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Abstract In present paper, an effect of delayed fric-
tional healing on complex dynamics of simple model
of earthquake nucleation is analyzed, following the
commonly accepted assumption that frictional healing
represents the main mechanism for fault restrength-
ening. The studied model represents a generaliza-
tion of Burridge–Knopoff single-block model with
Dieterich–Ruina’s rate and state dependent friction
law. The time-dependent character of the frictional
healing process is modeled by introducing time de-
lay τ in the friction term. Standard local bifurca-
tion analysis of the obtained delay-differential equa-
tions demonstrates that the observed model exhibits
Ruelle–Takens–Newhouse route to chaos. Domain in
parameters space where the solutions are stable for all
values of time delay is determined by applying the
Rouché theorem. The obtained results are corrobo-
rated by Fourier power spectra and largest Lyapunov
exponents techniques. In contrast to previous research,
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the performed analysis reveals that even the small
perturbations of the control parameters could lead to
deterministic chaos, and, thus, to instabilities and
earthquakes. The obtained results further imply the
necessity of taking into account this delayed character
of frictional healing, which renders complex behavior
of the model, already captured in the case of more than
one block.
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1 Introduction

There is a general consensus about the nucleation
mechanism of tectonic earthquakes—these are pro-
duced when rock breaks suddenly in response to vari-
ous geological forces [1]. The main role in this process
is ascribed to rock strength and the size of accumu-
lated strain energy. However, after a crack propaga-
tion, once a fault has been formed, its further motion is
controlled by the friction between the interacting parts
of Earth’s crust [2]. It is this friction which determines
whether the fault motion would be seismic or aseismic.
In other words, depending on the frictional stability,
the fault motion could eventually lead to earthquake.

The usual way of studying rock friction is by in-
troducing friction constitutive laws, which emphasize
the frictional instability as a possible mechanism for
repetitive stick-slip failure and the seismic cycle [3].
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Fig. 1 The Burridge–Knopoff block and spring model, repre-
sented by a slider coupled through a spring to a loader plate

Since the Dieterich’s original constitutive law [4],
many laboratory-base friction laws were proposed, in-
cluding Dieterich–Ruina or slowness law [4, 5]; Ru-
ina’s or slip law [5] and Perrin, Rice, and Zheng
law [6]. The major problem of all these laws was the
relation between static and dynamic friction. An ele-
gant solution to this problem was introduced by Di-
eterich [4], who examined state variable as an average
time of asperity contacts. Besides this interpretation,
state variable was also considered as an average recent
slip rate [7], surface separation rate [8] or surface tem-
perature [5]. In our work, we simply analyze it as a
function of the history of sliding, implying its time-
dependent character, as already proposed in [9].

In present paper, Dieterich–Ruina law is used to
model the frictional behavior of one-block Burridge–
Knopoff model [10], which is today recognized as a
common phenomenological model for earthquake nu-
cleation mechanism. It consists of one block of a cer-
tain rock type, connected through harmonic spring to
a moving plate and driven along the rough surface,
which causes the whole system to move in a stick-
slip fashion (Fig. 1). In the context of seismology,
this physical system is analogous to a single fault
patch of fixed dimensions that ruptures in an elastic
medium [11, 12].

The inherent property of the Dieterich–Ruina rate-
and state-dependent friction law is the logarithmic in-
crease of frictional strength during the quasistationary
contact between the block and the rough surface. This
property corresponds well with seismic data, which
also indicate that earthquake stress drop increases log-
arithmically with time [13, 14]. It is assumed that this
fault strengthening between earthquakes is crucial for

our understanding of the seismic cycle, and the physics
of earthquake rupture [15].

This process of frictional restrengthening is mainly
determined by the system’s local memory of its effec-
tive contact time before slip arrest [16]. In other words,
healing process during the quasistationary stage of the
block motion primarily depends on the duration and,
consequently, on the character of the contact between
the moving block and the rough surface in the previous
rapid stage of motion. In this paper, we introduce time
delay τ , as an extension of the friction term, in order
to describe this complex relation of two succeeding
phases of the block motion, which are crucial for the
stick-slip cycles and, hence, nucleation of frictional in-
stabilities to occur. To our knowledge, the complex
memory effect has not been considered so far by in-
troducing the time delay in the equations governing
the motion of spring-block model.

It is necessary to emphasize that this time delay
effect is directly observed both in laboratory exper-
iments and along the real fault. Laboratory experi-
ments describing granite blocks sliding over a ground
quartz (gouge) layer [15] were performed for the co-
seismic slip rates of 0.01−1 m/s and loading rates ap-
proximately equal to plate tectonic rates (30 mm/yr ≈
3 × 10−9 m/s). According to the results of these lab-
oratory tests, upon the cessation of motion, static fric-
tion shows an initial period of retarded healing for a
few hundred days, after which an increase in healing
is observed [15]. Moreover, it is determined that the
length of this initial period of delayed healing varies
with stiffness, which justifies our variation of the in-
troduced time delay parameter τ . These laboratory re-
sults are further corroborated by seismic data, which
indicate that there is a reduced healing rate during the
period immediately following earthquakes of similar
size (<10–100 days after the last earthquake), with
small variations in stress drop.

We have to emphasize that this retarded initial pe-
riod of fault healing irresistibly resembles the refrac-
tory stage of the relaxation oscillators. The usual way
of modeling the behavior of such media is by using the
delay differential equations, which is widely accepted
method, particularly in the area of mathematical biol-
ogy [17, 18].

Our goal is to determine the effect of the introduced
time delay τ on the dynamical behavior of the spring-
block model. Previously conducted research on the
dynamics of spring-block model indicated the com-
plex behavior of block motion. De Sousa Vieira [19]
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showed that the two-block Burridge–Knopoff model
in a symmetric configuration is chaotic. Erickson et
al. [20] reported deterministic chaos in a one-block
model, for rather large values of control parameters.
Subsequently, the same authors [21] observed a tran-
sition from periodic behavior to chaos when the num-
ber of blocks is increased from 20 to 21. On the other
hand, Pomeau and Le Berre [9] introduced additive
noise to force chaos.

The scheme of this paper is as follows. In Sect. 2,
we describe the system of equations in detail, includ-
ing the original system. The main results are given in
Sect. 3, where we introduce time delay in the system
and analyze the extended model by applying the stan-
dard local bifurcation analysis. Here, we also apply
Rouché theorem in order to determine the domain in
the space of parameters where the stationary solutions
are stable for any τ . The obtained complex dynamical
behavior is confirmed through the calculation of the
Fourier power spectra and the largest Lyapunov expo-
nent. Concluding remarks are given in Sect. 5, together
with the possible implications to earthquake phenom-
ena and suggestions for further research.

2 Earthquake model

Our numerical simulations of a spring-block model
are based on the system of equations proposed by
Madariaga [20]. These equations of motion coupled
with Dieterich–Ruina rate and state dependent friction
law are originally given by:

θ̇ = −
(

ν

L

)(
θ + B log

(
ν

ν0

))

u̇ = ν − ν0

ν̇ =
(

− 1

M

)(
ku + θ + A log

(
ν

ν0

))
(1)

where parameter M is the mass of the block and
the spring stiffness k corresponds to the linear elastic
properties of the rock mass surrounding the fault [2].
According to Dieterich and Kilgore [22], the param-
eter L corresponds to the critical sliding distance
necessary to replace the population of asperity con-
tacts. The parameters A and B are empirical con-
stants, which depend on material properties. Accord-
ing to [23], parameter A measures the direct velocity

dependence (“direct effect”) while (A − B) is a mea-
sure of the steady-state velocity dependence. For con-
venience, system (2) is nondimensionalized by defin-
ing the new variables θ ′, v′, u′, and t ′ in the following
way: θ = Aθ ′, v = v0v

′, u = Lu′, t = (L/v0)t
′, after

which we return to the use of θ , v, u and t . This nondi-
mensionalization puts the system into the following
form:

θ̇ = −ν
(
θ + (1 + ε) log(ν)

)
u̇ = ν − 1

ν̇ = −γ 2
[
u + (1/ξ)

(
θ + log(ν)

)] (2)

where ε = (B − A)/A measures the sensitivity of
the velocity relaxation, ξ = (kL)/A is the nondimen-
sional spring constant, and γ = (k/M)1/2(L/v0) is the
nondimensional frequency [20].

3 Applied numerical methods

Owing to the apparent complexity of the considered
systems of equations, the analytical solutions are not
available even in the simplest case. Nonetheless, in
terms of numerical treatment, one should note that the
common logarithmic term renders the given systems
extremely stiff in the plausible parameter domains,
meaning that an exceedingly small iteration step is re-
quired to carry out the numerical integration. In partic-
ular, the step size is limited more severely by the sta-
bility than the accuracy requirement for the technique
applied. This issue has earlier been resolved by intro-
ducing simplified versions of such systems, obtained
by regularizing the nonlinear friction term for the near-
zero velocities [24, 25]. However, it is quite likely that
making these types of approximations may have been
the determining factor for the scarce observations of
chaos in the ensuing models if restricted to the realistic
parameter values. For this reason, the objective has to
be to select the numerical integration scheme allowing
for the full nonlinear term to be retained. Therefore,
instead of implementing some of the explicit meth-
ods that are bound to become unstable at some point,
we adopt the backward differentiation formula (BDF)
method, which belongs to the class of implicit inte-
gration schemes, already found useful in handling the
stiff systems of differential equations [20]. In a nut-
shell, BDF is a linear multistep method that for the
given function y(t) and the moment τn approximates
the function’s derivative in terms of the y(t) values at
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τn and the earlier times, so to increase the accuracy of
the approximation. Being implicit, BDF requires one
to successively find solutions of nonlinear equations
at each time step, this typically being accomplished
by the modified Newton’s method. For the considered
system, we have implemented the second order algo-
rithm, which links the function values at the given mo-
ment with the ones at two prior iteration steps.

As far as the analysis on local bifurcations is con-
cerned, the considered ordinary-differentiation equa-
tion (ODE) and delay differentiation equation (DDE)
systems are treated analytically, having the obtained
results further corroborated by the appropriate numer-
ical method. The latter involves the application of the
software package DDE-BIFTOOL, which comprises
a collection of adaptable Matlab routines suitable for
the numerical bifurcation analysis of systems of de-
lay differential equations [26, 27]. DDE-BIFTOOL
has been successfully implemented in a number of
different contexts, including biology, chemistry and
physics [28, 29]. In order to determine the maximal
Lyapunov exponent from the obtained time series, we
have implemented the software for nonlinear time se-
ries analysis developed by Matjaž Perc. This piece of
software relies on the well-known Wolf method for ex-
amining the given exponent’s convergence in depen-
dence on time. For further details and documentation
one may refer to [30].

4 Extended model with time delay

The next step in the analysis of the frictional mem-
ory effect in generating the complex behavior of the
spring-block model includes the introduction of time
delay term τ in the nonlinear logarithmic friction term
of the system (2), in which way we obtain the follow-
ing system of delay differential equations:

θ̇ = −ν
[
(θ + (1 + ε) log

(
ν(t − τ)

)]
u̇ = ν − 1

ν̇ = −γ 2
[
u + (1/ξ)

(
θ + log(ν)

)] (3)

The system (3) has only one stationary solution,
namely (θ, u, v) = (0,0,1), which corresponds to
steady sliding. We shall proceed in the standard way
to determine and analyze the characteristic equation
of (3) around a stationary solution (0,0,1).

Linearization of the system (3) and substitution θ =
Aeλt , u = Beλt , v = Ceλt and v(t − τ) = Ceλ(t−τ) re-
sults in a system of algebraic equations for the con-
stants A, B , and C. This system has a nontrivial solu-
tion if the following is satisfied:

−λ3 − λ2
(

γ 2

ξ
+ 1

)
− λγ 2

(
1

ξ
+ 1

)
− γ 2

+ λ(1 + ε)
γ 2

ξ
e−λτ = 0 (4)

Equation (4) is the characteristic equation of the sys-
tem (3). Infinite dimensionality of the system (3) is re-
flected in the transcendental character of (4). However,
the spectrum of the linearization of Eqs. (3) is dis-
crete and can be divided into infinite dimensional hy-
perbolic and finite dimensional non-hyperbolic parts
[31, 32]. As in the finite dimensional case, the stability
of the stationary solution is typically, i.e. in the hyper-
bolic case, determined by the signs of the real parts
of the roots of (4). Exceptional roots, equal to zero
or with zero real part, correspond to the finite dimen-
sional center manifold where the qualitative features
of the dynamics, such as local stability, depend on the
nonlinear terms.

4.1 Stability for all values of time delay

Firstly, we outline answer to the question of stability of
a stationary solution for all values of time delay τ and
fixed values of the parameters. That is, we shall deter-
mine the domain in the space of parameters where the
stationary solution is stable for any τ . To answer this
question, one can invoke the theorem of Rouché [33],
which states that: If two functions, ψ(λ) and ϕ(λ),
are analytic inside and on a closed contour C, and
|ψ(λ)| < |ϕ(λ)| on C, than ϕ(λ) and ψ(λ) + ϕ(λ)

have the same number of zeros inside C. In our case,
the function ϕ(λ) is related to the characteristic poly-
nomial of the ODEs (3) and the function ψ(λ) + ϕ(λ)

is the characteristic function of the DDEs (5). The con-
tour C consists of a part of the imaginary axes, con-
taining the origin, and a stable contour CR joining the
end points of the part on the imaginary axes, and such
that Rz > 0 for z ∈ CR .

Thus, we have to estimate the parameters such that
on the contour C,∣∣ϕ(λ)

∣∣ >
∣∣ψ(λ)

∣∣ (5)
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where

φ(λ) = λ3 + λ2
(

γ 2

ξ
+ 1

)
+ λγ 2

(
1

ξ
+ 1

)
+ γ 2

ψ(λ) = −λ(1 + ε)
γ 2

ξ
e−λτ

(6)

Nontrivial conditions on the parameters are obtained
only on the pure imaginary part of the contour. The
conditions of the Rouché theorem are fulfilled if

ξ > 2(1 + ε) (7)

Calculation in detail is given in the Appendix.
Thus, if (7) is satisfied than the stationary solution

is stable for any value of the time delay. Outside the
domain given by (7) stability of the stationary solution
for nonzero time delay has to be investigated further.
We shall seek for the relations τ = f (γ, ξ, ε) between
the parameters and time delay such that some solutions
of the characteristic equation (4) are pure imaginary
z = ±iω with real and positive ω. Under some addi-
tional conditions [34], their relations may correspond
to the Hopf bifurcation.

4.2 Local stability and bifurcations of the stationary
solution

Equation (4) can be written in the following form:

−λ3 − λ2(
γ 2

ξ
+ 1) − λγ 2( 1

ξ
+ 1) − γ 2

λ(1 + ε)
γ 2

ξ

= −e−λτ (8)

in which we substitute λ = iω to obtain:

iω3 + ω2(
γ 2

ξ
+ 1) − iωγ 2(

1+ξ
ξ

) − γ 2

iω(1 + ε)
γ 2

ξ

= −(cosωτ − i sinωτ) (9)

The resulting two equations for the real and imaginary
part of (9) after squaring and adding give an equation
for each of the parameters, ε and ξ in terms of the
other parameters, ω and γ , and after division, an equa-
tion for τ in terms of the parameters ω, γ and ξ . In
this way, one obtains parametric representations of the
relations between τ and the parameters, which corre-
spond to the bifurcation values λ = iω. The general
form of such relations is illustrated by the following
formula for ε as a function of ω:

ε = −1 + √
C (10)

where

C = [ω3 − ωγ 2(
1+ξ
ξ

)]2 + [ω2(
γ 2

ξ
+ 1) − γ 2]2

(ω
γ 2

ξ
)2

(11)

On the other hand, for ξ as a function of ω and τ :

ξ = [ωγ 2 sin(ωτ) + ω2γ 2 cos(ωτ)]
(ω3 − ωγ 2) sin(ωτ) + (γ 2 − ω2) cos(ωτ)

(12)

and for τ as a function of ω:

τ = τc = 1

ω

[
arctg

(−ω2(
γ 2

ξ
+ 1) + γ 2

−ω3 + ωγ 2(
1+ξ
ξ

)

)
+ kπ

]
(13)

where k is any nonnegative integer such that τk ≥ 0.
Though the very form of the solution adopted for

the characteristic equation is indicative of Hopf bi-
furcations, the rigorous proof of this claim is rather
lengthy to convey [31, 35, 36]. Here, it suffices to say
that the above parametric equations for ε, ξ , and τ

coincide with the Hopf bifurcation curves illustrated
in Figs. 2 and 3. In Fig. 2 are shown the bifurcation
curves τ(ε) at the fixed parameter values ξ = 0.5 and
γ = 0.8. The diagram displayed in Fig. 3 represents
the bifurcation curves ξ(ε), with the remaining pa-
rameters set to τ = 12 and γ = 0.8. The system (4)

Fig. 2 Hopf bifurcation curves τ(ε), for the fixed values of pa-
rameters ξ = 0.5, and γ = 0.8. The signs +/− denote the desta-
bilizing (direct) or the stabilizing (inverse) Hopf bifurcations,
respectively, as the delay is enhanced. The appropriate time se-
ries and the phase diagrams corresponding to points a, b, c, and
d are shown in Fig. 4
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Fig. 3 Hopf bifurcation curves ξ(ε) for the fixed values of pa-
rameters τ = 12 and γ = 0.8

admits both the supercritical and the subcritical Hopf
bifurcations, which is a matter less relevant for the
present analysis. An issue of much greater importance
is whether these bifurcations are of direct or the in-
verse type [37], the former (latter) resulting in creation
(annihilation) of an unstable plane in the system’s state
space when the corresponding curve is crossed in the
given direction. Put differently, the direct (inverse) bi-
furcations act in the destabilizing (stabilizing) fashion
with respect to the underlying dynamics.

Since the main focus here lies with the effects of
the time delay, we have examined more closely the
sequence of bifurcations from Fig. 2, which the sys-
tem undergoes in the direction of the increasing τ . To
do so, one is required to determine the rate of change
d Re(λ)

dτ
|τ=τc of the real part of the root associated with

the characteristic equation (4) as τ is changed through
the critical values. In particular, if d Re(λ)/dτ > 0,
the number of roots with the positive real part is in-
creasing (destabilizing bifurcation), whereas the num-
ber decreases if the given derivative is negative (sta-
bilizing bifurcation). The bifurcation curves in Fig. 2
are awarded the +/− sign to reflect this point. Cal-
culation of the above derivatives proceeds in the fol-
lowing way. Taking the derivative of the characteris-
tic equation Δ(λ) = 0, one first arrives at the relation
∂Δ
∂λ

dλ
dτ

+ ∂Δ
∂τ

= 0, which is for ease of calculation most
conveniently applied in the form

dτ

dλ
= −

∂Δ
∂λ
∂Δ
∂τ

(14)

given that

sgn

(
d Reλ

dτ

)
τ=τc

= sgn

(
Re

(
dλ

dτ

)−1)
τ=τc

(15)

holds. Then, substituting for λ = iω and extracting the
real part, the final expression for the desired derivative
reads

Re

(
dτ

dλ

)
= (−3ω2 + γ 2( 1

ξ
+ 1))(−ω3 + ωγ 2( 1

ξ
+ 1)) − 2ω(

γ 2

ξ
+ 1)(−ω2(

γ 2

ξ
+ 1) + γ 2)

ω3(1 + ε)2(
γ 2

ξ
)2

− 1

ω2
(16)

Beginning the analysis from the first curve encoun-
tered with the increasing delay, we report on an in-
teresting finding that the associated derivatives are
negative along the curve, meaning that the system un-
dergoes an inverse bifurcation. In other words, the dy-
namic state of the system changes from oscillatory be-
havior to the stable stationary state. For comparison,
see Fig. 4 where the temporal evolution and the phase
portraits of the variable v are displayed for the fixed
values of ε, ξ, γ and τ . The way in which the equilib-
rium regains stability with delay presents an instance
of the time-delay induced amplitude death [38], the
phenomenon which has been the subject of an intense
research [39, 40]. This highlights the potentially in-

triguing role played by the small time delays, which
may act to reduce the seismic activity, contributing to
quenching of the possible major events. Nonetheless,
reading from Fig. 2, one also learns that further in-
creasing τ has a destabilizing effect on the fault dy-
namics. Not only can the delay cause the stationary
state to become unstable triggering the periodic oscil-
lations, but one may in fact find the bifurcation se-
quence that eventually leads to chaotic behavior. In
particular, the system exhibits quasiperiodic (Ruelle–
Takens–Newhouse) route to chaos [37, 41], such that
after two supercritical Hopf bifurcations, the regu-
lar motion becomes highly unstable, eventually giving
way to the dynamics, which falls onto the strange at-
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Fig. 4 Temporal evolution
of variable v and the
appropriate phase portraits
for (a) τ = 0, ε = 0.2,
ξ = 0.5 and γ = 0.8 (fixed
point); (b) τ = 10, ε = 0.3,
ξ = 0.5 and γ = 0.8
(oscillations); (c) τ = 13,
ε = 0.5, ξ = 0.5 and
γ = 0.8 (torus); (d) τ = 20,
ε = 0.5, ξ = 0.5, and
γ = 0.8 (chaos)

tractor. Apparently, only by increasing the time-lag τ ,

e.g., by setting τ = 0, τ = 10, τ = 13 to τ = 20, and

by slightly changing the other parameter values, the

block dynamics changes from the fixed point, over the

limit cycle oscillation (first Hopf bifurcation) and torus

(second Hopf bifurcation) to chaos.
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Fig. 5 (a) Single peak in power spectrum indicates the oscilla-
tory behavior of the model. (b) Two peaks in power spectrum
imply the appearance of torus (second Hopf bifurcation). The
parameter values are the same as in Fig. 4(b) and 4(c), respec-
tively

As apparent from previous analysis, in this case
also, as in the case of periodically perturbed param-
eters, the onset of deterministic chaos is observed for
significantly smaller values of ε (0.5) than those ob-
tained in [20].

The scenario of deterministic chaos was further
confirmed by calculation the Fourier power spectrum
for oscillations, torus, and chaotic orbits, shown in
Figs. 5 and 6, for the corresponding time series pre-
sented in Figs. 4(b), 4(c), and 4(d), respectively. The
single peak in power spectrum in Fig. 5(a) indicates
the oscillatory behavior of the system under study,
while the second peak in Fig. 5(b) indicates a pres-
ence of torus. The broadband noise in Fig. 6 indicates
that the attractor is strange.

Fig. 6 The broadband noise in the Fourier power spectrum in-
dicates the chaotic behavior of the system. The parameter values
are identical to those in Fig. 4(d)

5 Concluding remarks

In this paper, we performed the analysis of vari-
able delayed frictional healing on the dynamics of
Burridge–Knopoff one-block model. The analysis was
conducted by introducing time delay parameter τ in
friction term. Standard bifurcation analysis of delayed
differential equations is used to indicate the presence
of the bifurcations from fixed point to periodic limit
cycle and from periodic limit cycle into the quasi-
periodic oscillations and, eventually, to deterministic
chaos. These topological changes of dynamic states
are obtained only by increasing the values of intro-
duced time delay. However, the bifurcation analysis
showed that for certain values of control parameters,
the associated derivatives are negative along the curve,
meaning that the system undergoes an inverse bifurca-
tion, causing the dynamic state of the system to change
from oscillatory behavior to the stable stationary state
(time delay induced amplitude death). This feature is
especially interesting, since it renders the possibility
to suppress the occurrence of stick-slip frictional in-
stability, and thus, the onset of seismic event. In the
same time, we showed, by applying the Rouché theo-
rem that for certain relations among the control param-
eters, the stationary solutions are stable for all values
of time delay.

The main challenge in our analysis was the numer-
ical stiffness of the examined system of differential
equations, due to the nonlinear logarithmic term. This
is why we used the software package DDE-BIFTOOL
to corroborate our results obtained analytically.
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We are aware of the fact that one-block model does
not exactly describe all the main features of the earth-
quake nucleation mechanism, and, what is more, may
exhibit some “exotic” dynamic features, which are not
present along the real observed fault. However, the
main outcomes of our analysis confirm the validity of
the suggested modification of the existing models.

The primary outcome of this approach, in contrast
to recent research, is that the onset of deterministic
chaos is observed for much smaller values of the con-
trol parameter ε (0.5), which as it was already stated,
models the ratio of long to short term stiffness in the
model. This is in contrast to the research conducted by
Erickson et al. [20], who observed the occurrence of
deterministic chaos in Burridge–Knopoff model with
one block for ε = 11. However, the results of our
analysis correspond well with the subsequent research,
also conducted by Erickson et al. [21], where the tran-
sition to chaos is observed as the number of block in-
creases from 20 to 21, for the same value of parameter
ε (0.5).

The second main outcome of our research is that the
onset of chaos in the Burridge–Knopoff model with
Dieterich–Ruina friction law is not size-dependent,
which is in contrast to [21, 42]. Schmittbuhl et al. [42]
also studied a spring-block model subject to a velocity
weakening friction law and found that chaos was de-
pendent on system size. Similarly, Erickson et al. [21]
claimed that the critical value of the parameter ε nec-
essary to induce chaos decreases as a function of the
number of blocks. We believe that the neglecting of
delayed nature of frictional healing and its role in dy-
namics of the spring-block model, in these previous
research, prohibited the emergence of chaotic dynam-
ics for smaller number of blocks, and, simultaneously,
smaller values of parameter ε.

Concerning this, it could be said that we managed
to fulfill the primary criterion of modeling—we re-
duced the complexity as much as possible, but still
retained the main dynamical features of the model.
Moreover, we showed that by introducing time de-
lay in the friction term, complex dynamical behavior
is achieved even in the case of one block Burridge–
Knopoff model.

Following results of this research, it could be inter-
esting to further examine the influence of delayed fric-
tional healing in the model with two or three blocks.
In this case, we could estimate the coupled effect of
simultaneous perturbations of both parameter τ and

spring stiffness k (connecting blocks), which would
certainly generate more complex behavior.
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Appendix

Starting from the system of equations:

φ(λ) = λ3 + λ2
(

γ 2

ξ
+ 1

)
+ λγ 2

(
1

ξ
+ 1

)
+ γ 2

ψ(λ) = −λ(1 + ε)
γ 2

ξ
e−λτ

one could obtain:

φ(λ) = (λ + 1)

(
λ2 + λ

(
γ 2

ξ
+ 1

))
− λ2

− λ

(
γ 2

ξ
+ 1

)
+ λγ 2

(
1

ξ
+ 1

)
+ γ 2

= (λ + 1)

(
λ2 + λ

(
γ 2

ξ
+ 1

))

− (λ + 1)

(
λ +

(
γ 2

ξ
+ 1

))
+ λ

+
(

γ 2

ξ
+ 1

)
+ (λ + 1)

(
γ 2

(
1

ξ
+ 1

))

− γ 2
(

1

ξ
+ 1

)
+ γ 2

= (λ + 1)

(
λ2 + λ

(
γ 2

ξ
+ 1

)
− λ −

(
γ 2

ξ
+ 1

)

+ 1 + γ 2
(

1

ξ
+ 1

))
+ γ 2

ξ
− γ 2

ξ
− γ 2 + γ 2

= (λ + 1)

(
λ2 + λ

(
γ 2

ξ
+ 1

)
− λ

)

−
(

γ 2

ξ
+ 1 − 1 − γ 2

ξ
− γ 2

)

= (λ + 1)

(
λ2 + λ

(
γ 2

ξ
+ 1

)
− λ + γ 2

)

= (λ + 1)

(
λ2 + λ

γ 2

ξ
+ γ 2

)

= (λ + 1)

(
λ − −γ 2 + γ

√
(γ − 2ξ)(γ + 2ξ)

2ξ

)

×
(

λ − −γ 2 − γ
√

(γ − 2ξ)(γ + 2ξ)

2ξ

)
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≥ |λ + 1|
∣∣∣∣−γ 2 − γ

√
(γ − 2ξ)(γ + 2ξ)

2ξ

∣∣∣∣
×

∣∣∣∣−γ 2 + γ
√

(γ − 2ξ)(γ + 2ξ)

2ξ

∣∣∣∣
= |λ + 1|γ 2

Thus, we have:∣∣φ(λ)
∣∣ ≥ |λ + 1|γ 2

While for the ψ(λ), we obtain:
∣∣ψ(λ)

∣∣
=

∣∣∣∣−(λ + 1)(1 + ε)
γ 2

ξ
e − λτ + (1 + ε)

γ 2

ξ
e−λτ

∣∣∣∣
≤

∣∣∣∣(λ + 1)(1 + ε)
γ 2

ξ
e−λτ

∣∣∣∣ +
∣∣∣∣(1 + ε)

γ 2

ξ
e−λτ

∣∣∣∣
= (λ + 1)(1 + ε)

γ 2

ξ
+ (1 + ε)

γ 2

ξ

i.e.
∣∣φ(λ)

∣∣ ≥ |λ + 1|γ 2 > |λ + 1|(1 + ε)
γ 2

ξ

+ (1 + ε)
γ 2

ξ

assuming that |ϕ(λ)| > |ψ(λ)| on the contour C.
Thus, according to the previous:

∣∣φ(λ)
∣∣

≥ |λ + 1|γ 2 > |λ + 1|(1 + ε)
γ 2

ξ
+ (1 + ε)

γ 2

ξ

≥ ∣∣ψ(λ)
∣∣ ⇒ |λ + 1|

(
γ 2 − (1 + ε)

γ 2

ξ

)

> (1 + ε)
γ 2

ξ
⇒ |λ + 1|

(
γ 2 − (1 + ε)

γ 2

ξ

)

≥ 1

(
γ 2 − (1 + ε)

γ 2

ξ

)
> (1 + ε)

γ 2

ξ

⇒ γ 2 > 2(1 + ε)
γ 2

ξ
⇒ ξ > 2(1 + ε)
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