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We consider the approximations behind the typical mean-field model derived for a class of systems made up
of type II excitable units influenced by noise and coupling delays. The formulation of the two approximations,
referred to as the Gaussian and the quasi-independence approximation, as well as the fashion in which their
validity is verified, are adapted to reflect the essential properties of the underlying system. It is demonstrated
that the failure of the mean-field model associated with the breakdown of the quasi-independence approximation
can be predicted by the noise-induced bistability in the dynamics of the mean-field system. As for the Gaussian
approximation, its violation is related to the increase of noise intensity, but the actual condition for failure
can be cast in qualitative, rather than quantitative terms. We also discuss how the fulfillment of the mean-field
approximations affects the statistics of the first return times for the local and global variables, further exploring
the link between the fulfillment of the quasi-independence approximation and certain forms of synchronization
between the individual units.
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I. INTRODUCTION

When modeling macroscopic systems comprised of cou-
pled oscillating units, one is often required to incorporate noise
and interaction delays, whose separate or combined effects
may substantially alter the “bare” dynamics, unattended by
these two ingredients. The systems where coaction of noise
and delays should be taken into account appear to be common,
rather than rare [1,2], with the most prominent examples
derived from the biophysiological context [3] or involving
laser dynamics [4]. The interplay of noise and delays becomes
especially intricate if the units making up the system are not
self-oscillating, but excitable [5]. For such a setup, the local
and collective dynamics rest on the competition between the
delay-driven and the noise-induced oscillation modes [6,7].

In mathematical terms, the described models are usually
stated in terms of systems of nonlinear stochastic delay-
differential equations (SDDE), whose general form is given by

dxi(t) = f (xi(t)) +
N∑

i,j

gij (xi(t),xj (t − τj )) + σidWi, (1)

where i,j = 1, . . . ,N , xi are vectors of dynamical variables
for the ith unit, f is a nonlinear function, τi are the coupling
delays, and dWi are stochastic increments of the independent
Wiener processes. For systems like (1), the standard
Fokker-Planck formalism can rarely provide useful results
that may serve for qualitative analysis of stochastic stability
and stochastic bifurcations [8–11], with its use severely
constrained by the non-Markovian character and nonlinearity
of the equations [12]. In particular, for univariate systems one
may only consider the limits of small delay or delay larger
than the system’s correlation time [12–15], whereas for the
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setup involving multiple units, even the delay-free case under
the assumption of molecular chaos cannot be analytically
resolved [16], though efficient numerical methods are
available [17].

The failure of Fokker-Planck formalism implies the ne-
cessity for considering approximate methods, one of them
being the mean-field (MF) approach. The gains from the
latter can in general be cast as twofold. On one hand, an
accurate MF model substantially reduces the computational
time for numerical integration [18], which for the exact system
grows as ∼N2 with its size [19]. The other gain lies in
the ability to translate the problem of stochastic bifurcations
displayed by the exact system into bifurcations of the compact
deterministic MF system [20–22]. The stochastic bifurcations
have so far been characterized phenomenologically, relying
on the point that a certain time-averaged quantity, such as the
asymptotic probability distributions of the relevant variables
or the associated power spectra undergo some qualitative
change [17,20,23,24]. For instance, it has been shown that the
stochastic Hopf bifurcation from a stochastically stable fixed
point to a stochastically stable limit cycle is accompanied by
the loss of Gaussian property for the asymptotic distributions
of the appropriate variables [20]. In parallel, the degree by
which the distribution departs from the normal one with
supercriticality depends on the particular system at hand.
However, the onset of stochastic bifurcation and the loss
of Gaussian property for asymptotic distributions alone do
not imply the failure of the MF approximate model. In
fact, such a correspondence would apply only if the MF
approximation were based on the notion that the described
stochastic process is a Gaussian one. Nevertheless, such a
requirement is too strong, in a sense that the validity of the
MF model is then satisfied trivially. Moreover, examples have
already been found where the MF system can accurately
predict the properties of the oscillatory state, including the
oscillation frequency [25,26].
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The arguments above justify more elaborate research on
the approximations behind the MF model and the conditions
for their validity. On one hand, one may ask whether the MF
approximations (MFAs) are universal as might be expected
at first sight, or should in fact be modified to account for
the properties of the system at hand. The second question
we address is whether the dynamics of the MF model itself
may point to parameter domains where the MF approximation
fails. At variance with the earlier work, this set of issues is
completely unrelated to the asymptotic distributions of the
underlying variables.

As an example of a system conforming to (1), we consider
an assembly of delay-coupled noisy class II excitable units [5],
represented by the generic Fitzhugh-Nagumo model. For such
a system, we demonstrate that the MFAs should be precisely
adapted to its properties, explicitly incorporating the key
ingredients of type II excitability, such as relaxation character
of oscillations, in the definition of the MFAs and the methods
by which their validity is verified. The main benefit from the
refined definitions is that they provide rationale on why the
predictions provided by the MF model successfully extend
to parameter domains admitting oscillatory states, where the
trivial Gaussian approximation would necessarily be violated.
The other important point shown in the paper is that the
dynamics of the MF model may indicate in the self-consistent
fashion the domains where one of the MFAs we introduced
fails. In particular, such a breakdown of the MF approximate
model is found to be linked with the noise-induced bistability
in the MF dynamics. Note that the term noise-induced
bistability refers to either coexistence of the fixed point and a
limit cycle or two limit cycles, which emerge due to action of
the noise intensity parameter. The appearance of these regimes
is associated with the global fold-cycle (tangent) bifurcation
controlled by the noise intensity.

The paper is organized as follows. In Sec. II, we precisely
define the two main approximations behind the MF model,
dubbed Gaussian approximation and the quasi-independence
approximation, whose formulations are adapted to reflect the
qualitative properties of type II excitable units. Section III is
concerned with identifying the typical dynamical scenarios
where the MFAs are seen to hold or fail, whereby the tests
applied to verify the validity of the MFAs are accommodated
to class II excitable systems. In Sec. IV we discuss one of the
key points, consisting in the ability to deduce the parameter
domains where the quasi-independence approximation fails
solely by the dynamics of the MF model. Section V deals with
several miscellaneous topics, including how the fulfillment
of the MFAs is manifested in the statistics of the first return
times for the local and collective variables, as well as the
link between synchronization and the fulfillment of the quasi-
independence approximation. Section VI contains a summary
of the main points of the paper.

II. EXACT SYSTEM, MFAs, AND MF MODEL

A. Background on the exact system

The validity of the MFAs is analyzed in the case of
a collection of N Fitzhugh-Nagumo excitable units, whose

dynamics is set by

εdxi = (
xi − x3

i /3 − yi

)
dt + c

N

N∑

j=1

[xj (t − τ ) − xi]dt,

(2)
dyi = (xi + b)dt +

√
2DdWi, i = 1, . . . ,N.

Each unit interacts with every other via diffusive delayed
couplings, whereby the coupling strength c and the time
lag τ are taken uniform. Parameters ε = 0.01 and b = 1.05
are such that the isolated units display excitable behavior,
having a stable fixed point (FP) as the only attractor. The
terms

√
2DdWi represent stochastic increments of the in-

dependent Wiener processes, viz., dWi satisfy E(dWi) = 0,
E(dWidWj ) = δi,j dt , where E( ) denotes the expectation over
different realizations of the stochastic process.

Having proposed that the nontrivial conditions for the
fulfillment of the MFAs derive from the qualitative prop-
erties of the underlying dynamics, we first summarize the
typical regimes exhibited by [xi(t),yi(t)], beginning with the
deterministic case D = 0. For small c and τ , the only attractor
of each unit is FP and the dynamics is excitable. For larger
c and/or larger τ , the FP undergoes a Hopf bifurcation and
the asymptotic dynamics resides on a stable limit cycle (LC).
The LC conforms to relaxation oscillations, with two clearly
distinguished slow branches, the refractory and the spiking
one, and two fast transients in between [cf. Fig. 1(b) where
small noise perturbations are added]. Small D induces small
fluctuations around the attractor of the deterministic dynamics.
If the latter motion lies on LC, the impact of D is reflected
mostly in the fluctuations of phase of the oscillatory dynamics
between the different stochastic realizations. Apart from the
increase of fluctuation amplitudes, enhancing D may give
rise to the transition from the stochastically stable FP to the
noise-induced spiking. The latter can appear as nearly periodic
or irregular depending on c, τ , and D. It is known that in
systems of excitable units subjected to D and τ , the length
of interspike intervals (ISIs) is influenced by the competition
between two characteristic time scales [6,7]. One is set by the
self-oscillation “period” T0(D) obtained for τ = 0, whereas
the other is adjusted with τ . Loosely speaking, for τ < T0(D)
and intermediate c, the noise-led dynamics characterized
by T0(D) prevails over the delay-driven one unless τ is
commensurate or comparable to T0(D). This paradigm may
carry over to the collective motion due to synchronization of
individual units.

B. Formulation of MFAs

The first MFA derives from the strong law of large
numbers, by which the sample average SN = N−1 ∑N

i=1 si of
N independent and identically distributed random variables
si converges almost surely to the expectation value E(si)
for N → ∞. How SN approaches E(si) for large, but finite
N and finite variances of si distributions σ 2, is specified
by the central limit theorem, which implies that SN follow
the normal distribution N (E(si),σ 2/N ). In our setup, the
subsets {xi(t)|i = 1, . . . ,N} and {yi(t)|i = 1, . . . ,N} at any
given t are obviously not made up of independent variables,
but one may still consider the influence of interaction terms
negligible if N is sufficiently large. The latter is referred to
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as the quasi-independent approximation (QIA), whose precise
formulation is as follows.

Approximation 1 (QIA). Random variables {xi(t)|i =
1, . . . ,N} and {yi(t)|i = 1, . . . ,N} for each t and sufficiently
large N satisfy the approximate equalities

X(t) ≡ 1

N

N∑

i

xi(t) ≈ E[xi(t)],

(3)

Y (t) ≡ 1

N

N∑

i

yi(t) ≈ E[yi(t)].

On the left of (3) are the spatial averages, used to define
the global variables X(t) and Y (t). Note that the method
implemented in Sec. III to test the validity of the QIA will
reflect the relaxation character of oscillations typical for
class II excitable systems.

The need for the second approximation becomes apparent
after carrying out the spatial average and applying the QIA
on (2). The fashion in which the terms E[x3

i (t)] are to be
treated is resolved by the Gaussian approximation (GA),
given as follows.

Approximation 2 (GA). For most time instances t0, the
small random increments dxi(t),dyi(t) for t ∈ (t0,t0 + δt) can
be computed with sufficiently good accuracy by assuming
that the random variables xi(t),yi(t) for each i = 1, . . . ,N

and for t ∈ (t0,t0 + δt) are normally distributed around
(E[xi(t)],E[yi(t)]) ≈ [X(t),Y (t)].

GA is intentionally stated in a weak sense, containing
the phrases “sufficiently good accuracy” and “for most time
instances.” The former implies that the approximate solution
should have the same qualitative features as the exact one.
Nevertheless, the phrase “for most time instances” is crucial,
because it specifically targets the class II excitable systems, be-
ing introduced to account for the relaxation character of oscil-
lations, as explicitly demonstrated in Sec. III. Further note that
the GA does not require {xi(t)|i = 1, . . . ,N} and {yi(t)|i =
1, . . . ,N} to be Gaussian processes over asymptotically large
time intervals, but rather to be Gaussian over small intervals
(t,t + δt), with the latter supposed to hold for most values of
t . For such t one can express all the higher-order moments that
appear in the expressions for dX(t) and dY (t) in terms of only
the means, viz., X(t) and Y (t), and the second-order moments,
including variances sx(t) = E[n2

xi
(t)],sy(t) = E(n2

yi
(t)) and

the covariance u(t) = E[nxi
(t)nyi

(t)], where nxi
(t) = X(t) −

xi(t), nyi
(t) = Y (t) − yi(t). Here, the QIA is reflected in the

fashion in which the spatial and the stochastic averages are re-
lated. Use of the GA in deriving the MF model rests on the no-
tion that the fraction of time where GA fails will not introduce
significant differences between the MF and the exact solutions.

The MF counterpart of (2), incorporating the QIA and GA,
has been derived in [25]. It constitutes the following system of
five deterministic DDE:

εṁx = mx(t) − mx(t)3/3 − sx(t)mx(t) − my(t)

+ c[mx(t − τ ) − mx(t)],

ṁy = mx(t) + b,

ε

2
ṡx = sx(t)[1 − mx(t)2 − sx(t) − c] − u(t),

1

2
ṡy = u(t) + D,

u̇ = [u(t)/ε][1 − mx(t)2 − sx(t) − c] − sy(t)/ε + sx(t),

(4)

assuming that the MF solutions satisfy mx(t) ≈ X(t), my(t) ≈
Y (t). Note that some more sophisticated MF ap-
proaches [19,27] adopt the Gaussian decoupling approxima-
tion, yet do not require a QIA, as their final form accounts
for spatial averages of fluctuations of both local and global
variables.

III. TESTING THE VALIDITY OF MFAs AND THE
GENERIC REGIMES WHERE THEY HOLD OR FAIL

The goal is to first explain the two generic scenarios where
both the MFAs hold, outlining the parameter domains where
the pertaining local and global dynamics typically occur. We
also illustrate the case where both the MFAs fail, independently
demonstrating that the GA and the QIA are violated. As
indicated in the Introduction, the methods applied to verify
the validity of the MFAs for the oscillatory state are adapted to
the essential properties of the class II excitable systems. Note
that in this section, which contains the numerical results on the
exact system, one is primarily concerned with the fulfillment
of the GA. This is done deliberately, given that the breakdown
of the QIA can be deduced from the dynamics of the MF
model, as demonstrated in Sec. IV.

Intuitively, one would expect that both the MFAs are satis-
fied if c and D are small. Though this is indeed so, the general
conclusion on the simultaneous validity of both the MFAs
is less straightforward, and should refer to the qualitative
properties of the system’s dynamics, rather than alluding to
certain parameter domains. As a preview of this result, it may
be stated that the GA and the QIA hold if the local and the
global dynamics are characterized by a single attractor of the
same type, either a FP or a LC, provided that D is not too
large. Conversely, if the local and the collective variables yield
qualitatively different dynamics or exhibit multistability, the
validity of either or both the MFAs is lost. Nevertheless, note
that the separate conditions for failure of each of the MFAs can
be put in a more succinct form, which will be clarified below.

The discussion above implies that there are two paradig-
matic scenarios where both the GA and the QIA hold. By one,
the local and the collective dynamics display stochastically
stable FP, whereas in the other, the local and the collective
dynamics exhibit the stochastically stable LC. These two cases
are addressed in Figs. 1(a) and 1(b), respectively, whereby the
intention is to first verify the validity of GA. Before proceeding
in this direction, note that the value c = 0.1, fixed in both
instances, is chosen from an intermediate range to stress that
the MFAs’ validity extends into such a domain. Nonetheless,
the data in Fig. 1(a) are obtained for small D1 = 0.0002 and
small τ1 = 0.2, while the setup in Fig. 1(b) involves D2 = D1

but the much larger τ2 = 2.7.
As an illustration of the qualitative similarity between the

individual realizations and the expectations, the main frames of
Figs. 1(a) and 1(b) show three different stochastic realizations
(x5,r ,y5,r ), encoded in black solid, dashed, and dotted lines,
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FIG. 1. (Color online) Impact of noise on the validity of GA. (a) and (b) refer to typical scenarios where the GA holds, while (c) concerns
one of the cases where it fails. For an arbitrary unit, here denoted with index 5, the main frames of (a), (b), and (c) show orbits corresponding to
three different stochastic realizations (x5,r ,y5,r ) (black solid, dashed, and dotted lines), as well as the respective expectations [E(x5,r ),E(y5,r )]
for an ensemble of ten realizations, having indicated the latter by the solid red (gray) lines. In the insets of (a), (b), and (c) are displayed the
appropriate graphic normality tests, such that the red (gray) lines conform to theoretical data sets obeying the Gaussian distribution, whereas
the circles reflect the data for x5,r actually collected over different realizations. The parameter sets are (c,D,τ ) = (0.1,0.0002,0.2) in (a),
(c,D,τ ) = (0.1,0.0002,2.7) in (b), and (c,D,τ ) = (0.1,0.003,1.5) in (c).

as well as the expectation values [E(x5,r ),E(y5,r )] over an
ensemble of ten realizations, having plotted them by the solid
red (gray) lines. The data are representative of the dynamics
of an arbitrary neuron, whereby the particular example refers
to the unit i = 5. The index r accounts for the realizations.
In the case of Fig. 1(a), for any t , the expectation closely
matches either of the realizations trivially. Nevertheless, for
the scenario with the LC attractor, the analogous statement
holds if t is such that (E[xi,r (t)],E[yi,r (t)]) ≈ [X(t),Y (t)] lies
on the slow branches of the given orbit. At variance with
this, if (E[xi,r (t)],E[yi,r (t)]) falls onto one of the transients,
the expectation departs substantially from the realizations
[cf. Fig. 1(b)]. The two latter points are consistent with the
relaxation character of oscillations, and as such are accounted
for by the definition of GA. Invoking the definition, it
follows that the GA’s validity is upheld if the number of
instances where the expectations closely match the individual
realizations strongly prevails over the number of instances
where such a correspondence is lost. In other words, the GA
holds if the expectations preserve the relaxation character
of oscillations exhibited by the realizations. Though this
requirement is qualitative in nature, one may still attempt to
attribute it a certain quantitative measure. For instance, for the
(c,D2,τ2) parameter set from Fig. 1(b), it may be shown that
the ratio of points lying on the transients vs those on the slow
branches is small (nt/ns ≈ 0.1) over the sufficiently long time
period along the trajectory of (E[xi,r (t)],E[yi,r (t)]).

Figure 1(c) refers to the case where GA no longer holds.
The illustrated local dynamics is obtained for comparably large
D3 = 0.003, c = 0.1, and intermediate τ3 = 1.5, such that the
individual stochastic realizations fluctuate around the single
LC. However, the noise-induced fluctuations are large enough
to throw the different realizations out of step, resulting in
the strong misalignment between the pertaining oscillation
phases. Therefore, at variance with Fig. 1(b), the expectation
substantially departs from each of the realizations at any t . For
(c,D3,τ3), one can no longer interpret (E[xi,r (t)],E[yi,r (t)]) in
terms of clearly discernible slow and fast motions, so that the
ratio nt/ns cannot be determined.

Apart from characterizing it by the nt/ns ratio, the GA
validity has been tested directly for an arbitrary neuron at
the given (c,D,τ ). Having run many different realizations
of the processes xi(t),yi(t) for the same initial function, we
have examined the properties of the distribution of different
realizations xi,r (t0 + δt),yi,r (t0 + δt) for small δt , taken to be
of the order, in tens or hundreds of iteration steps. For the
LC dynamics, [xi,r (t0),yi,r (t0)] has been set on the refractory
branch. The insets of (a), (b), and (c) display graphic normality
tests, where the red lines indicate the theoretical percent of
data points that would lie below the given value if obeying
the Gaussian distribution, while the blue circles refer to the
cumulative distribution of (x5,r ,y5,r ) for an ensemble of over
200 realizations. Apparently, the distributions corresponding
to (c,D,τ ) in Figs. 1(a) and 1(b) are Gaussian, whereas the one
for Fig. 1(c) is not. Results of the graphic tests are corroborated
by the standard numerical Shapiro-Wilk method.

Having seen that the criteria for the validity of GA
is primarily qualitative, it is still of interest to find some
indication of how the fulfillment of GA deteriorates with
variation of the system parameters. Naturally, the most relevant
question is to assess the rate at which the validity reduces
with increasing D for fixed c and τ . The quantity appropriate
to characterize this is determined as follows. For very small
D = 0.0002, we select an arbitrary neuron and fix a point on
the refractory branch of its LC orbit. Then, a large number of
different stochastic realizations Nr for the given parameter
set (D,c,τ ) = (0.0002,0.1,2.7) is run. The goal is to find
the maximal number of iteration steps Tmax, for which the
representative point in all the realizations still lies on the
refractory branch. Enhancing D while Tmax is kept fixed, one
naturally encounters realizations where the latter condition is
no longer satisfied. In Fig. 2 we demonstrate how the fraction
of realizations Nout/Nr in which the representative point has
escaped the refractory branch in less than or exactly Tmax

steps increases with D. Along with allowing one to quantify
the gradual loss of the GA’s validity, this dependence may
also be interpreted as an indication of how D gives rise to
the number of moments t where (E[xi,r (t)],E[yi,r (t)]) belong
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FIG. 2. (Color online) Estimating rate by which the validity of
GA deteriorates with increasing D. The plot shows a fraction of
stochastic realizations Nout/Nr in dependence of D for (c,τ ) =
(0.1,2.7). Nout accounts for the instances where the representative
point escapes the refractory branch of slow motion within the given
number of iteration steps Tmax. The results converge to the displayed
curve as Nr is increased. The inset refers to the variation of the slope
of the curve from the main frame with noise.

to fast transients, rather than the two slow branches. In this
context, it is interesting to explain why the curve’s slope
shows a significant change in behavior around D0 ≈ 0.0014
(cf. the inset in Fig. 2). Below D0, the fluctuations of phase
between the different stochastic realizations systematically
grow, but the physical picture by which the LC for the
expectations (E[xi,r (t)],E[yi,r (t)]) is described in terms of
two pieces of slow motion connected by the two rapid jumps
still applies. Nevertheless, about D 	 D0, such a picture has to
be abandoned, because the LC generated by the expectations
no longer matches the phase portrait of individual realizations.
In particular, the (E[xi,r (t)],E[yi,r (t)]) cycle lies inside that
for the single realizations, as it fails to reach the latter’s
spiking branch. Once the framework involving qualitative
equivalence between the dynamics of realizations and the
expectations has been broken, Nout/Nr for D > D0 loses its
original meaning, but its steady increase reflects the tendency
for growing irregularity in the unit’s behavior.

We now turn to the analysis on the fulfillment of the QIA.
The intention here is just to briefly mention the two methods
that may be used to verify the validity of the QIA by examining
the exact system, whereas the main point, lying in the ability
to predict the failure of the QIA solely by the dynamical

FIG. 3. (Color online) Examining the validity of the QIA. Consistent with the theorem of large numbers, confirming the validity of GA for
the global variables corroborates that the QIA holds for the local variables. The main frames (insets) of (a), (b), and (c) refer to the graphic
normality tests for the collective variables X(t) [Y (t)], whereby the respective parameter sets correspond to those in Figs. 1(a)–1(c). In (a)
and (b) is demonstrated that Xr (t) and Yr (t) for different stochastic realizations are Gaussian distributed, whereas (c) indicates a substantial
departure from the normal distribution in the case of Yr (t). (d) illustrates the loss of qualitative analogy between the oscillations characterizing
the individual realizations and the expectation for (c,D,τ ) from (c).
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features of the MF model is left for the next section. Con-
sidering the exact system, one may either take (i) an indirect
approach, derived from a corollary of the QIA formulation, or
(ii) the direct approach, based on the notion that approximate
synchronization between the units may render them virtually
independent. Since the more comprehensive discussion on
the relation between different types of synchronization and
the QIA is provided in Sec. V B, we focus on the indirect
approach (i). One first invokes the central limit theorem, by
which for large, but finite N holds that if the local variables
are normally distributed for most t , so too are the collective
variables. Hence, the validity of GA for X(t) and Y (t) should
imply that the local variables are independent. The normality
tests on X(t) and Y (t) are carried out analogously to those
for xi(t) and yi(t). The main frames (insets) of Figs. 3(a)–3(c)
refer to graphic normality tests on the variable X(t) [Y (t)] for
the parameter sets exactly matching those in Figs. 1(a)–1(c).
Figures 3(a) and 3(b) indicate the validity of GA for X(t)
and Y (t) distributions, thereby suggesting that the QIA also
applies. The positive result in Fig. 3(b), which is associated
with the oscillatory state, again draws on the main feature of
the class II excitable systems. An interesting point regarding
Fig. 3(c) is that the distribution of Xr (t0 + δt) over stochastic
realizations conforms to, and the one for Yr (t0 + δt) sharply
deviates from the Gaussian form. Such a violation of the
QIA is mostly found for intermediate D and τ . Figure 3(d)
further illustrates the loss of qualitative analogy between the
oscillations for the individual realizations and the expectation,
with the latter failing to preserve the relaxation character.

IV. PREDICTING THE FAILURE OF QIA BY THE
DYNAMICS OF THE MF MODEL

The aim in this section is to demonstrate how the failure of
the QIA is indicated by the dynamics of the MF model. To this
end, we first present the results of the bifurcation analysis for
the approximate system. Note that the analysis has not been
carried out on the full system (4), but rather on its counterpart
obtained by retaining the equations for the first moments under
the “adiabatic” approximation that the evolution of second
moments is slow and can be cast as stationary. The main reason
for this lies in the fact that the reduced system, unlike the
original one, is analytically tractable.

The approximate model is found to display a sequence of
supercritical and subcritical Hopf bifurcations, whereby the
former (latter) result in the creation of a stable (unstable) limit
cycle. Recall that both types of Hopf bifurcation can further be
cast as direct or inverse [28], which refers to whether the fixed
point unfolds on the unstable or the stable side, respectively.
The final expression for the critical time delay in dependence
of c and D reads [25,26]

τ
j
± = [arccos(−κε/c) + 2jπ ]/ω±,

if
−ω2

± + 1/ε

cω±/ε
� 0, or

(5)
τ

j
± = [−arccos(−κε/c) + 2(j + 1)π ]/ω±,

if
−ω2

± + 1/ε

cω±/ε
< 0,

(b)
0.002 0.004 0.006 0.008 0.01 0.012

0.5
1

1.5
2
2.5
3
3.5(a)

D

τ

FIG. 4. (a) First few branches j = 0,1, . . . ,6 of the Hopf bifurca-
tion curves τ

j
±(D) for the MF model. (b) A close-up view of (a), but

including the additional indication on the parameter values where
the global fold-cycle bifurcations occur. Stability of equilibrium
is influenced by a sequence of direct (supercritical) and inverse
(subcritical) Hopf bifurcations, shown by the black and gray lines,
respectively. In (b), the critical values Dfc and τfc for the D- and
τ -controlled fold-cycle bifurcations are indicated by the solid and the
open circle lying at (D,τ ) = (Dfc,0) and (D,τ ) = (0,τfc). The dashed
line approximately highlights the parameter values above which the
dynamics of the MF model always involves a large cycle born via
the global bifurcation. The bistable regimes emerging due to global
bifurcations involve the coexistence of FP and LC (instances indicated
by the triangles) or two LCs (instances indicated by the squares). For
D > DH , the existence of bistable regimes and their form depend on
the complex interplay between the local and the global bifurcations.
Coupling strength is fixed at c = 0.1.

where the (+) (−) sign reflects the direct (inverse) character of
bifurcation, j = 0,1,2, . . . and ω± = ω±(c,D), κ = κ(c,D).
It can be shown by a rather lengthy calculation that the
direct (inverse) bifurcations are always supercritical (sub-
critical) [25]. The first few branches j = 0,1, . . . ,6 of the
Hopf bifurcation curves τ

j
±(D) for the intermediate coupling

strength c = 0.1 are presented in Fig. 4. In particular, Fig. 4(a)
is focused on the Hopf curves alone, whereas Fig. 4(b) presents
a zoomin of Fig. 4(a), but also contains additional information,
as explained below. Note that the presentation scheme in
both figures is such that the curves coinciding with the direct
(supercritical) Hopf bifurcations are indicated by the black
lines, while those corresponding to inverse (subcritical) Hopf
bifurcations are plotted by the gray lines.

Apart from the local bifurcations which affect the stability
of equilibrium, the MF dynamics are influenced in a highly
nontrivial fashion by the two global fold-cycle (tangent)
bifurcations, one controlled by D and the other by τ . Note
that the direct fold-cycle bifurcation gives rise to a stable large
cycle and a saddle cycle. The point (D,τ ) = (Dfc,0) where
the noise alone is sufficient to induce the global bifurcation is
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indicated by the solid circle in Fig. 4. In an analogous fashion,
the point (D,τ ) = (0,τfc) where solely the delay gives rise to
the global bifurcation is denoted by the open circle. The dashed
line connecting the open and the solid circle approximately
highlights the parameter values above which the dynamics
of the MF model always involves a large cycle born via the
global bifurcation. One should caution that in the parameter
domains allowing for the local bifurcations, the existence of
a large cycle per se does not warrant multistability in the
MF dynamics. Later on, it is shown that multistability in such
domains depends on a complex interplay between the attractors
and saddles resulting from the local and global bifurcations.

Due to global bifurcations, the MF model exhibits two types
of bistable regimes, one involving the coexistence between the
FP and the LC, and the other characterized by the coexistence
of two LCs. In the former case, the LC corresponds to
a large cycle born in the fold-cycle bifurcation. The latter
scenario may be realized either by the coaction of the local
(direct supercritical) Hopf bifurcation and the global fold-cycle
bifurcation, which mainly occurs for τ < τfc, or the two cycles
may both derive from the fold-cycle bifurcations (τ > τfc). In
most cases, bistability emerges due to the action of noise,
i.e., is facilitated by the D-controlled global bifurcation. Such
regimes are referred to as the noise-induced bistability to
distinguish them from the scenario involving the coexistence
between the FP and the large cycle born in the τ -controlled
global bifurcation, which occurs for τ > τfc, D < Dfc.

Our main point is that the noise-induced bistability in the
dynamics of the MF model provides the necessary condition
for the failure of the QIA, and therefore the failure of MF
approximation as a whole. In other words, the qualitative
features of the dynamics displayed by the MF model can
be used to predict in a self-consistent fashion the (τ,D)
parameter domains where the QIA is bound to fail. Before
explaining this point in more detail, we make a remark
on why the noise-induced bistability is distinguished from
the one owing solely to the τ -controlled global bifurcation.
Though the MF model makes no qualitative distinction
between D and τ , which are both considered as equally valid
bifurcation parameters, the exact system is naturally sensitive
to the deterministic or stochastic character of the effects they
generate. In this context, for τ > τfc and sufficiently small
noise, the oscillations displayed by the exact system retain
their primarily deterministic character and as such satisfy the
MF approximation trivially. Nonetheless, using the method
described in Sec. III, we have verified that the stochastic
perturbation becomes large enough to compromise the validity
of the QIA for D fairly close to Dfc, the noise intensity marking
the onset of the D-controlled global bifurcation in the MF
model.

Next we show how the noise-induced bistability of the
MF model is reflected in the dynamics of the exact system.
First note that the illustrative examples of parameter values
admitting bistability between the FP and the LC are indicated
in Fig. 4 by the triangles, whereas the squares are reserved
for the typical cases facilitating coexistence between the
two LCs. In particular, we have singled out three instances
related to bistability between the FP and the LC. The point
denoted by the solid triangle (�) refers to the case bearing
no influence from the local Hopf bifurcations, given that

FIG. 5. (Color online) Bistability exhibited by the approximate
model allows one to gain insight into the parameter domains where
the QIA breaks down. In the example provided, the MF dynamics
[mx(t),my(t)] shows coexistence of the FP, denoted by the orange
(light gray) dot, and the LC (black dashed line) born via the
global fold-cycle bifurcation. Influenced by noise, the typical orbit
[X(t),Y (t)] of the exact system, displayed by the blue (dark gray) solid
line, is found to fluctuate between the two attractors of the MF model.
Failure of GA for the global variables may be considered indirect
evidence of the failure of the QIA on the level of local variables. The
data are obtained for the parameter set (c,D,τ ) = (0.1,0.0029,0.3).

D < DH , where DH ≈ 0.0025 marks the onset of the Hopf
bifurcations. Nevertheless, in the two examples indicated
by the open triangles (
), such form of bistability occurs
because the equilibrium is stabilized via the inverse subcritical
Hopf bifurcation, whereby the unstable cycle born in the
Hopf bifurcation acts like a threshold switching between the
two stable solutions. Implementing the method introduced in
Sec. III, it has been verified that the QIA is violated in all three
described instances. For the case (c,D,τ ) = (0.1,0.0029,0.3),
we have illustrated the phase portraits corresponding to the
two attractors of the MF model and the appropriate orbits
for the collective variables of the exact system (see Fig. 5).
The rationale for the failure of the QIA rests on the point
that the mixed mode of the exact system may be interpreted
as stochastic switching between the two attractors of the
deterministic MF model. Naturally, the ensuing orbits are not
normally distributed around the respective averages.

The analogous explanation also applies for the scenario
where the MF model displays coexistence between the two
LCs. In Fig. 4, we have indicated three parameter domains
supporting such form of bistability. In the cases denoted by the
open squares (�), the large cycle from the global bifurcation
coexists with the incipient cycle, emerging from the direct
supercritical Hopf bifurcation. Nonetheless, the solid square
(�) points to an instance where the two large cycles coexist,
one of them created in the D-controlled, and the other in the
τ -controlled global bifurcation. It has been verified that the
QIA breaks down in all of the stated instances.

One should note that crossing the Hopf bifurcation curves
alone does not immediately imply the failure of the QIA.
Nevertheless, due to interplay with the D-controlled global
bifurcation, crossing the curves may become associated with
the violation of the QIA in two cases, one where the
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supercritical regime involves bistability of the FP and the LC
(inverse subcritical Hopf bifurcation), and the other, which
includes coexistence between two LCs (direct supercritical
Hopf bifurcation). The occurrence of such cases is mostly
confined to τ � τfc, because above τfc the MF dynamics is
primarily influenced by the two global bifurcations.

V. MISCELLANEOUS TOPICS

A. Fulfillment of MFAs and the statistics of the first return times

This section provides a discussion on some of the corollaries
related to the fulfillment of the MFAs. Before elaborating on
the relation between the synchronization properties and the
fulfillment of the QIA, we make two auxiliary notes qualifying
more closely the terms “frequency” and “phase” used later on.
The immediate aim is to show that the effective frequency and
phase description of system dynamics may be appropriate if
the MFAs hold. Regarding frequency, we present the results on
the distribution of ISIs for X(t). Note that there are two types of
collective modes, one where the ISIs are dominated by T0(D),
which occurs for small and intermediate D under very small
τ , and the other corresponding to the delay-led dynamics,
which is typically seen for small and intermediate D under
large τ . Either way, we have verified that ISIs are normally
distributed for an arbitrary stochastic realization under long
simulation times. In Fig. 6(a), the normality test is provided
for the more interesting case, showing persistence of Gaussian
distribution for the noise-led dynamics under fairly large D =
0.0015 at τ = 0. Since the analogous conclusion is readily
reached for the delay-driven collective mode, one may state
that the description of collective motion in terms of the average
period (frequency) appears justified if the MFAs apply.

A question that naturally arises is whether the fulfillment
of the MFAs implies that the distributions of the return points
P (Xr ) and P (Yr ) sampled at intervals equal to the average
ISI of the macroscopic dynamics are also Gaussian. P (Xr )
and P (Yr ) are calculated in two steps: One first lets the
simulation run for a sufficiently long time to determine the
average ISI for X(t), and then carries on by collecting data
on the return points for another very long time period. The
first point (X0,Y0) is chosen to lie on the refractory branch
of the LC. In Fig. 6(b) is displayed the graphic normality

FIG. 6. (Color online) Characterizing the distribution of the re-
turn times and the return points for the macroscopic dynamics of the
exact system. In (a) and (b) are displayed the graphic normality tests
respectively indicating that the ISIs and the return points for X(t) are
Gaussian distributed. The data refer to the case of noise-led dynamics
at (c,D,τ ) = (0.1,0.0015,0), but one may arrive at qualitatively
similar results for the delay-driven dynamics.

test for P (Xr ) along an arbitrary stochastic trajectory under
the same parameter set as in Fig. 6(a). The demonstrated
normality of distribution indicates that, in a statistical sense,
the return points remain fairly close to the “average” LC. From
a broader perspective, one may think of this result in the context
of building an effective phase description for the collective
motion [29–31].

Another point of interest is to verify whether the analogous
conclusions hold for the local, rather than the global variables.
Under the same parameter set as in Figs. 6(a) and 6(b), one can
demonstrate for an arbitrary unit that the ISIs over a very long
time series indeed conform to Gaussian distribution if the data
from less than 10% of realizations are discarded. However, the
return points P (xr ), sampled at tn = n ∗ Ts , where Ts denotes
the average ISI for the given unit, turn out not to be normally
distributed. This is so because the Gaussian distribution for
the local ISIs is comparably broader than that for the global
variables. Still, starting off from any point on the refractory or
the spiking branch of slow motion, the successive return points,
recorded at Ts long intervals, always fall on the “right” branch,
determined by the location of the initial point. Therefore, the
above results suggest an interesting point that if the MFAs
are satisfied, the use of terms frequency and phase is more
appropriate to describe the dynamics of the global, than the
local variables.

B. Fulfillment of QIA and synchronization

Having gained insight into the competition between the
noise-led and the delay-driven dynamics, as well as the
statistical features providing the context for the effective use
of terms frequency and phase, we proceed with the analysis
of the relation between the synchronization of the individual
units and the fulfillment of the QIA. To begin with, one
notes that for being stochastic and excitable in nature, the
units cannot exhibit complete synchronization. However, the
discussion above suggests that it is reasonable to speak of
approximate frequency (FS) and phase synchronization (PS) in
conditional terms, viz., if the MFAs are satisfied. The presence
or absence of these forms of synchronization may give rise
to three types of collective states: (i) coherent states where
single units display both the approximate FS and PS, (ii) states
that exhibit FS, but lack PS, and (iii) collective states where
approximate FS is not established. One may infer the relation
between synchronization and QIA by examining the linear
interaction terms of the form c ∗ [xi(t − τ ) − xj (t)]. If there is
approximate lag synchronization, the latter become very small,
which leaves the neurons virtually independent. Therefore,
by identifying conditions under which the approximate lag
synchronization is achieved, one effectively looks for the
parameter domains where QIA applies.

We have established that there exist only two scenarios for
the approximate lag synchronization, both of which amount
to cases of approximate FS and PS. The interaction terms
may substantially reduce either (i) for noise-led dynamics at
τ 	 0, or (ii) for delay-driven dynamics at very large τ ∼
T0(D). A way to characterize the approximate FS for the given
parameter set is to calculate the ratio r = 	T/〈Ti〉, where
	T = max|Ti − Tj | is the maximal difference between the
time-averaged ISIs Ti of individual units, whereas 〈Ti〉 denotes
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FIG. 7. (Color online) Focus on identifying the parameter domains that admit frequency and phase synchronization between the single
units, which effectively provides an indication of where the QIA holds. (a) shows r(c,D) for the delay-driven dynamics at τ = 2.7. In (b) and
(c) are illustrated the corresponding I3(c,D) and I4(c,D) distributions for τ = 2.7, respectively. Comparing (a), (b), and (c), note the overlap
between the regions displaying near-zero values for the r ratio, I3 and I4. The analogous result can be obtained for the noise-driven dynamics
at τ = 0.

the population average 〈Ti〉 = N−1 ∑N
i=1 Ti . The smaller r

becomes, the better FS between the units is achieved. The
results for r(c,D) plotted in Fig. 7(a) refer to the (ii) case at τ =
2.7. We have verified that setting τ = 0, which corresponds to
case (i), yields qualitatively similar results. As the main point,
note a very large domain where r is small, which indicates the
approximate FS. Expectedly, for small c and large D, r is seen
to rise sharply, implying that FS is lost.

The drawback of the method above is that one cannot
distinguish whether approximate FS is or is not accompanied
by PS. To do so, we consider the time-averaged third- and
fourth-order moments of the local potentials P [xi(t)] for the
given parameter set, taking the average over a very long
stochastic realization. Note that if the ergodic hypothesis
applied, such an average would equal that over an ensemble
of realizations. Nevertheless, whether this holds or not is
of marginal significance because the results below are not
intended to be rigorous, but should rather provide an illus-
tration on the link between PS and the fulfillment of QIA.
Therefore, the discussion on the asymptotic distributions here
is independent and should by no means be confounded with
the results from Sec. III, which only concern averaging over
an ensemble of stochastic realizations.

As for the moments, the third-order average moment is
defined by I3 = (1/T )

∑T
t=1 I3(t), where I3(t) = ∑

xi
[xi −

X(t)]3P [xi(t)]. The analogous relation holds for I4. P [xi(t)]
is obtained by dividing the range of possible xi values into
110 bins [x,x + δx], whereby one records the fraction of
units whose potential falls within the given bin. If there is
an approximate FS and PS, one expects xi for most t to be
Gaussian distributed around the mean X(t). Then, both I3 and
I4 should lie close to zero. If there is approximate FS, but PS
is lacking, I3 ≈ 0 should hold, whereas I4 should substantially
depart from zero. Finally, if there is no approximate FS, both
I3 and I4 are supposed to lie away from zero. Results on I3 and
I4 at τ = 2.7 for a wide range of (c,D) values [cf. Figs. 7(b)
and 7(c)] suggest that domains with approximate FS closely
match those with PS. Note the overlap between the areas with
the smallest r , I3 ≈ 0 and I4 ≈ 0 in Figs. 7(a)–7(c), where the
QIA should hold.

VI. CONCLUSION

The reduction of computational demand and the possibility
of describing the stochastic stability and the stochastic bifur-
cations can be cast as general reasons for introducing the MF
approximate model for an arbitrary set of SDDEs. Given the
apparent relevance of the MF method, an issue of considerable
importance is to be able to determine the domains where such
an approach may provide accurate qualitative predictions. The
approximations behind the MF model are often considered in
a simplistic fashion, as if they were completely independent of
the class of systems which the model under study belongs
to. Such a view results by invoking the (stereo)typical
requirements for small noise intensity and weak couplings
as the main conditions for the validity of the MF model.

In the present paper, the issue of the MF approximations and
their validity is highlighted by taking the example of a system
of delay-coupled noisy type II excitable units, represented by
the generic Fitzhugh-Nagumo model. What we actually show
is that, though they contain certain commonly stated elements,
the MFAs relevant for the given system also include ingredients
that should be precisely adapted to its essential dynamical
properties. In particular, the inherent features of class II
excitable systems, such as relaxation character of oscillations,
have been explicitly incorporated into the definitions of the two
MFAs we introduced. This point is particularly apparent in the
definition of the GA, and is further reflected in the fashion
in which the validity of both the GA and the QIA has been
verified.

It is found that the requirements for the joint validity of the
GA and QIA may be expressed in terms of a single qualitative
statement, by which the two apply if the local and global
dynamics exhibit a unique attractor of the same type, either a
FP or a LC, provided that D is not overly large. Of the two
generic scenarios, the one involving the stochastically stable
FP is fairly trivial, whereas the one associated with the LC is
more intricate and makes apparent the need for introducing the
refined MFAs considered in the paper.

Focusing on each of the approximations independently, it
is shown that the validity of the GA cannot be explicitly tied
to certain parameter domains, but rather comes down to a

022926-9
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qualitative requirement for not too large a noise intensity.
This is the main corollary of the actual statement on the
validity of the GA, by which the GA is satisfied if the
qualitative similarity between the individual realizations and
the appropriate expectations is maintained for the given
parameter set. For the oscillatory state, the notion of qualitative
similarity effectively refers to the point that the expectations
preserve the relaxation character of oscillations. In this context,
we have attempted to provide some quantitative measure of
the validity of GA by determining the variation of the Nout/Nr

ratio with D (see Sec. III).
Nonetheless, our main conclusion regarding the validity of

the MF approximation is associated with the fulfillment of the
QIA. What we have demonstrated is that the failure of the QIA
can explicitly be related to the noise-induced bistability of the
MF model. Such bistable regimes, involving either the coexis-
tence between the FP and the LC or the two LCs, are influenced
by the global fold-cycle (tangent) bifurcation controlled via the
noise intensity parameter. In this fashion, the (τ,D) parameter
domains where the MF approximation is bound to fail are iden-
tified with the domains admitting noise-induced bistability for
the MF model’s dynamics. In other words, the noise-induced
bistability of the MF model provides the necessary condition
for the failure of the QIA, and thus the MF approximation.
Note that such parameter domains do not exhaust all the cases
where the MF approximation fails, because the breakdown
may also be caused by the violation of GA.

As for the relationship between the Hopf bifurcation
curves determined for the MF model and the failure of MF

approximation, we stress that crossing the curves itself does
not imply the failure. It has already been pointed out that the
latter would mean that the MF model could never account
for the collective oscillatory states, which is not true. Though
the asymptotic distribution for the collective variables in the
exact system indeed loses the Gaussian property if the
curve corresponds to the stochastic Hopf bifurcation, this
fact alone has no bearing on the MF approximations we
introduced. However, in the interplay with the D-controlled
global bifurcation, crossing the Hopf bifurcation curves may
involve the onset of two different bistable regimes in the MF
model, and as such, may contribute to the violation of the QIA,
and thereby the MF approximation as a whole. It is reasonable
to expect that the scope of the conclusion on the relationship
between the noise-induced bistability of the MF model and
the failure of MF approximation may likely be extended to a
broader range of systems, since it draws only on the qualitative
properties of the system dynamics. For future research, it
would be interesting to examine the refined MFAs and their
validity by carrying out an analysis similar to ours in the case
of the MF models derived for systems exhibiting complex
multiscale oscillations, such as bursting, when subjected to
noise and coupling delays.
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