the idea of Chau [16], the model of infinite slope evolution could be expressed in the subsequent dimensionless
form:
ds
dT
¼ �kev ½s� s0 � ð1� bÞv � þ e�V

j
ðc� sÞ

dv
dT
¼ e�v

j
ðc� sÞ

dd
dT
¼ ev

ð3Þ
where s = s/A (dimensionless stress), v = ln(V/V0) (dimensionless velocity), d = u/h (dimensionless displacement), T = V0t/h
(dimensionless time), s0 = s0/A, j = qV2

0/A, c = qghsina/A, b = B/A and k = h/L.
Equilibrium point for the system (3) is obtained by assuming that ds/dT = dv/dT = 0, while dd/dT = const. Hence, the param-

eter values at the equilibrium point must satisfy the following conditions:
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s ¼ c

m ¼ c� s0

1� b

d ¼ emT

ð4Þ
In present analysis, the initial conditions (s,v,d) are set near the equilibrium point.
The dynamics of this original model [16] for various range of parameter values shows two different stability regimes

depending on parameter b, as the control parameter whose values determine the onset of bifurcations. For b < 1, which cor-
responds to velocity strengthening behavior, the motion of the block along the slope is so slow, that it could be approximated
by the steady state of the block. All the solutions approach the improper node as t ?1. Similarly, for b = 1, the block moves
along the slope with constant velocity, whose magnitude rises with the change of parameter s0 in the range [0,1]. According
to Chau [16] all trajectories of the system (3) in this regime converge to neutrally stable equilibrium point. On the other
hand, for b > 1, which represents velocity weakening friction law, the motion becomes unstable in a way that velocity of
the block increases very fast and for a certain time interval, it suddenly diverges to infinity. In present paper, in contrast
to Chau [16], we neglect the negative values of the block velocity, which appears for s0 > 1. This indicates the motion of
the block in opposite direction, which is not possible for natural sliding process, except for periodic perturbations due to
earthquake triggering. Also, in contrast to Chau [16] we consider only the positive values of parameter b, since long-term
or short-term stress changes cannot take negative values. Parameters k, j, b and c have positive values.

3. Extended model with time delay

In the first phase of the research, we incorporate time delay in model (3) in the following way:
ds
dT
¼ �keV ½sðT � TdÞ � s0 � ð1� bÞm� þ e�m

j
ðc� sÞ

dm
dT
¼ e�m

j
ðc� sÞ

dd
dT
¼ em

ð5Þ
where meaning of all terms is the same as in (3). In this way, we also model the influence of the second state variable, intro-
duced previously in the work of Chau [17]. Apparently, the results of previous research showed that for the two-state var-
iable friction law bifurcation occurs when the imaginary axis is crossed, as a dividing line of stable region and unstable
region (Hopf bifurcation) [17].

The introduced time delay in dimensionless shear stress term emphasizes the delayed response of the friction (along the
slip surface) to the sudden increase of sliding velocity. Such an abrupt velocity change is commonly caused by the effect of
rainfalls, which is usually considered as the main triggering factor of slope instability. This assumption corresponds well
with the results of laboratory test on fluid-saturated clay with low sliding rates, performed by Skempton [13], which clearly
show the jump in shear stress before it decreases to the steady state value. Moreover, similar assumption has already been
made in the case of a spring-block model of earthquake nucleation with much higher sliding rates [26], and it lead to new
dynamical features. However, direct comparison of the present analysis with the previous researches on earthquake nucle-
ation process cannot be made, since the present non-linear system is formulated by considering gravitational pull instead of
spring–slider system, despite the fact that the same Dieterich–Ruina friction law is used.

3.1. Local stability and bifurcations of the stationary solution

The system (5) has only one stationary solution, namely (s,v) = (1,0), according to (4), for the following parameter values:
s0 = c = 1.0, k = 1.5, and j = 2.0. We shall proceed in a standard way to determine and analyze the characteristic equation of
(5) around a stationary solution (1,0).

Linearization of the system (5) and substitution s = AeDT, v = BeDT and s(T–Td) = AeD(T–Td) results in a system of algebraic
equations for the constants A and B. This system has a nontrivial solution if the Jacobian matrix satisfies the following
condition:
� 1
j� ke�DTd � D kð1� bÞ
� 1

j �D

�����
����� ¼ 0 ð6Þ
In other words, the characteristic equation of the system (5) must fulfill the following constraint:
D2 þ D
1
j
þ ke�DTd

� �
þ k

j
ð1� bÞ ¼ 0 ð7Þ
By substituting D = ix in (7), we obtain:



Fig. 2.
corresp
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x2 � k
j ð1� bÞ � ix 1

j
ixk

¼ ðcos xTd � i sin xTdÞ ð8Þ
The resulting two equations for the real and imaginary part of (8) after squaring and adding give an equation for the
parameter b in terms of the other parameter x, and vice versa, and after division, an equation for Td in terms of the param-
eters b and x. In this way, one obtains parametric representations of the relations between Td and the parameters, which
correspond to the bifurcation values D = ix. The general form of such relations is illustrated by the following formula for
b as a function of x:
b1;2 ¼
1
2
�8

3
x2 þ 2� 8

ffiffiffi
2
p

3
x

" #
ð9Þ
On the other hand, for x as a function of b:
x2
1;2 ¼

ð14� 6bÞ � 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð5� 3bÞ

p
8

ð10Þ
and for Td as a function of b and x:
Td ¼
1
x

arctg
2 3

4 ð1� bÞ �x2
� 	

x

� �
þ kp

� �
ð11Þ
where k is any nonnegative integer such that Tdk P 0.
Though the very form of the solution adopted for the characteristic equation is indicative of Hopf bifurcations, the rigor-

ous proof of this claim is rather lengthy to convey [35–37]. Here it suffices to say that the above parametric equations for b, x
and Td coincide with the Hopf bifurcation curves illustrated in Fig. 2 for the fixed parameter values s0 = c = 1.0, k = 1.5, and
j = 2.0.

Reading from Fig. 2, one learns that only by increasing the time-lag Td, e.g. by setting Td = 0.5, Td = 2, Td = 7 and Td = 10, and
by slightly changing the other parameter values, the block dynamics changes from the fixed point, over the limit cycle oscil-
lation (first Hopf bifurcation) and torus (second Hopf bifurcation) to chaos. In particular, the system exhibits quasiperiodic
(Ruelle–Takens–Newhouse) route to chaos [38,39]. Corresponding time series and phase portraits for points a, b, c and d in
Fig. 2, are shown in Fig. 3. Broadband noise in Fourier power spectrum (Fig. 4) confirms the onset of deterministic chaos.

3.2. Numerical approach

In spite of the favorable results of the previous analysis indicating the onset of complex dynamics under the variation of
the introduced time delay, we stress that the local stability analysis naturally does not capture the existence of global bifur-
cations. This is why we extended the analysis by numerically integrating model (5) near the equilibrium point (4). Regarding
the fashion in which the delay-differential equations are numerically solved, the initial function is selected such that it is
values within the interval [�Td,0] are set by the first equation in (5) with k = 0. In all the examined cases we adopt
Runge–Kutta fourth order numerical integration method, due to simplicity and low computational cost, with the remark that
qualitatively the same results could be obtained using an implicit integration scheme (e.g. backward differentiation
formula), primarily intended for solving complex systems, as the one analyzed in this case. At each instance, the parameters
Hopf bifurcation curves Td(b), for the fixed values of parameters s0 = c = 1.0, k = 1.5, and j = 2.0. The appropriate time series and the phase diagrams
onding to points a, b, c and d are shown in Fig. 3.



Fig. 3. Temporal evolution of variable V and the corresponding phase portraits for: (a) Td = 0.5, b = 0.4, (equilibrium state); (b) Td = 2, b = 0.4 (periodic
motion); (c) Td = 7, b = 0.3 (quasiperiodic motion); (d) Td = 10, b = 0.4 (deterministic chaos). In all the examined cases, other parameter values are as in Fig. 2.
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Fig. 4. Broadband noise in Fourier power spectrum indicates the chaotic behavior of the system. The parameter values are identical to those in Fig. 3(d).
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held constant are awarded values near the equilibrium point. The dynamics of the block for b < 1 and for Td in range [0.1–10]
is shown in Fig. 5.

If we compare Figs. 2 and 5, it is clear that numerical approach indicates much complex behavior, with small areas of
quasiperiodic and chaotic motion, which imply the existence of global bifurcations, which will not be analyzed in present
paper.

The scenario of deterministic chaos was further confirmed by calculation of the Fourier power spectrum for oscillations,
torus and chaotic orbits (Figs. 6 and 7a). The single peak in power spectrum in Fig. 6(a) indicates the oscillatory behavior of
the system under study, while the quasiperiodic behavior (torus) is verified by the second peak in Fig. 6(b). The broadband
noise in Fourier power spectrum (Fig. 7a) and positive value of maximal Lyapunov exponent, calculated by method of Wolf
et al. [40] indicate that the attractor is strange (Fig. 7b).

In Fig. 8, the maximal Lyapunov exponent is calculated using the method of Rosenstein et al. [41]. One could note that the
obtained values of kmax by using the Wolf’s (Fig. 7b) and Rosenstein’s method (Fig. 8) are of the same order of magnitude.

For b = 1, system under study shows no complex dynamics under the increase of the included time delay. Apparently, for
a first few values of time delay, the velocity of the block decreases in comparison to the original model, exhibiting finally a
transition to equilibrium state. Further increase of time delay induce negative constant velocity of the block, meaning that
block moves upwards, which is not physically possible, and this case is neglected in our analysis (Fig. 9). In other words, in
Fig. 5. Parameter domains (Td,b), admitting equilibrium state (EQ), periodic (PM) and quasiperiodic motion (QP) and deterministic chaos (C). Diagram is
constructed numerically, for the step size equal 0.1 for both Td and b. Other parameter values are: s0 = 1.0, k = 1.5, j = 2.0 and c = 1.0. Corresponding power
spectra for points a, b and c are shown in Fig. 6, while the largest Lyapunov exponent is calculated for point c in Fig. 7.



Fig. 6. (a) Single peak in power spectrum indicates the oscillatory behavior of the model for Td = 1.5, b = 0.2 (point a in Fig. 5) (b) two peaks in power
spectrum imply the appearance of torus for Td = 3, b = 0.2 (point b in Fig. 5). In all the examined cases, other parameter values are as in Fig. 5.

Fig. 7. (a) The broadband noise in Fourier power spectrum indicates the chaotic behavior of the system for Td = 7.5, b = 0.2 (point c in Fig. 5); (b) maximal
Lyapunov exponent converges well to kmax = 0.0011, indicating the presence of deterministic chaos. Other parameter values are as in Fig. 5.

Fig. 8. Calculation of maximal Lyapunov exponent for the time series in Fig. 4 (4). The method of Rosenstein et al. [41], implies kmax � 0.003. Effective
expansion rate S(Dn) represents the average of the logarithm of Di(Dn), defined as the average distance of all nearby trajectories to the reference trajectory
as a function of the relative time Dn. The slope of dashed lines indicating the predominant slope of S(Dn) in dependence on DndT presents a robust estimate
for the maximal Lyapunov exponent. The results are determined for 1000 reference points and neighboring distance e = 0.15–0.30. The obtained value of
maximal Lyapunov exponent is of the same order of magnitude, as in Fig. 7(b).

S. Kostić et al. / Commun Nonlinear Sci Numer Simulat 19 (2014) 3346–3361 3353



Fig. 9. Bifurcations of the system (5) under variation of parameter Td, for b = 1.0. At each instance, the parameters held constant are awarded values near the
equilibrium point: s0 = 1.0, k = 1.5, j = 2.0, and c = 1.0.
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the case of b = 1, introduction of time delay suppresses the motion, leading eventually to equilibrium state of the block. This
type of dynamics differs from the previous case, for b < 1, where the inclusion of Td generated more complex behavior.

For b > 1, introduced time delay renders the system (5) extremely stiff in the plausible parameter domains, meaning that
an exceedingly small iteration step (<10�5) is required to carry out the numerical integration. However, the results of the
analysis for b = 1.1 and Td = 0.1, indicate the chaotic behavior of the model under study (Fig. 10), which is confirmed by con-
tinuous broadband noise in the power spectrum (Fig. 11a) and by positive value of the largest Lyapunov exponent (Figs. 11b
and 12).

However, it should be emphasized that, even though the maximal Lyapunov exponent converged well to positive values
in Figs. 7(b) and 11(b), the standard procedure of Wolf et al. [40] has to be complemented by performing additional averag-
ing over a set of different initial conditions (Fig. 13), since delay-differential equation (5) represents infinite-dimensional sys-
tem. It is clear that in all the examined cases, maximal Lyapunov exponent converges to positive value of the same order of
magnitude as in Figs. 11(b) and 12.
Fig. 10. (a) Time series v(T) and (b) phase portrait for b = 1.1 and Td = 0.1. Other parameter values are: s0 = 1.0, k = 1.5, k = 2.0, and c = 1.0.

Fig. 11. (a) Continuous broadband noise in Fourier power spectrum confirms chaotic motion of block. (b) Maximal Lyapunov exponent converges well to
positive value, kmax = 0.013.



Fig. 12. Calculation of maximal Lyapunov exponent for the time series in Fig. 10(a). The method of Rosenstein et al. [41], implies kmax � 0.014. The results
are determined for 100 reference points and neighboring distance e = 0.5–1. The obtained value of maximal Lyapunov exponent is of the same order of
magnitude, as in Fig. 11(b).

Fig. 13. Calculation of maximal Lyapunov exponent by performing additional averaging over a set of different initial conditions, whereby s0, v0 and d0

belong to the respective ranges s0 2 ½0;1�; v0 2 ½0;0:5�; d0 2 ½0;1�. The results have been obtained by the method of Wolf et al. [41]. Maximal Lyapunov
exponents converge well to positive values of the order 10�2, the same as in Fig. 11(b). Note that time t is expressed in the units of iteration steps.
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4. Extended model with stress perturbation

In the second phase of the analysis, we modified the original model (3) by assuming periodic perturbations of the initial
shear stress s0 due to external earthquake triggering effect:
lðTÞ ¼ s0 þ ds sinðxsTÞ ð12Þ
such that ds, and xs represent the constant oscillation amplitude and the angular frequency, respectively. The former satisfy
the constraint ds 6 s0, which ensures the model’s consistency as it confines each perturbation term to an appropriate range of
values. In that way, system (3) becomes nonautonomous.

For b < 1, by perturbing only the shear stress l, while the other parameters are held constant for the initally creeping
slope (equilibrium state), block exhibits oscillatory behavior. This kind of motion is observed for any frequency value (xs)
in the range [0.1–2.0]. It is in contrast to the original model, where only the constant positive velocity of the block is
observed.

For b = 1, also by assuming limit amplitude oscillations of shear stress l, the velocity of the block takes constant negative
values, meaning that block moves upward, in opposite direction, which is physically impossible. Hence, this case is neglected
in our analysis.



Fig. 14. Time series v(T) for b = 1.1, and for oscillation amplitude ds = 1.0 and frequency xs = 5.0. At each instance, other parameters held constant are
awarded values near the equilibrium point: s0 = 1.0, k = 1.5, j = 2.0, and c = 1.0.

Fig. 15. (a) Time series v(T) for b = 1, under the variation of parameter l, with ds = 0.06 and xs = 0.5; (b) time series v(T) for b = 1.1, and for oscillation
amplitude ds = 0.2 and frequency xs = 0.5. At each instance, other parameters held constant are awarded values near the equilibrium point: s0 = 1.0, k = 1.5,
j = 2.0, and c = 1.0.

Fig. 16. Parameter domains (Td,b) admitting periodic motion (PM), quasiperiodic motion (QP) and deterministic chaos (C), under the variation of l, with
ds = 1.0 and xs = 0.5. Other parameter values are: s0 = 1.0, k = 1.5, j = 2.0 and c = 1.0. Diagram is constructed for step size equal 0.1 for both Td and b. For
b = 0.9, velocity of the block becomes negative, meaning that block moves upwards which is neglected in our analysis.
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Fig. 17. (a) The broadband noise in the Fourier power spectrum indicates the chaotic behavior of the system for Td = 5, b = 0.3; (b) maximal Lyapunov
exponent converges well to kmax = 0.016, indicating the presence of deterministic chaos. Other parameter values are identical to those in Fig. 16.

Fig. 18. Calculation of maximal Lyapunov exponent for the system (5) under the variation of l, with ds = 1.0 and xs = 0.5. Other parameter values are: Td = 5,
b = 0.3, s0 = 1.0, k = 1.5, j = 2.0 and c = 1.0. The method of Rosenstein et al. [41], implies kmax � 0.012–0.016. The results are determined for 100 reference
points and neighboring distance e = 1–3. The obtained value of maximal Lyapunov exponent is of the same order of magnitude, as in Fig. 17(b).

S. Kostić et al. / Commun Nonlinear Sci Numer Simulat 19 (2014) 3346–3361 3357
On the other hand, for b > 1, also by perturbing only the shear stress l, velocity of the block takes negative values until
xs = 4.9, after which it becomes positive again and further increasing (Fig. 14). It has to be emphasized that in this case, sim-
ilar to the previous one with time delay, system (12) is very stiff in numerical sense.

However, one could note that the observed dynamics is generated for the limit amplitude values (ds = s0 = 1.0), which are
rarely observed in real conditions. In other words, it is highly unlikely to expect that the shear stress along the slip surface
would change from maximum to zero value, since both field and laboratory tests indicate that even in the steady state, shear
stress retains a certain minimum positive value. Hence, it is of special interest to investigate whether small parameter per-
turbations could lead to complex dynamics. Following this idea, additional analysis is conducted for all three dynamical re-
gimes (b < 1, b = 1, b > 1), by decreasing oscillation amplitudes, while other parameter values are being held constant. For
b < 1, variation of amplitude value does not render any new dynamics (it remains oscillatory). However, for b = 1, velocity
of the block changes periodically for ds 6 0.11 (Fig. 15a). As for b > 1, velocity of the block rises exponentially for amplitude
values ds 6 0.22 (Fig. 15b).
5. Co-effect of time delay and stress perturbation

In the final phase of the analysis, the periodic perturbation of parameter s0 is assumed in system (5) with included time
delay Td, for ds = 1.0 (limit amplitude value) and xs = 0.5. In this case, attractors of the system (5) are shown in Fig. 16 for
b < 1 and for Td in range [0.1–10].



Fig. 19. Parameter domains (Td,b) admitting periodic motion (PM), quasiperiodic motion (QP) and deterministic chaos (C), under the variation of l, with
ds = 0.5 and xs = 0.5. Other parameter values are: s0 = 1.0, k = 1.5, j = 2.0 and c = 1.0. Diagram is constructed for step size equal 0.1 for both Td and b. For
b = 0.9, velocity of the block becomes negative, meaning that block moves upwards which is neglected in our analysis.

Fig. 20. (a) Continuous broadband noise in Fourier power spectrum confirms chaotic motion of block for b = 1.1, Td = 0.1, ds = 0.15 and xs = 0.5; (b) maximal
Lyapunov exponent converges well to positive value, kmax = 0.002. Other parameter values are: s0 = 1.0, k = 1.5, j = 2.0 and c = 1.0.
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The onset of deterministic chaos is corroborated by broadband noise in power spectrum (Fig. 17a) and positive value of
the largest Lyapunov exponent (Figs. 17b and 18).

It should be noted that the complex dynamics (Fig. 16) is observed for the limit amplitude value of initial stress oscillation
(ds = 1.0). The results of additional analysis, for b < 1 and for smaller amplitude values indicated even more complex behav-
ior. Diagram in Fig. 19 is constructed for oscillation amplitude ds = 0.5.

For b = 1 and for b > 1, and for the limit perturbation amplitudes (ds = 1.0), block’s velocity is changing periodically in
negative domain, which is neglected in our analysis. However, if we assume smaller shear perturbation amplitudes, com-
plex dynamical behavior emerges. For b = 1, if we take that ds = 0.06 (as in Fig. 15), while the other parameter values are as
in Fig. 19, the introduction of time delay Td slows down the block, and for Td = 0.4, the block’s velocity becomes negative.
Similar behavior is observed for other amplitude values in the range [0,1]. As for b > 1, systematic exploration reveals the
following dynamics. For Td = 0.1, system (5) exhibits chaotic dynamics, if the perturbation amplitude is ds 6 0.18, while for
ds > 0.18, as already stated, block’s velocity is changing periodically in negative domain. Deterministic chaos is further cor-
roborated by broadband noise in Fourier power spectrum and by positive value of maximal Lyapunov exponent (Figs. 20
and 21).



Fig. 21. Calculation of maximal Lyapunov exponent for the system (5) under the variation of l, with ds = 0.15 and xs = 0.5. Other parameter values are:
b = 1.1, Td = 0.1, s0 = 1.0, k = 1.5, j = 2.0 and c = 1.0. The method of Rosenstein et al. [41], implies kmax � 0.005. The results are determined for 1000 reference
points and neighboring distance e = 0.005–0.015. The obtained value of maximal Lyapunov exponent is of the same order of magnitude, as in Fig. 20(b).
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6. Discussion and conclusion

In present paper, we examined the dynamics of the block along the inclined slope, under the variation of two parameters:
time delay Td and initial shear stress s0. We assume that this model phenomenologically describes sliding along the infinite
slope. Parameter Td mimics the memory effect of the sliding surface, and it is usually interpreted as a function of history of
sliding. Also, it could be related to the initial retarded period of the frictional healing during quasistationary contact, which is
a feature commonly observed in dynamics of earthquake faults [6,26]. In the same time, this parameter serves as a replace-
ment for the second state variable h, bringing closer in that way the effects of one-state and two-state Dieterich–Ruina fric-
tion law. On the other hand, external dynamic effect of long lasting shear waves or traffic vibrations is modeled by periodic
perturbations of initial shear stress l. It has to emphasized that sinusoidal oscillations represent idealistic case of perturba-
tions, which rarely occur in natural conditions. However, as already stated in the introductory part, we believe they are of
interest because of their simple shape, and because a real wave pattern results in a superposition of such periodic waves.
Also, some long-lasting earthquakes could generate seismic waves of such simple shape [28], or they could occur as a prod-
uct of some artificial source, e.g. mining vibrations. They also represent the basis for more complex periodic perturbations
represented by a sine wave scaled by a Gaussian pulse [42].

In the first phase of the research, each parameter is varied separately, in order to estimate their independent effect on
dynamics of motion. The variation of these parameters generate various types of dynamics depending on parameter b, which
is confirmed by previous research [16,17] as a control parameter that primarily defines the stability of the system. For b < 1,
the change of parameter Td renders rich dynamical behavior, with transition from equilibrium state through periodic and
quasiperiodic motion to deterministic chaos (Fig. 2). This type of dynamics significantly differs from the original case without
Td, when the block is in the creeping phase, with the equilibrium point as an improper node [16]. It has to be emphasized that
the dynamics of the model (5) with the introduced time delay was examined in two ways: using the standard local bifur-
cation analysis and numerical approach. Even though the results in both cases are qualitatively similar and indicate the exis-
tence of complex dynamics, numerical approach showed additional small areas of complex behavior that were not captured
by local bifurcation analysis. This type of behavior could be explained by the effect of global bifurcations, which were not
analyzed in present paper. However, by introducing the oscillatory character of the shear stress l without the influence
of time delay, while the other parameters are held constant for the initially creeping slope, the analysis shows that block
exhibits only oscillatory behavior. For b = 1, the introduction of time delay has an opposite effect – it suppresses the motion,
by slowing down the block and generating transition to equilibrium state (Fig. 9). This is contrast to the original model,
where only the constant positive velocity of the block is observed, with equilibrium point as a neutrally stable one. On
the other hand, perturbation of stress parameter l for b = 1 generates negative velocity of the block, which is the case that
is not observed in nature. This type of dynamics occurs for limit amplitude values (ds = s0 = 1.0). By decreasing the amplitude
values, it is observed that for ds 6 0.11, velocity of the block changes periodically, simultaneously decreasing with time
(Fig. 15a). For b > 1 and with introduced Td, system (5) becomes very stiff in numerical sense, so the analysis was done only
for b = 1.1, when the chaotic behavior is observed (Figs. 10 and 11). On the other hand, perturbation of l for b > 1 (and for
limit amplitude value) renders the physically acceptable behavior only for high frequencies (xs > 4.9), when the oscillatory
motion of the block with increasing amplitude occurs (Fig. 14). By decreasing the amplitude value, for ds 6 0.22 velocity of
the block rises exponentially (Fig. 14b).

In the second phase of the research, combined effect of both parameters is analyzed for the limit amplitude values
(ds = s0 = 1.0). For b < 1, complex dynamic behavior is also observed, with transition from periodic and quasiperiodic motion
to deterministic chaos (Fig. 16). As it is obvious, dynamics of the model is more complex in this case, meaning that the onset
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of chaos is observed for much lower values (Td = 2.3, b = 0.5) in comparison to the previous one, when only parameter Td is
varied (Td = 6.7, b = 0.1). Moreover, if we assume initial shear oscillations of smaller amplitudes (ds = s0 = 0.5) more complex
behavior occurs (Fig. 19). In real conditions, it means that external triggering effect of earthquake or some other source of
vibrations of any amplitude could easily generate instability and occurrence of sliding along the slope. For b = 1 and for
b > 1, the velocity of the block is negative, which does not correspond to real conditions on an inclined slope. However, if
we assume smaller perturbation amplitude values, complex dynamical behavior emerges. For b = 1 and for the amplitude
values in the range [0,1] the introduction of time delay Td slows down the block, and for Td = 0.4, block takes negative veloc-
ity. As for b > 1, the introduction of time delay Td (while in the same time initial stress is periodically perturbed), systematic
exploration reveals the following dynamics. For Td = 0.1, system (5) exhibits chaotic dynamics, if the perturbation amplitude
is ds 6 0.18 (Fig. 20). For Td > 0.1 and for ds < 0.18, system (5) becomes extremely stiff in numerical sense, meaning that very
small iteration steps are required in order to conduct numerical integration.

The performed analysis showed that the most complex dynamics of motion along the slope is observed for b < 1, which
corresponds well to the experimental results of Skempton [13]. Apparently, this velocity-strengthening behavior is observed
in ring shear laboratory tests for friction stress variations with slip rate changes, for Kalabagh Dam clay and siltstone with
low clay fraction. The results of these experiments indicated that the decrease of frictional stress with the ongoing slip (B)
was lower in comparison to the increase of shear stress along the slip surface (A) when the sudden increase in velocity occurs
(B < A).

In comparison to the original model (3), our analysis shows that the instability of motion along the slope could occur even
for b < 1 with introduced time delay, while Chau [16] observed the appearance of instable motion only for b > 1, which is, as
already stated, the case that is not detected in laboratory conditions [13]. In present analysis, complex dynamics in velocity-
weakening regime occurs only for small values of time delay (Td = 0.1) and relatively small perturbation amplitudes
(ds 6 0.18).

We have to emphasize that the idea of a chaotic landslide dynamics has already been suggested in [43], where it is shown
that chaos appears in the evolutionary process of a slope. Moreover, Qin et al. [44] reported that slope body evolves from a
chaotic through periodic and deterministic motion.

Interesting result is certainly the dual effect of time delay Td on the motion of the block (meaning that it renders the com-
plex dynamics, and, in the same time, stabilizes the motion of the block) depending on the value of the control parameter b.
As it was shown, for b < 1, introduction and variation of Td generates complex dynamics, with the complete Ruelle–Takens–
Newhouse route to chaos. On the other side, for b = 1, time delay has opposite effect, rendering the transition to equilibrium
state.
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