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For one of the most common network motifs, an inhibitory neuron pair, we perform an
extensive study of burst synchronization and the related phenomena applying the model
of Rulkov maps coupled via delayed synapses. Instigated by the phase-plane analysis, that
has the neuron switching between the noninteracting and the interacting map, it is dem-
onstrated how the system evolution may be interpreted by means of the dynamical config-
urations of the motif, each represented by an extracted subgraph. Under the variation of
the synaptic parameters, the probability of finding synchronized neurons in a given config-
uration is seen to reflect the way in which the anti-phase synchronization is eventually
superseded by the synchronization in phase. Such an approach also provides a novel
insight into regularization, characterizing the neuron bursting in either of these regimes.
Looking into correlation of the two neurons’ bursting cycles we acquire a deeper under-
standing of the more sophisticated mechanisms by which the regularity in the time series
is maintained. Further, it is examined whether introducing heterogeneity in the neuron or
the synaptic parameters may prove advantageous over the homogeneous case with respect
to burst synchronization.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Maintaining focus on local connectivity pathways, it has
come to light that the complex networks are assembled
from recurring blocks, network motifs [1–3], identified as
being significatively over-represented in a given network
when compared to an ensemble of equivalent random
graphs. At present, there is a plethora of evidence in sup-
port of the argument that many of the large scale neural
networks exhibit the properties of different types of com-
plex networks, like small-world, scale free or hierarchical
ones [4,5], and can indeed be classified into superfamilies
by the distribution of triads and the other, higher order
constituent motifs [1,2]. Mediated by such a structural
skeleton [6–8], the neural networks demonstrate highly
adaptive responses to variable stimuli and the flexibility
. All rights reserved.
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nović), vladimir.milj-
in information processing. Due to a demand for a substan-
tial degree of functional specialization, only a fraction of
the available synaptic connections are recruited at a time,
imposing a kind of dynamical, ‘‘effective’’ circuits on top
of the physiological ones [9]. One is therefore led to distin-
guish between the structural and the functional motifs [6],
where the latter refer to the possible combinations of links
contained in the former, making up a set of subgraphs
within the original motif’s graph. Though a clear-cut rela-
tionship as to the likelihood of the appearance is yet to
be established, their number and diversity seem to be ru-
led by an optimization principle [6,9], promoting a rich
and diverse repertoire of functional motifs over a compara-
bly smaller and more modest selection of the structural
elements.

In terms of performing the operational tasks, much of
the activity relies on synchronized outputs of the partici-
pant neurons [10], that often generate chaotic bursting pat-
terns, as consistent with the findings in the CPGs [11,12]
and several specific brain areas [13,14]. Synchronization
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Fig. 1. Blowup of the bistability region of the fast subsystem. Bursting is enabled if the slow variable nullcline xn = r intersects the branch of unstable fixed
points Nu. c increases (decreases) whenever the phase point lies below (above) the slow nullcline. Phase point climbing along the stable branch Ns coincides
with the interburst intervals, whereas the bursts are approximately delimited by the points of the saddle-node bifurcation c = csn and the external crisis
c = ccr. The irregularity in the series of an autonomous neuron comes from the termination of bursts being delayed beyond ccr. The inset displays a typical
waveform, obtained for a = 4.15 and r =�0.9.
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may then assume different forms [15–17], including indi-
vidual spike synchronization, intermittent synchronization,
complete (exact) synchronization and burst synchroniza-
tion. Reflecting the notion of chaotic phase synchronization
[18], under burst synchronization one would typically con-
sider matching the respective times of onset and termina-
tion of bursts, refining its understanding further as
required by the system at hand.

In an effort to unite the concepts laid out, we take as an
exemplar one of the commonest structural motifs, an
inhibitory neuron pair [7,8,19], aiming to highlight the role
of the functional motifs, here alternatively termed dynam-
ical configurations, viz. their contribution in the emergence
and the succession of the synchronous rhythms with the
variation of the synaptic parameters. This makes it impor-
tant to revisit in a systematic way the well known claims
on how the instantaneous synapses lead to antiphase syn-
chronization [11,20], whereas the addition of the sufficient
delay induces the synchronization in phase [19,21]. An-
other point to consider is the regularization of the burst cy-
cles [22], exhibited by neurons in either of these regimes.

To provide such a perspective, it turns out extremely
useful to employ the model of chaotic Rulkov maps
[22,23], accompanied by a sufficiently detailed model of
the delayed chemical synapses. Instigated by the phase
plane analysis, presenting the neuron dynamics in terms
of switches between the noninteracting and the interacting
map [17], we monitor the probabilities of finding synchro-
nized neurons in the allowed dynamical configurations, in
effect determining how the particular functional motifs be-
come promoted or inhibited by the variation of the synap-
tic weight and the transmission delay. This approach
enabled us not only to understand the rationale behind
the different synchronized regimes, but also to examine
some of the more specific details, e.g. how come that there
is an optimal weight range for achieving synchronization
in phase, whose location gets shifted depending on the
synaptic threshold behavior. Along with the insight stem-
ming from quantifying the regularity of the burst cycle se-
quences, another gain lies in explaining why the neurons
are prone to periodic bursting in view of the mechanisms
driving their mutual adaptation. Closing the argument,
we introduce a method to review the effects that the stim-
uli or weight heterogeneity may hold on burst
synchronization.

2. Model and the applied methods

The study of the binary motif rests on the dynamics
provided by the two-dimensional map

xi;nþ1 ¼
a

1þ x2
i;n

þ yi;n � gc;ijðxi;n � mÞ 1
1þ expð�kðxj;n�s � hÞÞ ;

yi;nþ1 ¼ yi;n � lðxi;n � rÞ;
ð1Þ

where n denotes the iteration step, and the indices i, j 2
{1,2} (i – j) specify the post- and the presynaptic neuron,
respectively. Without the interaction term, Eq. (1) reduces
to the chaotic Rulkov model that, with the appropriate
choice of parameters, yields square-wave bursts [22]. Set-
ting l = 0.001, the neuron state is defined by the fast vari-
able xi,n and the slow variable yi,n, the former of which
embodies the membrane potential, and the action of the
latter is reminiscent of that of the gating variables. Consis-
tent with the phenomenological nature of the model, some
of the variables, such as a, make no reference to any phys-
iological processes. In terms of the phase space structure,
cf. [23,24], and the exhibited dynamical modes [17,25], it
is indicated how among the conductance-based models
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Fig. 2. (a) Subgraphs corresponding to the dynamical configurations of the inhibitory motif, designated by the h-quantities they contribute to. (b) Burst
synchronization phenomena, quantified by the terms h00 and h11, displayed together. On the left is the time series obtained for gc = 0.2 and s = 90 showing
the two neurons, coded blue (dark grey) and orange (light grey), synchronized in phase. The sequence between the arrows is extracted for the phase plane
analysis on the right, that demonstrates how in this regime h00 and h11 may be viewed as complementary: the joint bursting occurs on the isolated map,
whereas silence takes place on the interacting map. (c) The analysis analogous to the one in (b), carried out for the hnd term. The time series for gc = 0.12 and
s = 60 exhibit a form of burst synchronization where the two neurons lie on distinct maps. The sequence superimposed in the phase plane has the orange
(light grey) neuron from the left bursting by the isolated, and the blue (dark grey) one by the interacting map. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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the Hindmarsh–Rose neurons can be considered as the
closest counterparts to the Rulkov ones. A brief summary
of the ensuing analysis for the isolated neuron, treating
yi,n as a control parameter c within the fast subsystem, is
presented in Fig. 1, and one may also address [17,23] for
a comprehensive review. Here we only mention that the
phase point motion is guided by the fast nullclines, merged
in an S-curve, and the curves of minimal and maximal map
iterates, Nmin and Nmax, providing the burst envelopes. As a
key point, bursting dynamics relies on the existence of the
bistability region in the fast subsystem that arises if a > 4.
Varying a can be used to control the irregularity of bursts:
the closer a gets to 4, the less chaotic the bursting series
becomes. Throughout the paper we select a = 4.15 that
provides a reasonable balance between the bursts’ dura-
tion and the stochasticity associated with their termina-
tion delay [13,23]. Nonetheless, adjusting a to other
values may evoke different forms of neuronal dynamics,
including excitable behavior (a < 2), periodic pulses or
bursts (2 < a < 4), as well as chaotic pulses for a > 4.6
[26]. On the remaining intrinsic parameter r, except when
discussing the effects of stimulus inhomogeneity, the



Fig. 3. Quantity H in the (gc,s) plane, plotted for the gain parameters k = 25 in (a) and k = 5 in (b). The higher values, distinguished by the darker shading,
reflect how the increasing s gives rise to burst synchronization. Displayed darkest is the domain of maximal synchronization (DMS), characterized by the
genuine in-phase synchronization. Note that the change in synaptic threshold behavior is accompanied by the reverse orientation of the respective DMS.
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external dc bias current is taken to be uniform, assuming
the value r = �0.9.

Moving onto the interaction term, the reversal potential
[13] m = �1.8 is set so as to give the synapses the inhibitory
character. Hereafter, the synaptic weights are assigned an
equal value, gc,ij = gc, with the case of disparate weights dis-
cussed late in the paper. The time lag s is reflected by the
delayed arrival of the presynaptic potential influencing the
gate opening. Within the sigmoid, for the activation
threshold is chosen h = �1.4, a value easily reached by
the bursting neuron. The sharpness of the synaptic re-
sponse is determined by the gain parameter k [15,27,25].
The k� 1 case yields the fast threshold modulation model
(FTM) [28], approximating well the action of the majority
of chemical synapses in the brain [20,29], while for k � 1
one obtains the graded synaptic transmission model [30],
suitable for describing the CPGs. For most of the paper
we keep k = 25 fixed, though the value k = 5 will also be
considered.

In the following we address the possibility of blending
the phase plane approach into a framework seeking to
characterize how the level of burst synchronization de-
pends on the neuron and synaptic parameters. To this
end, it is convenient to transform the time series of the
interacting neurons’ membrane potentials into symbolic
sequences {Si,n}. We apply a conversion rule T that ascribes
Si,n = 1 if the neuron is bursting, and �1 otherwise:

Si;n ¼ Tðxi;nÞ ¼
1; xi;n in the bursting range;
�1; xi;n in the silence range:

�
ð2Þ

The two ranges are distinguished by a useful rule of thumb
stating that a neuron is bursting (silent) when its potential
is above (below) h. One of the advantages of the model lies
in the opportunity to immediately relate the results com-
ing from the phase plane analysis with the quantities ap-
plied to measure burst synchronization. The former
reveal that, by including the interaction, the original neu-
ron map gets shifted rightward and upward in the phase
plane, maintaining the shape and the ensuing stability fea-
tures of the curves of fixed points. In the previous article
[17] we demonstrated how the neuron dynamics may be
viewed in terms of switches between the isolated and
the interacting map, a description that holds exactly in
case of the fast threshold modulation (k� 1), where the
synaptic states are defined as open/close, conforming to a
Heaviside-like limit of the sigmoidal threshold function.
In a way, the motif’s effective structure is then dynamical
by nature, contingent on the temporary openness of the
synapses, with possibilities of neither, one or both of the
synapses being open, see Fig. 2(a). With regard to these
configurations of the motif, translated into maps guiding
the individual neuron dynamics, we introduce a set of
quantities, designated h00, h11 and hnd:

h00 ¼
1

Nmax

XNmax

n¼1

dS1;n ;S2;n Hðh� x1;n�sÞHðh� x2;n�sÞ
* +

;

h11 ¼
1

Nmax

XNmax

n¼1

dS1;n ;S2;n Hðx1;n�s � hÞHðx2;n�s � hÞ
* +

;

hnd ¼
1

Nmax

XNmax

n¼1

dS1;n ;S2;n Hðx1;n�s � hÞHðh� x2;n�sÞð
*

þHðh� x1;n�sÞHðx2;n�s � hÞÞ
+
; ð3Þ

where H refers to the Heaviside function, d denotes the
Kronecker symbol, the angled bracketsh�i signify the aver-
age taken over 100 trials with different initial conditions,
and Nmax = 50000 iteration steps is the length of the time
series considered. Between the three h-quantities, the first
two account for burst synchronization occurring when
both of the neurons follow either the noninteracting (h00)
or the interacting map (h11), whereas the ‘‘non-diagonal
element’’ hnd covers the cases of the two neurons being
synchronized while lying on the non-matching maps. Each
of these terms may be linked with the paradigmatic time
series and the accompanying phase plane diagrams, as
shown in Fig. 2(b) and (c). Neglecting the ‘‘fine structure’’
behind the burst synchronization, we also determined
the trial-averaged fraction of time the symbolic sequences
of the two neurons overlap
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H ¼ 1
Nmax

XNmax

n¼1

dS1;n ;S2;n

* +
; ð4Þ

which amounts to the sum of the h-quantities. By defini-
tion, the spectra of H and h belong to the interval [0,1],
so that their increase corresponds to improving burst syn-
chronization. However, if H were to assume the upper-
boundary value H = 1, this would not imply that the exact
synchronization has been reached, though values less than
1 are sufficient to rule it out.

3. Results

Making use of the quantity H we were able to monitor
the emergence and the succession of the regimes of burst
synchronization in the (gc,s) space of the synaptic param-
eters. Since each point in this plane is associated with a
specific type of waveforms, a first glance at the shading
in Fig. 3 suggests that for an arbitrary gc with increasing
s the antiphase synchronization gives way to the approxi-
mate synchronization in phase, this applying to both of the
synaptic threshold behaviors.
Fig. 4. (a), (b) and (c) Decomposition of H-synchronization into ‘‘elementary’’ ter
are displayed in the (gc,s) plane, keeping k = 25 fixed, with the darker shading rep
synchronization regime coinciding with the virtual absence of h00. The high s dom
to synchronization in phase by the h11 and h00 terms. (d) Dependence of H and
increase of h00 is seen essential in giving rise to burst synchronization with the
A more detailed phase plane analysis tells us that the
antiphase synchronization occurs by the lock-and-release
mechanism [16,20], already recognized in case of the con-
ductance-based neuron models. In brief, considering neu-
rons 1 and 2, if 1 is bursting, x1 > h holds, so that the
activated inhibitory synapse keeps the neuron 2 locked
on the stable branch of the coupled map. In the next stage,
as it ceases to burst, the neuron 1 releases from inhibition
the neuron 2, that begins its own burst by switching to the
isolated map, therefore pulling the neuron 1 to the stable
branch of the coupled map. Comparing the small s areas
in Fig. 3(a) and (b), obtained for k = 25 and k = 5 respec-
tively, it is possible to assert how ‘‘perfect’’ is the
established regime of antiphase synchronization, or con-
versely, how often is the occurrence of accidental burst
overlaps, depending on the gain parameter. As expected,
the dynamics of the system for the FTM synapses turns
out to be less irregular than the one for the graded synaptic
transmission model.

Apart from the tendency to higher burst synchronization,
what matters most about increasing s is that there exist pre-
ferred gc values where genuine in-phase synchronization is
ms, given by the h-quantities: h11 in (a), h00 in (b) and hnd in (c). The plots
resenting the higher values. The small s region in (b) shows the antiphase
ains in (a) and (b), roughly matching the DMS, highlight the contribution

h-quantities on s, singled out by plotting the maximal values over gc. The
synaptic delay.



Fig. 5. (a) Regularity R dependence on gc and s: the lesser it becomes (darker shading), the more regular is the sequence of a neuron’s burst cycles. From the
small and high s regions it is indicated that regularization accompanies mutual coordination, be it for the antiphase or the in-phase synchronization regime.
(b) Family of curves displaying variation of the mean burst cycle < lburst> with gc at fixed s. In a dashed line is plotted an idealized burst cycle
lregðgcÞ ¼ 157:87þ 374:31gc þ 808:2g2

c , obtained neglecting the chaoticity and the effects of the synaptic delay, as if the bursts occurred exactly between the
saddle-node point of the interacting map and the external crisis of the isolated map. Note that between s � 50 and s � 65, coinciding with the bright area in
(a), the curves < lburst > (gc) exhibit a sudden decrease, bending to intersect lreg(gc) twice. For high s, the reentrant point of intersection on the right is lost,
as < lburst > (gc) remain fairly constant over a considerable interval of weights.
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achieved. This is preceded by a transitory area around s � 60
iteration steps, seen to coincide with the time series consist-
ing of short and sparse synchronized bursts intermixed with
the long desynchronized bursts, as remnants of the regime
of antiphase synchronization. Moving further up, the H-
synchronization, inhomogeneous with gc, has a specific do-
main of maximal synchronization (DMS) standing out, that
warrants the emergence of in-phase synchronization. It
may seem curious that there is little to distinguish between
the typical ways in which the in-phase and the antiphase
synchronization are represented in the phase plane: for
the former, the bursting also takes place on the isolated
map, whereas the interburst intervals correspond to the mo-
tion along the stable branch of the coupled map, see
Fig. 2(b). This is an immediate consequence of the synaptic
delay: while neuron 1 is bursting, the openness of the syn-
apse to neuron 2 is influenced by its preceding interburst
interval and vice versa.

It is interesting that, enhancing s, the orientation of the
DMS depends on the gating behavior of the synapse: for
higher (smaller) k, it is directed toward increasing
(decreasing) gc. The reverse orientation, along with the
minor reduction of the level of synchronization, is caused
by a lesser k endowing the presynaptic neuron with the
ability to change the openness of the synapse in a contin-
uous, rather than the discrete fashion, which can be inter-
preted in the phase plane as a slow drift of the effective
interaction map. Put differently, the adjustment of bursting
rhythms results from an interplay between the persistent
influence of the synaptic parameters gc and s on one hand,
and the k-dependent action of the presynaptic neuron po-
tential, on the other. In the case of large k, the former is
predominant, making it natural for the DMS to get shifted
to higher gc with the increase of s. For small k, however,
this is countered by the stronger impact of the presynaptic
potential, causing the neurons to randomly fall out of step
for overlong bursts, generated as the respective phase
points ‘‘wander off’’ in the away area between the enve-
lopes of the effective coupled map.

While so far we addressed the gross structure of the
coordinated neuron activity, mirrored in the H-synchroni-
zation, we now look into the fine structure of burst syn-
chronization, requiring that one determines the
contribution each of the independent (’’eigen’’) motif’s
dynamical configurations participates with in its establish-
ment. In a broader sense, this is not unlike an attempt to
expand the observed states of burst synchronization in
terms of a complete set of vectors forming a basis. By the
same token, the h-quantities, introduced in Section 2, pres-
ent the probabilities for the neurons to lie in one of the
synchronized states characterized by the respective motif’s
configuration. Proceeding along these lines, by making
comparison between Fig. 4(a), (b) and (c), displaying h11,
h00 and hnd plots in the (gc,s) plane, one expects to gain
more insight into the scenarios on how the emergence of
different cooperative rhythms and their succession are
realized.

In particular, from the small s region in Fig. 4(b) we
learn that the virtual absence of the h00 term plays a major
part during the antiphase synchronization. On the other
hand, this regime is compromised by the action of h11

and hnd, where the latter, showing a steady increase consis-
tent with the violation of the lock-and-release mechanism,
appears decisive in its eventual breakdown. In fact, it is at
the intermediate delays and for small weights that hnd
reaches its maximal values, a detail we discuss further be-
low. Turning to synchronization in phase, glancing the high
s regions in Fig. 4(a) and (b) reaffirms that h11 and h00



Fig. 6. (a) Family of ct curves over s for fixed gc = 0.23. Along the decrease with the delay, note that the burst cycle deviations are highly correlated in the
transitory area s 2 (50,65), whereas become virtually independent when synchronization in phase sets in (s P 85). (b) Family of ct curves over gc at s = 100.
Approaching the DMS from the smaller weights, ct reaches minimum around gc = 0.14, regaining values close to 0 within and beyond the DMS. The
minimum alone may reflect a kind of recovery mechanism, by which the deviations from periodic bursting are ‘‘repaired’’ through mutual adjustment of
neuron activities.

128 I. Franović, V. Miljković / Chaos, Solitons & Fractals 44 (2011) 122–130
contribute the regime in equal terms. In support of this,
note that the darkest areas roughly match the DMS in
Fig. 3, whereas the coincident hnd values remain very
low, see Fig. 4(c). We summarize the aforementioned in
Fig. 4(d), where the h-quantities dependence on s is under-
lined by extracting their maximal values over gc, viz.
hmax(s) = hmax(gc,max(s),s). A point to be made is that the
gain in burst synchronization with the synaptic delay is
mostly due to the synchronization on the noninteracting
maps, as witnessed by the nearly identical s-coordinates
of the inflection points in Hmax(s) and h00,max(s).

Before approaching the issue of collective neuron
dynamics from another angle, let us examine whether
there is periodicity in an individual neuron time series
and determine how it is affected by the variation of the
synaptic parameters. To this end, we consider the ‘‘regular-
ity’’ quantity [31,32,26]

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½< l2 >� � ½< l > �2

q
½< l >� ; ð5Þ

assigning l to the duration of the burst cycle (time from the
beginning of one burst to the beginning of the next), with
the angled h�i and squared brackets [ � ] denoting averages
over a single trial and 100 different initial conditions,
respectively. Given that R presents the normalized fluctua-
tion of the burst cycle, its smaller values, displayed darker
in Fig. 5(a), indicate the domains of synaptic parameters
yielding higher regularity. Nonetheless, the highlight lies
really in the general inference on the periodicity, main-
tained over the time series, being favorable to the estab-
lishment of the coordinated activity regimes, be it the
antiphase or the in-phase synchronization of neurons.

As it turns out, within the entire (gc,s) plane, character-
ized by a tendency to periodic bursting, there is only a sin-
gle island of irregularity, immersed around s � 60 and
gc J 0.12. The reason for this behavior is implied by the
Fig. 5(b), referring to the variation of the mean burst cycle
(time and trial averaged) with gc at fixed s. Along with the
family of curves obtained in a numerical simulation, we
display for comparison what the plot of a hypothetical
burst cycle lreg (dashed line) would look like if the effects
of the external crisis and the transmission delay were ne-
glected. Crossing from the domain of antiphase synchroni-
zation into the intermediate s region of high irregularity,
not only do the curves exhibit a change in concavity, but
are also seen to intersect lreg(gc) twice. Hence, one may link
the increase in R to a sudden reduction of the mean burst
cycle. For s above the transitory area, the curves remain
virtually constant over a significant range of weights, giv-
ing rise to the eventual emergence of the in-phase syn-
chronization. Finally, recalling what has been stated
about the domain of maximal hnd following Fig. 4(c), we
are now led to conclude that it coincides with the p/2
phase lag synchronization, as reflected in the interplay be-
tween the mean burst cycle and the synaptic delay, the lat-
ter being approximately 1/4 of the former.

After asserting the regularity for a broad range of synap-
tic parameters, we pursue the study of mutual adjustment
between the two neurons’ burst cycle sequences to probe
how well are the deviations arising on one neuron matched
by the cycle changes on the other. For this purpose, sup-
pose that the durations of the corresponding burst cycles,
l1 and l2, are sampled within the frames 4000 steps in
width, and shifted by 200 steps relative to one another.
Next, it is convenient to introduce the time dependent cor-
relation coefficient

ct ¼
½< l1l2>t � � ½< l1>t�½< l2>t�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð½< l2
1>t � � ½< l1>t �2Þð½< l2

2>t� � ½< l2>t�2Þ
q ; ð6Þ

where t denotes the frame index, whereas the angled h�i t

and the squared brackets [ � ] signify the averaging over
the t-frame and 1000 different initial conditions. Here,
ct 2 [�1,1] holds, so that the upper (lower) boundary val-
ues indicate the deviations of one neuron’s burst cycle
countered by the deviations of the same (opposite) sign
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on the other, while the values around 0 imply the devia-
tions in the two sequences being independent.

We consider how ct varies along the directions in the
(gc,s) plane elaborately chosen to traverse the DMS.
Fig. 6(a) shows a family of ct curves over s, obtained for
fixed gc = 0.23, beginning with the s-values in the transi-
tory area (s = 50), and ending deeply in the DMS
(s = 105). One readily finds ct decreasing with s, a likely
outcome of an emerging synchronization in phase due to
an increase in the h00 term. Namely, at high s, the cessation
of bursts occurs on the isolated map, so that the deviations
of the burst cycles remain independent. In the transitory
area, however, we know there are opposing tendencies to-
ward the antiphase and the in-phase synchronization giv-
ing rise to large fluctuations of the burst cycles
(Fig. 5(a)), which now appear to be correlated. This is wit-
nessed by the prevalence of the hnd term over h00 (Figs.
4(c) and (b)), that points to a majority of bursts terminated
following the interacting map. In the next stage, we focus
on the variation of ct with gc at fixed s = 100 (see the family
of curves in Fig. 6(b)), along the path covering the motion
from the slightly phase shifted burst synchronization, indi-
cated by hnd > 0, to the proper synchronization in phase.
One finds that ct reduces to significantly negative values
just before the DMS (gc = 0.14), and then bounces back to
the vicinity of 0. The negative ct values imply the mutual
adjustment and regulation between the sequences of the
burst cycles involving a short-term ’’recovery mechanism’’
that may lie behind the observed periodicity in the neuron
time series.

On a final note, we indicate how the introduced methods
may be employed to study the effects of the parameter heter-
ogeneityonburstsynchronizationtakingtheinstancesof the
disparatestimulationcurrentsand synapticweights, thetwo
cases likely to be encountered in real motifs [19]. For the for-
mer, comparing the H(gc,s) fields of a homogeneous and the
inhomogeneousmotif(notshown),onerealizesthatthestim-
uli heterogeneity is detrimental for the leading cooperative
regimeofactivity,beittheantiphaseorthein-phasesynchro-
nization.Picturebecomesmoreinterestingifthereisaweight
mismatch, as follows from the variation of the H field, D
H(gc1,gc2) with respect to gc2, shown for the different values
of s in Fig. 7. Comparing Fig. 7(a), (b) and (c), the increase of s
is seen to induce greater order in the observed field, meaning
Fig. 7. Examining the effects of weight heterogeneity on H-synchronization. Let
variation D H(gc,d) = H(gc,d) � H(gc,d0), where d � d0 = 0.01 is the sampling step. T
90, respectively. Unlike the chessboard-like appearance in (a), the enhanced ord
clearly. In particular, note that the increase of s causes the band with the rising
thatamorecleartrendinthevariationofHemergesinalarger
domain of synaptic weights. Nonetheless, the values dis-
playedinFig.7(b)and(c)alsosuggestforahigherdelaytofos-
ter the growth of the portion in the (gc1,gc2) plane, where
heterogeneity gives rise to burst synchronization.

4. Conclusions

In this contribution, instigated by the phase plane anal-
ysis, we have disclosed the fine structure of burst synchro-
nization, a point reflected in the decomposition of the
introduced quantity H over the h-terms, characterizing
the action of the different dynamical configurations of
the motif. The way the extracted subgraphs are assigned
roles considering the observed non-linear phenomena is
in direct relation to the nature of the synaptic model,
whose threshold behavior is thought to faithfully repro-
duce the properties of interaction between real neurons.
The h-quantity approach allows one to monitor in a contin-
uous fashion the increase of burst synchronization with s,
in particular as to how and why the anti-phase synchroni-
zation is succeeded by the synchronization in phase. An-
other clue provided within this framework concerns a
deeper insight into the regularization of neuron bursting,
accompanying the emergence of both these regimes. How-
ever, though similar reasoning applied to the dependence
of the burst cycle correlation on the synaptic parameters
is sufficient to understand the ordering of the ensuing
curves, the values alone are found indicative of the recov-
ery mechanisms that make the neuron series robust
against the violation of regularity.

Using the key points from above, we make an attempt
to extend the argument into a field of research that re-
mains slightly more tentative. Namely, thinking on a
broader level, the presented analysis on how for a given
structural motif one can determine the temporal evolution
of the pertinent functional motifs may serve as a paradigm
to characterize the succession of global emergent states by
means of contributions from functional (effective) net-
works nested within the structural complex networks.
For the latter, it has been demonstrated that models exist
where synchronization is promoted through suppression
of spatiotemporal chaos, if compared to regular or random
networks. Along these lines, findings on the spatially
ting the weights take values gc1 = gc and gc2 = gc + d, we define the field of
he plots in (a), (b) and (c) are obtained for the delay values s = 40, 70 and

er in (b) and (c) enables one to distinguish the heterogeneity effects more
burst synchronization to expand.
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extended networks of spiking neurons show that the fine
tuning of the parameters such as synaptic delay, noise
intensity or rewiring probability may lead to the appear-
ance of waves and other spatiotemporal patterns of syn-
chronized activity. This is upheld both in cases
implementing the Rulkov map [33–36], and an array of
conductance-based models, including Morris–Lecar [37],
Fitzhugh–Nagumo [38] and Hodgkin–Huxley [39], some
of the details contingent on whether the electrical or
chemical synapses are applied [37,40].

A corollary of the collective neuronal dynamics, unfold-
ing on a level of macroscopic structural network, is the per-
petual change of the corresponding functional network,
itself known to exhibit the properties of complex networks
[4,5,41–43]. Observed within the short time windows, the
fluctuations of the arising functional network turn out to
be large, whereas for the sufficiently long time windows,
with the fluctuations smoothed out,it is indicated how
the structural and functional networks may show substan-
tial overlap [41]. Nonetheless, considering the microscopic
spatial scale, it may prove advantageous that the set of the
obtained functional motifs could point to where the corre-
sponding structural motif is situated. This reverse ap-
proach, in which the path to synchronization is employed
to dissolve the structural networks into structural motifs,
poses an issue already gaining interest in other areas, such
as the systems of coupled Kuramoto oscillators [44].
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