
Percolation transition at growing spatiotemporal fractal patterns in models
of mesoscopic neural networks

Igor Franović* and Vladimir Miljković†

Faculty of Physics, University of Belgrade, P.O. Box 368, 11001 Belgrade, Serbia
�Received 15 November 2007; revised manuscript received 5 March 2009; published 24 June 2009�

Spike packet propagation is modeled in mesoscopic-scale networks, composed of locally and recurrently
coupled neural pools, and embedded in a two-dimensional lattice. Site dynamics is governed by three key
parameters—pool connectedness probability, synaptic strength �following the steady-state distribution of some
realizations of spike-timing-dependent plasticity learning rule�, and the neuron refractoriness. Formation of
spatiotemporal patterns in our model, synfire chains, exhibits critical behavior, with the emerging percolation
phase transition controlled by the probability for nonzero synaptic strength value. Applying the finite-size
scaling method, we infer the critical probability dependence on synaptic strength and refractoriness and deter-
mine the effects of connection topology on the pertaining percolation clusters fractal dimensions. We find that
the directed percolation and the pair contact process with diffusion constitute the relevant universality classes
of phase transitions observed in a class of mesoscopic-scale network models, which may be related to recently
reported data on in vitro cultures.
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I. INTRODUCTION

The homeostatically stable state of most biological neural
networks is comprised of single neurons firing asynchro-
nously at low rates �1,2�. After receiving the input, most
networks pass to coherent states, characterized by higher
temporal covariance in neuron firing series �2,3�. The emerg-
ing transient synchrony in neuron firing times �4–6� provides
a substrate for transmission and transformation of informa-
tion �1,7� and allows the subsequent rapid relaxation of the
evoked sections of the network.

Dispersed neurons, gathered in small groups by the firing
synchronization, tend to be engaged in sequential activity.
Groups observed at consecutive sampling intervals can be
disjunctive or partially overlapping. Though the sequential
dynamics usually encompasses most of the network, there
may also be neurons left out of any synchronized group. By
the spatial distribution of synchronously firing neurons, pre-
cisely timed firing patterns have been well documented in
networks preserving the brainlike architecture �at in vivo re-
cordings �7–13� and organotypic slices �14,15�� but have
been recently recognized in networks with self-organized cir-
cuitry �in cultured networks �16–20��. There are two likely
types of patterns to be distinguished. First, the activation
sequences may consist of repeatedly reactivated neuronal
groups, forming the looplike patterns. Second, in the propa-
gative events activity spreads mainly along nonrecursive
paths, allowing only occasional reverberating dynamics.

The first pattern type characterizes the distributed syn-
chrony activity mode �21�, initially observed in trained net-
works driven by the external stimuli �5,22�. In this mode,
neural population becomes partitioned into multiple func-
tional subassemblies, containing anatomically unconnected
neurons. Complementary data seem to suggest the network

activity converging onto a variety of attractors �23�.
On the other hand, synchronized bursting �18,19,24,25�

represents the preferred network-wide propagative dynami-
cal mode. Revealed by multisite recordings from in vitro
cultures plated on microelectrode arrays, additional research
indicates its arousal to be often mediated by the prolonged
neuron membrane potential depolarization �18�. The robust-
ness of spontaneously generated and evoked synchronized
bursts is believed to reflect the inherent functional organiza-
tion in networks with quite general connection topologies
�17�. The detailed structure of bursting events shows syn-
chronized activity spreading over distinct propagation paths
�26�, unlike the ones in wavelike spreading phenomena. Ac-
counting for the more complex propagation mechanisms, we
introduce a model network of neural pools �27�. Pools act as
functional units facilitating the spreading of synchronized
spike volleys across the network. Our approach is not in-
tended to be fully biomimetic. Its aim is to provide a track-
able model capturing the gross features of the reported com-
plex spatiotemporal patterns, which are related to the
realizations of pool multiple attractor states. The research of
collective phenomena in mesoscopic-scale networks �28,29�
has to deal with interactions at different levels of spatiotem-
poral organization, including multiple recurrent connections
�2,18,30�. The spatiotemporal patterns in our model may be
viewed as generalizations of synfire chains �2,12,31�. With
the term chain referring to temporal �causal� sequence of
neuron ensemble firing, the synfire chains were proposed as
modules impressing temporal directedness in networks with
moderate reverberating activity �32�. Demonstrating that the
synfire chain formation corresponds to a percolation phase
transition enabled us to determine the arising pattern fractal
properties. Though critical phenomena were observed in
macroscopic neurobiological systems �33�, an instance of
percolation phase transition has been reported only recently
�34,35�.

This paper is organized as follows. The second section
begins with a brief description of the possible network to-
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pologies sustaining the precisely timed propagation patterns.
We also create a closure for pool firing activity, characterized
by the generation of spike packets. The third section consid-
ers the properties of the emergent long-range order, associ-
ated with the spike packet propagation. For the incipient syn-
fire chains, we introduce definitions and the appropriate
methods to evaluate critical parameters. The fourth section
outlines the results of a computer simulation, demonstrating
that the synfire chain formation is accompanied by the per-
colation phase transition. We assess the effects of the net-
work connection topology and the neuron dynamics param-
eters on the transition universality class. In the concluding
section we indicate the possible mechanisms behind the ob-
served dependence of percolation cluster fractal properties
on the network parameters and argue the range of the intro-
duced model validity and applicability.

II. MODEL

A. Network architecture

Local pool dynamics consists of spike packets, repre-
sented by the narrow distribution of neuron firing times.
Since pools generally constitute functional assemblies of
anatomically noncoupled and possibly spatially dispersed
neurons, the needed synchronization can only be achieved by
enabling the neurons to receive similar input. Such condition
is met if the neurons within adjacent pools are connected in
the divergent/convergent all-to-all manner, as in Fig. 1. Each
pool comprises approximately 100 neurons, consistent with
the experimental studies on the precisely timed recurring fir-
ing patterns �17–20,26�, indicating that pools may span the
range between tens and a few hundred neurons �23,36�.
Though initially perceived as analogs to cortical columns in
vivo, several reports seem to indicate the plausibility of pool

notion at in vitro cultures �including the cultured slices�
�16–20� and the organotypic slices �14,15�.

Adjacent pools engaged in spike packet propagation may
be associated into functional suprastructures-synfire chains.
Propagation along synfire chains obviously resembles soli-
tons and other local excitations in nonlinear extended media
�27�. Synfire chains may be embedded in networks with re-
current connections, allowing reverberating activity. The ex-
tension to proper branching networks has proven difficult,
since there are few conclusive data on possible coupling
schemes between functional neuronal assemblies. Thus, it
becomes plausible to examine the conditions for stable syn-
fire chain formation in networks with different topologies.
Specifically, we consider the two topologies characterized by
interactions within the von Neumann �regular lattice, Fig.
2�a�� and Moore neighborhoods �topology with the included
next-nearest-neighbor couplings, Fig. 2�b�� of each pool.
Similar approach has been taken experimentally in artifi-
cially creating the so-called iteratively constructed networks
of neurons �36�.

The couplings are assigned weights �ij, whose lower in-
dices i and j refer to coordinate sets of postsynaptic and
presynaptic neurons, respectively. The weights may attain
two possible values—zero, with probability 1− p, and a non-
zero value �, with probability p. The selected set can be
related to some models of the spike-time-dependent plastic-
ity �STDP�, which has been suggested as the likely synaptic
dynamics rule promoting persistent transmission of spike
packets �1,37�. These models suggest that after elaborate
training, with the STDP rules applied, synaptic weights clus-
ter around the upper-bound nonzero value and zero �21�. The
synaptic weights pertaining to forward and backward con-
nections are identically and independently distributed. Since
the characteristic time of weight change is expected to
largely exceed the single spike volley duration, synaptic
weights may be considered as quenched variables during the
spike packet propagation.

FIG. 1. Neurons are organized in homogeneous pool assemblies,
represented by columns of open circles. Bold dots indicate synaptic
connections. No synapses are assumed between neurons in the same
pool. The approximate synchronization within the pool is provided
by a common input, delivered over the divergent/convergent all-to-
all type connections with neurons from the adjacent pools.

��� ���

FIG. 2. The formation of synfire chains is examined for two
lattice topologies, with the connection weights observing the
steady-state STDP learning rule distribution. The open circles de-
note neural pools, and the solid lines indicate couplings between
each pool and its neighbors. Black lines are assigned to bonds with
nonzero synaptic weights �ij =�, while the gray lines represent
zero weight connections. �a� Schematic of a regular lattice segment.
Each pool is coupled to the sites within its von Neumann neighbor-
hood. �b� Schematic of a lattice segment with the connection topol-
ogy including the next-nearest-neighbor couplings. Bonds extend
from each pool to its Moore neighborhood.

IGOR FRANOVIĆ AND VLADIMIR MILJKOVIĆ PHYSICAL REVIEW E 79, 061923 �2009�

061923-2



The following two subsections outline the formalism
needed to quantify the properties of spike packets. After ana-
lyzing the firing dynamics of neurons within a pool, we build
the activity model appropriate for populations generating and
propagating spike packets.

B. Neuron model

The neuron dynamics is set to follow the spike response
model �27,38� with stochastic firing. By the model, the total
membrane potential ui at neuron i may be expressed in terms
of the postsynaptic potential and the spike after-potential ker-
nel �,

ui�t� = �
�j�

�ij

z + 1
�

0

�

dt���t��Tj�t − t�� + ��t − tî� . �1�

The angled brackets � � denote the sum over z neighboring
pools providing the input. As the model neglects the detailed
form of the action potential, spike train Tj from the jth pool
may be represented by the sum of Dirac � functions Tj

=� f��t− tj
�f��, where index f stands for the respective neuron

firing times. Accordingly, postsynaptic potential represents
the convolution of the arriving spike trains with the neuron
response kernel ��t�= t

�2 e−t/���t�, where � refers to the mem-
brane time constant. Since the generation of the next spike is
assumed to depend only on time t̂i of the last spike in the
prior firing sequence, the neuron spiking dynamics can be
described by an input-dependent renewal process �27,38,39�.

Equation �1� may further be accommodated to explicitly
relate the neuron membrane potential and the neighboring
pool firing activity. Allowing that the number of neurons N
within presynaptic pools is sufficient for the law of large
numbers to apply, the pool activation A�t� is introduced as
the fraction of neurons emitting action potential in the small
time interval 	t,

A�t� = lim
	t→0

1

	t

nact�t,t + 	t�
N

=
1

N
�
l=1

N

�
f

��t − tl
�f�� . �2�

We assign nact�t , t+	t� to the number of active neurons
within the �t , t+	t� interval. Applying Eq. �2�, the membrane
potential on neuron i in the given pool k �the index k refers to
the pool coordinate set� relates through a recurrent formula
to the input activation from z neighboring pools,

ui
k�t� = �

�j�

�ij

z + 1
�

0

�

��t��Aj�t − t��dt� + ��t − tî� . �3�

With Aj we denote the activation on the jth pool adjacent to
pool k.

The spike after-potential kernel, generally comprising the
membrane reset potential and the refractory period, is intro-
duced by the absolute refractoriness approximation

��t − t̂� = 	− � , 0 
 t − t̂ 
 �

0, t − t̂ � � ,

 �4�

which precludes the neurons from firing any additional
spikes during the absolute refractory period �.

Values of � and � may further be specified by taking into
account that the neurons at pools engaged in spike packet
propagation are not expected to show large amplitude fluc-
tuations of the membrane potential. The neurobiological data
suggest that the highly synchronized input these neurons re-
ceive consists predominantly of the excitatory postsynaptic
potentials �“synaptic bombardment” �26,40��, keeping the
membrane potential in the high-conductance ‘‘up’’ �depolar-
ized� state �18,31,41�. Such neuron states are characterized
by reduced membrane time constants, decreasing from ap-
proximately 10 ms to very low values �approximately 2 ms
�42,43��. Accordingly, the membrane time constant in our
simulation is set to 2 ms. While the small membrane time
constants � cause the neurons to fire only if a significant
number of synchronized presynaptic spikes arrives at the
neuron �27�, the comparable or comparably larger absolute
refractoriness values � additionally ensure that neuron firing
rates are not enlarged excessively. �Further on, it is conve-
nient to express � in units of �.� At the ensemble level, the �
value is chosen adequately to prevent receiving pool feed-
back from eliciting additional spikes at the source pools dur-
ing the input volleys.

The stochasticity in the neuron firing dynamics may be
related to the observed potential values by the hazard func-
tion f(u�t�) �instantaneous or conditional probability density
of firing� �27,44�, which is applied to model the escape noise.
In the absence of nonlinear transfer function or firing thresh-
old, the single hazard function has to be chosen properly to
account for the possible noise effects �membrane potential
fluctuations, synaptic, and ion-channel noise�. Consistent
with the membrane potential states, a simple yet sufficient
choice for the hazard function may be the step-linear func-
tion

f�u� = 	u , u  0

0, u � 0,

 �5�

since the firing probability density is known to follow the
membrane potential growth monotonously if confined to
neurons that are about to emit action potential �27�. The pro-
vided neuron model details enable building the network dy-
namics in a self-consistent manner; the incoming synchro-
nized local activity influences the state variables and the
hazard function of the receiving neuron, which in turn, takes
part in the propagation of synchronized activity through the
network.

C. Population dynamics

To determine the properties of spike packet propagation, it
is necessary to relate the population dynamics at each pool
with the activities on pools delivering the input. A closure for
the population activity A�t� �the pool index on the activation
variable is dropped to keep the notation simple� is created by
applying the arguments of the ergodic theorem. By the theo-

rem �44�, the firing probability density f̂�t� for the single
neuron to discharge at t is evaluated as the normalized num-
ber of spikes observed in population during the interval
�t , t+dt�, divided by the interval length dt, which is of the
order of �. Thus, according to definition �2�, the pool aver-
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aged activity A�t� at moment t can be taken as equal to the

firing probability density f̂�t� of the single neuron. If t̂ is the

last firing time prior to t, the probability density f̂�t� to gen-
erate the next spike at t may generally be estimated as a
product of the survival probability function �27,38,44,45�,
S�t � t̂�, and the conditional probability to discharge within the
following small interval �t , t+dt�. The conditional probabil-
ity is, by definition, the hazard function f(u��t�), where u��t�
stands for postsynaptic potential �first member on the right
side of Eq. �1�� �27,38�. Thus, the firing probability density

f̂�t� is given by f̂�t�= f(u��t�)S�t � t̂�.
In order to consistently relate neuron dynamics with the

dynamics of homogeneous neural population �pool�, certain
criteria need to be met. By construction, all neurons within a
pool have the same postsynaptic membrane potential u��t�.
The stronger criterion concerns the small value of membrane
time constant �, which causes the neurons to fire at low rates.
The latter affects the survival probability function in such a
way that function S�t � t̂� is weakly time dependent. For the
renewal processes �27,38,39,44,45� referred to in Sec. II B,
S�t � t̂� is given as a homogeneous function of time, S�t � t̂�
=exp�−t̂

t f �u��t��+��t�− t̂��dt��. The S�t � t̂� homogeneity
and weak time dependence suggest that one can introduce

the new function S̃�t � t̂�, so that relation S̃�t � t̂��S�t � t̂� holds,

S̃�t�t̂� = exp	− �
0

t

f �u��t�� + ��t� − t̂��dt�
 . �6�

We note that S̃�t � t̂� represents an auxiliary function defined

for numerical purposes. The proposed ansatz on S̃�t � t̂� is an
immediate consequence of the considered model conditions
�equality of postsynaptic membrane potentials within a pool
and small membrane time constants� and the ensuing ergod-
icity. We argue that each neuron can be assigned with unique
t̂ value, consistent with the assumption that neuron can fire
once or not at all during a single spike packet. This is pos-
sible if the spike packet width is comparable to �, which
makes it highly unlikely for the neuron to fire twice or more

within a packet. Based on the equality of f̂�t� and A�t� �er-

godicity�, using the ansatz on S̃�t � t̂�, the population activa-
tion becomes

A�t� = f „u��t�…S̃�t�t̂� , �7�

where the variable on the left characterizes the pool and the
expression on the right relates to the representative neuron
from that pool. While the first factor on the right takes the
same value for all the neurons within the pool, the other
factor depends on t̂ of the representative neuron. By the
choice of representative neuron, the firing time t̂ can belong
to either �0, t−�� or �t−� , t� interval. Thus the expression on

S̃�t � t̂� can conveniently be rewritten as

S̃�t�t̂� = exp	− �
0

t−�

f �u��t�� + ��t� − t̂��dt�

�exp	− �

t−�

t

f �u��t�� + ��t� − t̂��dt�
 . �8�

As a consequence of ergodicity, the second factor may be
interpreted as the fraction of neurons that did not fire in the
�t−� , t� interval. We substitute this factor by the exact frac-
tion �1−t−�

t A�t��dt�� of neurons remaining inactive, irre-
spective of whether t̂� �t−� , t� or t̂� �t−� , t�. By analogy,
the first factor in Eq. �8� can be analyzed for the cases when
t̂� �0, t−�� or t̂� �0, t−��. If t̂� �0, t−��, the first factor
becomes exp�−0

t−�f(u��t��)dt��. In the case t̂� �0, t−��, due
to refractoriness, the hazard function by definition �5� be-
comes 0 in the �t̂ , t̂+�� interval. If the duration of propaga-
tion process t��, the effect of � kernel can be neglected.

By the given analysis on S̃�t � t̂�, we arrive at the expres-
sion

S̃�t�t̂� = exp�− �
0

t−�

f„u��t��…dt���1 − �
t−�

t

A�t��dt�� ,

�9�

which holds for population dynamics, irrespective of the
choice of the representative neuron. Inserting Eq. �9� into Eq.
�7�, the expression for the averaged population activity at t
becomes

A�t� = f„u��t�…exp�− �
0

t−�

f„u��t��…dt���1 − �
t−�

t

A�t��dt�� .

�10�

The preceding equation, together with Eq. �3�, comprises a
two-step iterative equation for population dynamics, as the
dependence on activation from pools delivering the input is
given through membrane potential. The approximate formula
�10� is comparable to the Wilson-Cowan equation �27,46�
and the population activity equation presented in �38�. The
differences among them reflect the respective conditions un-
der which the populations receive and generate neuron activ-
ity.

The proposed population activity model should ensure
that pool dynamics converges to attractors, with characteris-
tics influenced by the network topology. When studying
spike packet propagation, local pool states are commonly
described by the zeroth and second moments of activation

distribution �7,22,38�, corresponding to integral activation Ā
and activation dispersion, respectively. Here we analyze the
pattern formation by observing the spatial sequences of pool

integral activation values Āj �j refers to the set of pool coor-
dinates� through consecutive network layers. The propaga-
tion of spike packets is supposed to satisfy three conditions:
stability, reproducibility, and long-time duration �2�. Thus,
with the large enough external input provided at the seed
pool, long-range order of pool integral activation is expected
to appear.
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III. CRITICAL PARAMETERS

A. Long-range order

A two-dimensional network is introduced with a single
high-activation spike packet at the seed pool to enable the
neuron activity spreading across the system. Clustering of

pool integral activation values Āj is observed in a three-
dimensional parameter space. With varying values of synap-
tic strength �, pool connectedness probability p, and refrac-
toriness �, we find the pool ensemble dissolving into classes
�subgroups�, with, up to the computational bin, an identical
value of integral activation. The proper bin value is deter-
mined in a self-consistent manner by enhancing its value
until the number of distinct classes ceases to reduce. Neigh-
boring pools belonging to the same class comprise clusters.
For the fixed refractoriness and weight values, clusters span-
ning the whole network appear only after a certain threshold
pool connectedness probability pc�� ,�� is surpassed.
Though at first this property may seem to relate to bond
percolation, the model is clearly more complex, since the
formation of percolation clusters is assessed by the spatial
distribution of the continuous site variable values. The other
less obvious difference to genuine bond, site, and bond-site
percolation models comes from the fact that variable p,
which refers to the presence �or absence� of synaptic connec-
tions, merely indirectly affects the formation of pool clusters,
following Eq. �10�.

Relative to the critical threshold pc�� ,��, we observe
three dynamical modes, which occupy distinct subspaces of
the parameter space. First, the system is in the subcritical
state for p� pc when the pools belong to many different
classes and form only small clusters. The system is in the
critical state for p= pc when the incipient percolation cluster
appears. Finally, in the supercritical state p� pc, many of the
pools pertain to the same class or even the same cluster �Fig.
3�. We represent the pool clustering at three characteristic
states by introducing histograms of fraction of pool pairs P	Ā

with the exact integral activation difference 	Ā, expressed in
units of activation bin. Fractions of pool pairs are normalized
over the total number of pool pairs in the network. We note
that the integral activation values on pools constituting per-
colation clusters significantly differ from the one on the seed
pool, implying that the resulting dynamics mainly depends
on the functional organizing of the network.

B. Finite-size scaling

We evaluate the critical probabilities pc and the critical
exponent ratios �

��
to characterize the critical behavior of the

observed percolation phase transition. The order-parameter is
defined as

m = �� −
1

2
� , �11�

with � being the normalized number of pools belonging to
the percolation cluster. The subtraction of 1

2 is introduced to
account for the transition from the site occupancy to Ising-
like variables, enabling the proper definition of the magneti-

zationlike order parameter. With the quenched character of
the pool connectedness variables, the actual order-parameter
values are obtained through averaging over many copies
�replicas� of the system, maintaining the identical input and
coupling parameters. Since the simulation of large networks
would entail excessive computational resources, we apply
the finite-size scaling method to determine the critical prob-
ability. In addition, the evaluation of the critical exponent
ratio �

��
is required when calculating the percolation cluster

fractal dimension.
The critical probability value may be obtained by utilizing

the appropriate finite-size scaling features of the Binder cu-
mulants �47�. In the percolation threshold vicinity, for the
given synaptic weight and refractoriness values, Binder cu-
mulants �i.e., reduced fourth-order cumulants� are calculated
according to �47–49�

UL�p� = 3 −
�m4�p��
�m2�p��2 , �12�

where �m4�p�� and �m2�p�� denote the fourth and the second
moments of the order-parameter distribution. The lower in-
dex L indicates the Binder cumulant general dependence on
lattice size. On the other hand, the Binder cumulant finite-
size scaling relation �49�

UL�p� = Û��p − pc�L1/��� �13�

establishes its value to be size independent precisely at the
critical probability pc. Accordingly, the Binder cumulant
curves, sampled in the percolation threshold vicinity for di-
verse lattice sizes, are expected to exhibit a common inter-
section point.

��� ��� ���

���

���

���
���

� �

��� ��� ���

���

���

����
��

� �
��� ��� ���

���

���

���
�
��

��

���

��� ���

FIG. 3. Distribution of integral activation differences P	Ā on
pairs of pools �a� below, �b� in the vicinity, and �c� above the critical
probability pc. With increasing probability values, pools are pro-
gressively clustered in growing classes. The example is provided
for the regular lattice topology at synaptic weight �=0.4 and �

=0. Integral activation differences 	Ā are expressed in the activa-
tion bin units.
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By plotting the Binder cumulants UL�p� vs p, we locate
the intersection point and determine its probability coordi-
nate. This coordinate value should represent the best estimate
for the critical probability pc �50�. The evaluated pc values
may provide information on the connectivity degree neces-
sary for the network to sustain synfire chains.

The synfire chain fractal dimension D is calculated ac-
cording to the well-established hyperscaling relation �48�

d − D =
�

��

, �14�

where d represents the lattice dimensionality. The required
critical exponent ratio may be obtained by applying the
finite-size scaling relation of the order parameter �48�,

mL�p� = L−�/��F���p − pc�L1/��� , �15�

which at pc leads to

mL�pc� � L−�/��. �16�

Consequently, if a log-log plot of the order-parameter depen-
dence on lattice sizes is made for the previously determined
critical probability, the line slope should represent a good
estimate for the � /�� value. With the critical exponent ratios
provided for, it is possible to calculate the percolation cluster
fractal dimensions for the varying weight and refractoriness
values. The presented methods are applied to determine the
critical behavior of synfire chain formation on square-lattice
networks with pools connected to their von Neumann or
Moore neighborhoods.

IV. RESULTS

A. Regular lattice

Applying the methods explained in Sec. III, we obtain the
critical parameters of the percolation phase transition emerg-
ing on a network with the regular lattice topology. While the
considered set of synaptic weights � is drawn from the neu-
robiologically plausible range, the refractoriness � attains
values concurring with the general requirements for the
model consistency �see Sec. II B�. For each pair of weight
and refractoriness values, we evaluate the critical probability
by drawing a graph of the Binder cumulant curves at grow-
ing lattice sizes �see Fig. 4�. We note that the intersection
points of successive curves appear to drift slightly toward
higher probabilities, which has earlier been observed in the
numerical evaluation of percolation thresholds �50�. This
type of systematic uncertainty here seems to be related with
the inability to obtain Binder cumulants as genuine self-
averaging quantities, since the number of simulated system
replicas is limited.

The estimated results for the critical probability are pre-
sented in the weight-probability parameter space, with the
critical probabilities at fixed refractoriness values comprising
critical lines �Fig. 5�. At fixed �, the monotonous decay of pc
value is likely related to slow increase in the integral activa-
tion values of the percolation cluster. As the family of critical
lines shows, the increase in refractoriness � while keeping
the constant weight � decreases the critical probability pc.

This indicates that synfire chains could emerge in less con-
nected networks. Applying the finite-size scaling relation
�16�, we estimate the critical exponent ratio � /�� by deter-
mining the slope of the double-logarithmic plot of the order
parameter m vs system size L for the previously evaluated set

FIG. 4. Determining the critical probability value by the Binder
cumulant method for �� ,��= �0.7,4�. The plotted curves represent
Binder cumulants UL with respect to probability p at several lattice
sizes: 32�32 ���, 40�40 ���, 48�48 ���, 56�56 ���, and 64
�64 ���. The shape of the curves was obtained by interpolating in
the second-order approximation. The fluctuation of the Binder cu-
mulant value at each point depends on lattice size. With an increas-
ing number of trials, fluctuations decrease more slowly at smaller
than at larger lattice sizes. For instance, to stabilize the shape of
curve for lattice dimension L=32, we needed to perform over 300
trials, while for L=64 it took us about 100 trials. The curves are
expected to intersect at a single point, with its probability coordi-
nate being the estimate for the critical probability value pc.

FIG. 5. Family of critical lines for refractoriness taking values
�=0 ���, 4 ���, and 8 ���. The results are presented in the weight-
probability parameter space, with the critical probabilities pc for
fixed refractoriness values comprising critical lines. The network is
found in a subcritical state for p� pc and each refractoriness value.
The system reaches criticality at p= pc, while for p� pc the neural
network pertains to supercritical state.
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of pc values. We bring an instance of these graphs at the
fixed weight value to illustrate the ratio dependence on re-
fractoriness �Fig. 6�.

The ensuing synfire chain fractal dimensions, calculated
according to the hyperscaling relation �16�, are presented in
Table I. The results obviously cluster in two classes, corre-
sponding to zero and nonzero refractoriness values. We note
that fractal dimensions above the zero refractoriness value
are higher than at �=0, suggesting that the percolation clus-
ters at zero refractoriness are more compact than for higher
refractoriness values. The fractal dimensions at ��0 may be
considered equal within the numerical error.

It is likely that the percolation cluster compactness is af-
fected by two complementary influences: “spatial averaging”
�based on the neural pool connectivity degree� and single
pool activation memory effect �due to temporal autocorrela-
tion�. For the regular lattice topology, the spatial-averaging
effect is limited due to the low connectivity degree z. Turn-
ing on the memory effect, with nonzero refractoriness values,
it is more likely for local integral activations to become
trapped in mutually isolated states, characterized by a wide

range of values. With the small spatial averaging, even the
low refractoriness values are sufficient to induce more inho-
mogeneous �dispersed� percolation clusters, with larger frac-
tal dimensions. Thus, the increased refractoriness values can-
not be expected to significantly change the number of diverse
pool states. Considering the significant difference in fractal
dimensions at and above �=0, we assume that the percola-
tion phase transitions at zero refractoriness belong to the uni-
versality class other than the nonzero refractoriness phase
transitions. We take interest in transitions at higher � values,
since the results at zero refractoriness may not be of biologi-
cal relevance. Judging by the average � /�� values at �
=4 �0.26�6�� and �=8 �0.25�5��, we believe that these phase
transitions belong to the directed percolation �DP� universal-
ity class �51–53�. Since the obtained critical exponent ratios
are similar for ��0, the crossover to DP probably arises at
small � values, possibly even at �=0.

The recent experimental study �54� concerning the propa-
gation of synchronized spike activity in a mesoscopic cul-
tured network revealed the dynamics governed by the ava-
lanche process. Therein, action potentials generated within a
specified time window on neuron aggregates around the elec-
trode comprise peaks of local-field potential. Such peaks are
arranged into clusterlike suprastructures by implementing the
method comparable to functional pooling. In spite of differ-
ences in defining the order parameter �while we gather all the
spikes within medium size time interval, the authors of �54�
observed the number of local-field potential peaks in a small
time interval�, the critical exponents obtained in �54� may be
interpreted as pertinent to the DP universality class �55�.

B. Topology with the included next-nearest-neighbor
coupling

We examine the formation of synfire chains on a square
lattice with the included next-nearest-neighbor couplings to
establish how the connectedness degree influences the uni-
versality class of the observed phase transition. The critical
parameters are estimated for the same set of weight and re-
fractoriness values as on the regular lattice.

The obtained critical probabilities, presented in the
weight-probability plane �see Fig. 7�, exhibit the behavior
significantly different than the one observed for the regular
lattice �Fig. 5�. The pc values at fixed � vary nonmonoto-
nously when increasing �, with the nonzero refractoriness
graphs displaying relative peaks within bounded weight in-
tervals.

The observed nonmonotonicity may be related to the
emerging competition between the leading and bulk clusters.
The leading cluster properties �activation and spreading� are
seed dominated, with its spreading mainly along the prefer-
ent spatial direction �which may dynamically be interpreted
as the temporal axis�. Complementarily, the bulk clusters ap-
pear as a result of the collective network dynamics �pool
cross correlation� and encompass the nodes outside the pref-
erent spreading direction. Due to a higher connectivity at z
=8, the bulk clusters reduce in numbers but attain more lat-
tice sites. Thus, in contrast to the z=4 case, the bulk clusters
may be expected to percolate. On the other hand, the leading

FIG. 6. Calculating � /�� ratios for the regular lattice topology.
Log-log plots of the order-parameter values m vs system size L
�where L equals the number of pools along a single side of the
square lattice� are obtained at the critical probabilities pc. The line
slopes represent an estimate for the critical exponent ratios � /��.
The particular plots, observed for the fixed weight value �=0.3 and
�=0 ���, 4 ���, and 8 ��� illustrate the critical exponent ratio
dependence on refractoriness.

TABLE I. Hausdorff-Besicovitch fractal dimensions of percola-
tion clusters for the regular lattice topology. The results assemble in
two classes, corresponding to zero and nonzero refractoriness val-
ues, with the generic transitions at nonzero refractoriness pertaining
to the DP universality class.

� Synaptic weight �

0.3 0.5 0.7 0.8

0 1.55�5� 1.55�5� 1.55�5� 1.57�5�
1 1.78�5� 1.74�5� 1.76�5� 1.79�5�
4 1.72�5� 1.77�5� 1.74�5� 1.66�6�
8 1.75�5� 1.73�5� 1.77�5� 1.74�5�
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cluster spreading is weight dependent. At low �, the leading
cluster is observed to percolate �see Fig. 8�a��. At a certain
interval of moderate � values we find the role of percolation
cluster being taken by the bulk cluster �Fig. 8�b��. Beyond
this interval, with � sufficiently increased, the prevalence of
the leading cluster is regained �Fig. 8�c��.

The takeover scenario consists of two parts. In the first
part, the bulk cluster gains strength, which in most cases
leaves the leading cluster without important links. Accord-
ingly, the number of nonzero synaptic weights rises to enable
the percolation of the bulk cluster �see Fig. 8�b��. This ac-
counts for the peak of critical probability in Fig. 7.

While the first part of the scenario corresponds to the
rising part of the peak in Fig. 7, the second part coincides
with the � interval beyond the peak. At � of roughly about
0.62, the leading cluster becomes percolative again. With the
weight increase, the cross correlations between pools become
more pronounced. Then the smaller number of nonzero syn-
aptic weights is sufficient for the percolation cluster forma-
tion, allowing the lower pc values. We expect that the critical
probability peak would become sharper if the lattice dimen-
sions were increased.

By Eq. �16�, the critical exponent ratio � /�� may be
evaluated by plotting the order-parameter dependence on lat-
tice size at critical probability pc. An instance of graphs at
fixed � for the set of � values shows how � /�� changes
with refractoriness �Fig. 9�.

The percolation cluster fractal dimensions, determined by
hyperscaling relation �16�, are brought in Table II. We note
that the fractal dimensions for higher refractoriness values
are significantly lower than for smaller ones, implying that
clusters become more compact at higher �.

The competition of the influences identified in Sec. IV A
is also expected to govern the fractality of percolation clus-
ters for the topology including the next-nearest-neighbor
couplings. In this more connected network, the temporal au-
tocorrelation cannot induce the isolated trapped local states

as easily as for z=4. Following on that, we note that refrac-
toriness affects the emerging of percolation clusters nontrivi-
ally. For small �, the temporal autocorrelation at single pools
is low, which leaves the formation of percolation clusters to
the spatial component of the dynamics determined by Eq.
�10�. At moderate values of �, which keep the temporal au-
tocorrelation sufficiently low to prevent the “trapping” of
local states, the cross correlation between the neighboring
sites increases significantly. Specifically, the temporal auto-
correlation is brought to the level of collective phenomenon,
which enables the formation of more compact percolation
clusters with low fractal dimensions. Further enhancing �,
the autocorrelation at single pools appears sufficient to over-
come the influence of the spatial connectedness, leading to a
slight increase in fractal dimensions.

We note that the difference in the average critical expo-
nent ratios � /�� calculated for �=4 and �=8 slightly sur-
passes the 10% margin usually accepted in classifying phase
transitions to the same universality class. Even so, we be-
lieve that most of the nonzero refractoriness phase transitions

FIG. 7. Critical probability pc dependence on weight �. The
inset displays critical probabilities for a set of refractoriness values:
�=0 ���, 4 ���, and 8 ���. The main frame represents the enlarged
peak segment of critical probability dependence on weight at �
=4. The network is in subcritical state for p� pc���, while the
system at p= pc��� and for p� pc��� pertains to critical and super-
critical states, respectively.
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FIG. 8. �Color online� Percolation cluster snapshots at three �
values, demonstrating the takeover scenario between the leading
and the bulk cluster. The seed pool is taken to be at the origin of the
graph. Pools belonging to the four main integral activation classes
are represented by colored �grayscaled� symbols: black and blue
�dark gray� circles are assigned to pools comprising the class of
percolation cluster, with the black circles singling out the members
of percolation clusters. Yellow �light gray� up triangles, green �me-
dium gray� left triangles and red �darkest gray� diamonds are used
to denote pools from the three other integral activation classes. �a�
At �=0.55, the leading cluster is observed to percolate. The perco-
lation cluster structure is inhomogeneous, interspersed with cavities
formed mainly of pools outside its activation class. �b� At �
=0.62, the bulk cluster is found as percolative. �c� At �=0.75, the
leading cluster regains the role of percolation cluster, with a more
homogeneous structure �i.e., with less cavities� than at �=0.55.
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may still belong to the unique pair contact process with dif-
fusion �PCPD� �56–59� universality class or the generalized
PCPD �GPCPD� �60�.

The issue of establishing PCPD as the novel nonequilib-
rium phase-transition universality class has proven contro-
versial, with some authors claiming that the simulated lattice
systems with the PCPD reaction-diffusion dynamics exhibit
long transients to DP �57�. Based on the confirmed nontrivi-
ality of the supposed PCPD to DP crossover �61� and the
several carefully ran simulations examining different PCPD
realizations �56,59,62,63�, the prevailing belief is that the
PCPD truly represents the separate universality class. One of
the possible means to distinguish between these two univer-
sality classes has been proposed in �60�, where the authors
argued that the long-term memory effects could represent the
key perturbation from DP to PCPD. Within the GPCPD
model, there exists a continuous transition from the DP to
PCPD class, controlled by the “memory parameter” r, which
is equal to the immediate survival probability of the particle
pair, created by recombination, i.e., solitary particle collision.
Thus, the DP and the PCPD universality classes correspond
to the cases of complete absence �r=0� and the maximum
memory effects �r=1�, respectively. We believe that the
mechanism similar to the described “long-term memory”

may be present in our model, with the next-nearest-neighbor
interaction facilitating stronger feedback, which enables the
neuronal activity from certain lattice sites, acting as second-
ary sources, to travel backward and reactivate relatively dis-
tant pools along and near the previously covered propagation
path. This effect may be compared to the dynamics of PCPD;
the solitary particles are only created as residue from the
branching process but may spend relatively long times in
diffusion before recombining into a particle pair.

The issue of the PCPD critical exponent values has not
yet been settled, with the obstacles due to the failure of the
master-equation field theory �64� and the relative complexity
of any supplemental models �65�. Though some papers es-
tablish the dependence of � /�� ratios on the diffusion con-
stant �58,66� �providing variation in the �0.41,0.50� range�,
several authors reported the universality of critical expo-
nents, with growing corrections to scaling as the diffusion
constant is increased �56,59,63,65�. On the other hand, the
GPCPD model predicts continuous variation in the critical
exponent ratios, which encompass values between 0.28 and
0.5 within the entire memory parameter r interval �60�. The
diffusion constant in PCPD and the memory parameter in
GPCPD are observed to play the reversed roles with respect
to the critical exponent change. The results for the
refractoriness-controlled � /�� ratio change we report
�0.56�6� at �=4 and 0.49�6� at �=8� appear to be consistent
with the GPCPD model �60� but also concur with some au-
thors who obtained the nonuniversal critical exponents for
the PCPD universality class �58,66�. According to the ob-
tained critical exponent values, the universality classes of the
transitions at �=4 and �=8 seem to differ from the ones at
�=0, indicating a possible crossover.

In addition to comments following Fig. 7, we provide
further insight to nonmonotonicity of critical probability in
view of the considered universality classes. By values of
� /��, we note that phase transitions within the weight inter-
vals corresponding to the rising part of the peak in Fig. 7
may belong to the dynamic isotropic percolation �DIP� �53�
universality class. The crossover is influenced by the changes
in the integral activation of percolation cluster. Namely, the
network state may be viewed through spatial distribution of
pools, whose integral activation assumes the value corre-
sponding to one of the coexisting fixed points. Within the
crossover scenario, the integral activation of percolation
cluster switches between different fixed points, which dis-
turbs the observed state structure generic for the PCPD tran-
sitions. An instance of the described mechanism, provided

FIG. 9. Calculating the � /�� critical exponent ratio for the lat-
tice topology including the next-nearest-neighbor couplings. Log-
log plots of the order-parameter values m vs system size L, obtained
at critical probabilities, are presented for the synaptic weight �
=0.4 and refractoriness taking values �=0 ���, 4 ���, and 8 ���.
Unlike the regular lattice topology, the plots for �=4 and �=8
exhibit different slopes, indicating the distinct � /�� critical expo-
nent ratio values.

TABLE II. Percolation cluster fractal dimensions for networks with pools interacting within their Moore
neighborhoods. The results obtained at �=4 and �=8 indicate that the transitions, emerging for the param-
eter values meeting the terms of biological plausibility, predominantly pertain to the PCPD universality class.

� Synaptic Weight �

0.3 0.4 0.5 0.6 0.7 0.8

0 1.85�4� 1.86�4� 1.85�4� 1.87 �4� 1.84�4� 1.93�5�
1 1.82�4� 1.85�4� 1.79�6� 1.83�4� 1.83�4� 1.81�4�
4 1.42�4� 1.44�4� 1.42�4� 1.90 �4� 1.41�4� 1.46�4�
8 1.52�4� 1.53�4� 1.53�4� 1.90 �4� 1.47�4� 1.56�4�

PERCOLATION TRANSITION AT GROWING … PHYSICAL REVIEW E 79, 061923 �2009�

061923-9



for �=4, may be unraveled by observing the weight increase
induced changes in the pool integral activation distribution
PĀ, obtained for very low bin value. With the smaller peak of
the distribution corresponding to the percolation cluster, the
remaining distribution part has to represent the absorbing
states. Just below the weight interval coinciding with the
rising of the critical probability peak, and for the � values
beyond the peak �Figs. 10�b� and 10�c��, the pool integral
activation distribution exhibits a visible secondary peak. On
the other hand, for the � interval corresponding to the criti-
cal probability peak rising �Fig. 10�a��, the pool integral ac-
tivation distribution is smeared out, displaying no secondary
peak. The ensuing absorbing state structure remains solely
for the brief weight interval featuring DIP phase transitions,
with the characteristic PCPD structure recovered beyond that
interval. The transitions pertaining to PCPD may be related
to the average path, covered by the recurrent activity, being
larger than the lattice coupling range. In the narrow � inter-
val characterized by DIP transitions, the average recurrent
activity path should become comparable to the interaction
range, making the system state vulnerable to small perturba-
tions and therefore spatially more homogeneous.

The critical exponent value ��0.65 �for both the excita-
tory and mixed excitatory-inhibitory populations�, reported
in a recent paper on percolation in cultured networks �34�,
seems to be consistent with the results for PCPD �53,56,58�
and GPCPD universality classes �60�. That paper considers
critical branching on directed random graph as the leading
mechanism of synchronized activity propagation. The actual
mechanism is possibly more complex, including sufficient

recurrent loops that facilitate the memory effects, known to
advance the PCPD transition. Accounting for the observed
analogies, we hypothesize that if extrapolated to samples
larger than the microscopic ones �34�, it may be possible to
distinguish the sequential correlated activity resembling the
pool-like dynamics.

V. SUMMARY AND DISCUSSION

With the activity in living networks exhibiting spatiotem-
poral organization at multiple scales �30�, building a self-
consistent model, both encompassing the interactions at dif-
ferent complexity levels and yielding a comprehensive and
useful approach to neural stimuli representation and transfor-
mation, proves to be a challenging task. The mesoscopic-
scale model we introduce deals with the square-lattice-based
network of locally and recurrently coupled neural pools �2�,
whose global excitation mode consists of propagating spike
packets. Such dynamic behavior, facilitated by bridging the
single neuron depolarized states �sustained by synchronized
input� within the connection architecture providing the syn-
aptic strength values distributed according to the STDP
learning rule, guides the formation of network spatiotempo-
ral patterns, identified with synfire chains. Though the synfire
chains in biological networks have so far been applied in
recognizing invariances in a picture �67� or performing seg-
regation in auditory �e.g., for parsing sentences into words
�68�� and visual �e.g., for separating figure from the ground
�69,70�� stimuli sequences, it is believed that their main field
of application may lie in representing compositionality
�2,70� through the hierarchical framework, comprising sev-
eral transiently coupled synfire chains. Even with the role of
synfire chains initially tied to information transfer, the propa-
gation of spike packets may take place spontaneously, which
makes the identification of minimal conditions �connectivity
sparseness, intrinsic neuron, and synaptic parameters� for
their appearance particularly important. Similar concept for
networks with neurons, rather than pools as basic elements,
has already been developed in detail �71�.

The synfire chain development is examined by observing
the neural pool clustering according to the integral activation
values, calculated by applying the derived population activ-
ity Eq. �10�. We find the development process to exhibit the
properties of the percolation phase transition, with the pool
connectedness probability p standing for the critical param-
eter. The conjoined effects of lattice topology, neuron refrac-
toriness �, and the nonzero synaptic weight value � are
established to influence the critical probability values and
universality classes which the observed phase transitions per-
tain to.

The regular lattice critical probabilities pc for each of the
three considered refractoriness values display monotonous
decay with growing �, forming a family of critical lines. At
the lower connectivity degree, collective effects remain weak
enough within the considered � interval. This enables the
prevalence of the leading cluster as percolation cluster, pro-
viding for monotonicity of critical probability. Further, as �
increases, fewer number of pools is needed to form the per-
colation cluster, which implies a decrease in critical probabil-

�	
� �	�� �	�� �	�

�	�


�	��

�	��
�
�

�

�	
� �	�� �	�� �	�

�	�


�	��

�	��

�	��

�

�
�

�	�


�	��

�	��
�
�

�	
� �	�� �	�� �	��

���

��� ���

FIG. 10. Pool integral activation distribution PĀ before, at, and
beyond the peak of critical probability dependence on weight for
�=4. While the distribution at �=0.55 may be fitted to a
Lorentzian-like form, the distributions for �=0.64 and �=0.75 dis-
play a visible secondary peak. As the former distribution accompa-
nies the DIP universality class phase transition, the two latter dis-
tributions correspond to the PCPD universality class. Just beyond
the maximum critical probability, the primary peak is at its highest
value relative to the secondary peak, while their ratio gradually
becomes smaller as � increases.
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ity values. At z=8, there exists an � interval where the col-
lective effects advance the bulk cluster to become
percolative, accounting for the nonmonotonicity of critical
probability.

Applying the finite-size scaling method, we determined
the percolation cluster fractal dimensions D for each of the
lattice topologies, finding it to be considerably influenced by
refractoriness value �. At low �, the temporal autocorrela-
tions at single pools are significantly weakened, implying an
almost complete absence of memory effects �see the third
term on the right side of Eq. �10��. This enables the emerging
of feedback loops, which, at higher connectivity, cause the
adjacent sites to perturb each other’s respective dynamics
more effectively. Such local framework at z=8 is expected to
advance greater heterogeneity of the upcoming percolation
clusters.

At moderate � values, the temporal autocorrelation gains
strength, which should be put in context with the effects of
changing lattice topology. At lower connectedness degree,
the temporal autocorrelation leads to trapping of local states,
while, with increasing connectivity, the cross correlation be-
tween neighboring pools rises to a collective phenomenon.
Thus, at z=8 the pool dynamics appears stationary, i.e., spike
packets assume a similar form across the network. The de-
scribed effects provide for the larger compactness of perco-
lation clusters in more connected networks while keeping �
moderate.

Following the obtained � /�� critical exponent ratios, we
posit that the phase-transition universality classes may be
distinguished according to the refractoriness value. For the
regular lattice topology, the DP appears as the generic uni-
versality class at nonzero refractoriness values, which is
likely influenced by the lack of competition between the
leading and bulk clusters. At z=8, the more pronounced col-
lective effects result in the leading and bulk clusters, succes-
sively taking the role of percolation clusters as � increases.
The generic phase transitions pertaining to PCPD universal-
ity class seem to relate to prevalence of the leading cluster,

while the DIP universality class transitions correspond to the
bulk cluster dominance within a limited weight interval.

From the scope of local excitation dynamics, the observed
phase transitions for both lattice topologies appear to be in-
fluenced by the feedback originating recurrent activity, as
some of the active pools take the role of secondary sources
which reactivate the lattice sites along or near the earlier
covered propagation path. For the given interaction structure,
we suppose the relation between the coupling range and the
average recurrent activity path to influence the critical behav-
ior of the transitions, as corroborated by several researches
conducted on grown cultures or cortical slices �34,54�.

Several research groups reported critical exponents simi-
lar to ours for networks operating under a variety of different
conditions. While theoretically addressing the issue of perco-
lation phase transitions in microscopic neural networks,
Kozma et al. �72� found DIP, DP, and PCPD universality
classes corresponding to topological variations, i.e., to the
absence, small and large number of the introduced distant
connections, respectively. In addition, the experimental re-
search by Breskin et al. �34� may have recovered the PCPD
universality class in cultured networks comprised of 400–
1000 neurons for both the homogeneous �excitatory neural
population� and inhomogeneous �comprising mixed
excitatory-inhibitory population� networks. These results
possibly indicate similarity between phase transitions at mi-
croscopic and mesoscopic networks, implying that this line
of research should extend to more complexly structured net-
works encompassing a variety of different scales. With the
rich topological and dynamical conditions at all three scales,
it becomes important to identify the constraints which drive
the neural network phase transitions to specific universality
classes.
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